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ON THE AWARENESS PROGRAMS OF THE EPIDEMIC

OUTBREAKS FRACTIONAL MODEL

N. H. SWEILAM, S. M. AL−MEKHLAFI, S. A. SHATTA

Abstract. In this paper, a novel fractional model for the effect of awareness
programs on the epidemic outbreaks is presented. This system is generalized to

the standard awareness programs model by using fractional Caputo operator.

Properties of the introduced system is studied analytically and numerically.
Three numerical methods are introduced to solve the proposed model. These

methods are the generalized Euler method, the predictor-corrector method,

and the nonstandard finite difference method. Numerical simulations show
that, the nonstandard finite difference method can be applied to solve such

fractional differential equations simply and effectively.

1. Introduction

It is well known that a mathematical models has proven to be valuable in un-
derstating the dynamics of the spread of infectious diseases in a population ([1]).
The classical models depend on the interactions between susceptibles and infected
population. However, there are other factors, such as media and immigration of
population etc., which affect the spread of infectious diseases. The awareness pro-
grams by media as posters, television messages, social media outlets (i.e., Twitter,
Facebook) are used daily to inform the public on current health issues to reduce
their chances of being infected. In ([2]), Misra et al. proposed a nonlinear math-
ematical model for the effects of awareness programs on the spread of infectious
diseases and assumed the growth rate of awareness programs is proportional to the
number of infective individuals. The model analysis showed that the spread of an
infectious disease can be controlled by using awareness programs, but the disease
remains endemic due to immigration. In ([3]), Lixia Zuo et al. proposed a nonlinear
model with delay time and the effects of awareness programs driven by the media
on the spread of an infection and assumed diseases spread due to the direct contact
between susceptible and infective individuals only.

In this paper, we interest in fractional calculus because it is a new powerful
tool which has been recently employed to model biological systems with non-linear
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behavior. The fractional order differential equations are generalizations of integer
order differential equations. They are more suitable and accurate than integer order
where the effects of previous values (memory) are important. The memory term
ensures the history and its impact to the present and future ([4]-[6]).

The main aim of this work is to study numerically the approximate solutions of
the fractional model. Three numerical methods are given to solve the proposed
model, these method are the generalized Euler method (GEM), the predictor-
corrector (PCM) method and the nonstandard finite difference method (NSFDM).
Comparative studies are implemented between the proposed methods. To check
the feasibility of our analysis, we use Matlab software ode45.

The outlines of this paper organized as follows: In section 2, we recall some
definitions on fractional calculus. In section 3, the fractional order of model and
analyze the stability of the equilibrium point. In section 4, three numerical
methods are given to solve the proposed model are presented, moreover the
properties of NSFDM method are discussed. Numerical simulations for the
proposed model are given in Section 5. Finally, the conclusions are given in
Section 6.

2. Preliminaries and Notations

In this section, we recall some important definitions of the fractional calculus
used throughout the remaining sections of this paper. We present the Caputo
fractional derivative of order α, for more details see ([7, 8]). Let us consider the
following fractional order differentiation equation:

C
0 D

α
t y(t) = f(t, y(t)), 0 < t ≤ T, 0 < α ≤ 1, (1)

y(0) = yo.

Where C
0 D

α
t denotes the Caputo fractional derivative of y(t), it is defined as

follows:

C
0 D

α
t y(t) =

1

Γ(n− α)

∫ t

0

(t− s)n−α−1 d
ny(s)

dsn
ds. (2)

Where n− 1 < α ≤ n, n ∈ N , and Γ(.) is the gamma function.
The Grünwald−Letinkov fractional derivative of order α of a time-function y(t) at
time t is:

Dαy(t) = lim
h→0

h−α
[t/h]∑
j=0

(−1)α
(
α

j

)
y(t− jh), (3)

this formula can be discretized as

Dαy(tn) = lim
h→0

h−α
n∑
j=0

w
(α)
j y(tn−j) , n = 1, 2, 3, ..., (4)

where [t] denotes to the integer part of t and h =
tn
n

is the step-size. The

Grünwald−Letinkov coefficients w
(α)
j can be calculated by the following formula:

w
(α)
j = (1− 1+α

j )wαj−1 and w
(α)
o = 1 , j ≥ 1.
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3. Mathematical Model of Fractional Order

In this section, a fractional model of effects of awareness programs on the epi-
demic outbreaks is presented. The total population is divided into three classes, the
susceptible population Xm(t), the aware population Y (t) and the infected popula-
tionX(t). One of the main assumptions of this model is that, at time t the density of
awareness programs driven by media is M(t) using the fact X(t)+Xm(t)+Y (t) = 1.
The new parameters of the model are described in Table 1. It is important to notice
that all the parameters here are depended on the fractional order α. To make the
system more consistent the reality, we must therefore make sure that the right-hand
sides of these equations have the same dimensions. Therefore, we need to modify
the right-hand sides to make the dimensions match, he most straightforward way
of doing this is to put power α of each parameter in the right sides so that when
α→ 1 the system reduces to classical one. Due to the fact that the fractional-order
play a vital role in biological systems with memory which gives more degree of free-
dom ([15]-[17]). The modified system of nonlinear fractional differential equations
is given as follows:

C
0 D

α
t X(t) = λα(1−X(t)−Y (t))M(t)−(λαo+dα)X(t)−ααoX(t)Y (t)+qαvαY (t), (5)

C
0 D

α
t Y (t) = βα(1−X(t)− Y (t))Y (t)− (vα + dα)Y (t) + ααoX(t)Y (t), (6)

C
0 D

α
t M(t) = µαY (t)− µαoM(t). (7)

Where C
0 D

α
t is the Caputo fractional derivative of order 0 < α ≤ 1. The region of

attraction which is given by the set ([3]):

Ω =
{

(X,Y,M) ∈ R3
+, X ≥ 0, Y ≤ 1, 0 ≤M < µα/µαo

}
. (8)

If fractional order α = 1, then we get a nonlinear ordinary differential model.

3.1. The basic reproduction number. In the following, the basic reproduction
number Ro will be discussed, where Ro is defined as the expected number of sec-
ondary cases produced in a completely susceptible population by a typical aware
population. It is well Known that Ro = ρ(FV −1), for more details see ([14]), where
ρ is the spectral radius of the matrix F , and V .

F =
∂Hi

∂xj
, (9)

and

V =
∂Gi
∂xj

. (10)

Where H is the rate of appearance of a new aware population in class i, G is the
rate of transfer of individuals out or into class i, and the order of aware variables
xj = (x1, x2) = (Y,M).

Then(
H1

H2

)
=

(
βα(1−X − Y )Y

0

)
and

(
G1

G2

)
=

(
(vα + dα)Y − ααoXY
−µαY + µαoM

)
.
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Table 1. All symbols in the system and their definition ([3]).

Symbol Definition Value
t Time t ≥ 0
qα The rate of recovered people will become aware and join

the aware susceptible class.
0.85α

pα The rate remaining fraction will become unaware suscepti-
ble, where pα + qα = 1.

0.15α

ααo The contact rate of aware susceptible with infective popu-
lation.

0.2α

βα The contact rate of unaware susceptible with infective pop-
ulation.

Assumed

λα The dissemination rate of awareness among unaware sus-
ceptible class.

0.08α

λαo The rate of transfer of aware susceptible to unaware class. 0.02α

vα The recovery rate. 0.43α

dα The Death rate. 0.002α

µα The rate proportional to infection population. 0.002α

µαo The rate of inefficiency of programs. 0.02α

At disease-free equilibrium Eo = (0, 0, 0):

F =


∂H1

∂Y

∂H1

∂M

∂H2

∂Y

∂H2

∂M

 =

(
βα 0
0 0

)
, (11)

V =


∂G1

∂Y

∂G1

∂M

∂G2

∂Y

∂G2

∂M

 =

(
vα + dα 0
−µα µαo

)
. (12)

The basic reproduction number R0 for a system (5)− (7) is

R0 =
βα

vα + dα
. (13)

.

3.2. Equilibrium points and their asymptotic stability. In the following, to
discuss the local asymptotic stability for evaluating the equilibrium points, let us
consider: C0 D

α
t X = 0, C0 D

α
t Y = 0 and C

0 D
α
t M = 0. Then, from (1), we have

fj(X̄, Ȳ , M̄) = 0, j = 1, 2, 3,

where, (X̄, Ȳ , M̄) denotes any equilibrium point.

3.2.1. Stability of disease-free equilibrium. The system (5)− (7) has a disease-free
equilibrium when all the variables do not change with time (i.e., first derivative
w.r.t time equal zero ) and the steady-state solutions of a model in the absence of
infection or disease ([14]).
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Let the right hand side of the system (5)− (7) equal to zero and if Y = 0 then
the disease-free point is Eo = (0, 0, 0). The Jacobian matrix J of the system (5)-(7)
evaluated at the equilibrium point is:

J(E) =

(−(λαM + αα0 Y + λαo + dα) qαvα − λαM − ααoX λα(1 −X − Y )
0 (αα0 − βα)X − 2βαY + βα − vα − dα 0
0 µα −µαo

)
,

(14)

such that the Jacobian matrix evaluated at the disease-free equilibrium point is

J(Eo) =

−(λαo + dα) qαvα λα

0 βα − vα − dα 0
0 µα −µαo

 . (15)

The characteristic equation associated with above matrix is |J(Eo)− ηI| = 0, we
get eigenvalues η of the matrix are:

η1 = −(λαo + dα) < 0, η2 = βα − (vα + dα) and η3 = −µαo < 0.

If βα < vα + dα, these eigenvalues are satisfied the condition |arg ηi| >
απ

2
[12].

Then the disease- free equilibrium point E0 for the model (5)-(7) is local asymp-
totically stable.

3.2.2. Stability of endemic equilibrium. The endemic equilibrium for the system
(5) − (7) exist if at least one of the infected variables is not zero. [14]. Let the
right hand side of the system (5)− (7) equal to zero and Y 6= 0. Then the endemic
equilibrium point E∗ = (X∗, Y ∗,M∗) for system (5)− (7) is given as follows:
from equation (5),

X∗ =
βα(1− Y ∗)− vα − dα

βα − ααo
, (16)

from equation (7),

M∗ =
µαY ∗

µαo
, (17)

then from equations (5), (16) and (17),

Y ∗ =
−P2 ±

√
P 2
2 − 4P1P3

2P1
. (18)

where

P1 = ααo (µαλα + µαo β
α),

P2 = (vα + dα − βα)(µαλα + µαoα
α
o ) + qαvαµαo (βα − ααo + µαo β

α(βα + dα)),

P3 = µo(λ
α
o + dα)(vα + dα − βα).

Fractional system has an endemic equilibrium if at least one of variables is not zero.
Consider the values of parameters from Table 1, then the basic reproduction number
is Ro > 1. By analytical the endemic equilibrium point, E∗ = (X∗, Y ∗,M∗) =
(0.201, 0.014, 0.001), for β = 0.5.

The Jacobian matrix in (14) at E∗ as follows:



JFCA-2020/11(1) ON THE AWARENESS PROGRAMS 31

J(E
∗
) =

−(λαM∗ + αα0 Y
∗ + λαo + dα) − η qαvα − λαM∗ − ααoX

∗ λα(1 −X∗ − Y ∗)
0 (αα0 − βα)X∗ − 2βαY ∗ + βα − vα − dα − η 0
0 µα −µαo − η

 .

(19)

The eigenvalues of matrix in (19) are:
η1 = −(λαM∗ +αα0 Y

∗ + λαo + dα) < 0, η2 = (αα0 − βα)X∗ − 2βαY ∗ + βα − vα − dα
and η3 = −µαo < 0. If βα + (αα0 − βα)X∗ < 2βαY ∗+ vα + dα, these eigenvalues are

satisfied the condition |arg ηi| >
απ

2
[12]. Then the endemic equilibrium point, E∗

is local asymptoically stable.

4. Numerical Methods

The aim in this section is to solve the fractional model (5)-(7) numerically. Three
numerical methods will be consider here, GEM, PCM and NSFDM. In the follow-
ing, we will give a brief summary on these methods:

4.1. GEM. The Euler algorithm has been extended to study the fractional non-
linear differential equations, where the derivative is defined by the Caputo fractional
derivative, for more details see ([7]).

yn+1 = yn +
hα

Γ(α+ 1)
f(tn, yn). (20)

4.2. Estimation of the local truncation error. The local truncation error
(LTE) of GEM is the claimed error in a single execution step of the proposed
method. It is the difference between the numerical solution y1, and the exact solu-
tion at time t1 = t0 + h, after one step. The numerical solution is given from (20)
by:

y1 = y0 +
(ϕ(h))α

Γ(α+ 1)
f(y0, t0). (21)

For the exact solution, we assume that y(t), caD
α
t y(t) and c

aD
2α
t y(t) are continuous

on [0, a], using the generalized Taylor’s formula [25] to expand y(t) about t = t0 = 0,

y(t) =

n∑
i=0

tiα

Γ(iα+ 1)

c

a

Diαy(0) +
c
aD

(n+1)y(µ)t(n+1)α

Γ((n+ 1)α+ 1)
,

0 ≤ µ ≤ t, ∀t ∈ (0, a],

Now, for each value t there is a value c1 such that:

y(t) = y(t0) +
c
aD

α
t y(t0)

Γ(α+ 1)
tα +

c
aD

α
t y(c1)

Γ(2α+ 1)
t2α + .... . (22)

When c
aD

α
t y(t0) = f(y(t0), t0) and h = t1 are substituted into (22) we have:

y(t1) = y(t0) +
ξ(y(t0), t0)

Γ(α+ 1)
(h)α +

c
aD

2α
t y(c1)

Γ(2α+ 1)
(h)2α + .... . (23)

The LTE of GEM is given by the difference between (21) and (23) as follows:

LTE = y(t1)− y1 =
c
aD

2α
t y(c1)

Γ(2α+ 1)
ϕ(h)2α +O(ϕ(h))3α. (24)
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4.3. PCM. PCM is used to approximate than one previous point to determine
the approximation at the next point. It is a combination of an explicit method to
predict and an implicit method to improve the prediction corrector.

We get yPn+1 (predictor) by using the forward Euler method, then we get yCn+1

(corrector) by using the trapezoidal rule, for more details see ([20]).

Then the discrete form of the Caputo fractional derivative

yPn+1 =

n∑
j=0

tjn+1

j!
y(j)o +

n∑
j=0

bj,n+1f(tj , yj), (25)

yCn+1 =

n∑
j=0

tjn+1

j!
y(j)o +

n∑
j=0

aj,n+1f(tj , yj) + an+1,n+1f(tn+1, y
P
n+1), (26)

where

bj,n+1 =
(n− j + 1)α − (n− j)α

Γ(α+ 1)
,

aj,n+1 =
∆tα

Γ(α+ 2)


nα+1 − (n− α)(n+ 1)α, j = 0,

(n− j + 2)α+1 − 2(n− j + 1)α+1 + (n− j)α+1, 1 ≤ j ≤ n,
1, j = n+ 1.

(27)
Remark The error analysis of the fractional PCM is investigated in ([7], [26]).

4.4. NSFDM. The technique of the NSFDM was firstly proposed by Mickens to
solve numerically the ordinary differential equations, [10, 11]. We construct the
NSFDM scheme to obtain numerical solutions of the epidemic model of fractional
differential equations, (5)-(7).

A scheme is called NSFDM discretization if at least one of the following condi-
tions is satisfied:
• The nonlocal approximation is used such as

yx =


ynxn+1,

yn+1xn−1,

yn−1xn.

• Discretization of a derivative is not traditional and use a nonnegative function,

ϕ(h) = h+O(h2), 0 < ϕ < 1, for all h > 0,

where the function ϕ(h) is a continuous of step size.

The nonstandard differences approximation of Caputo derivative is given by the
Grünwald−Letinkov’s definition [13]:

C
0 D

α
t y(t) =

1

(φ(∆t))α
(yn+1 −

n+1∑
i=1

wiyn+1−i − Cn+1yo), (28)

where h = ∆t =
tn
n
, n = 0, 1, 2, 3, · · ·, Nn, denotes Nn is a natural number.

The Grünwald−Letinkov coefficients define as follows [13]:

ωi = (1− 1 + α

i
)ωαi−1, ω1 = α, (29)
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Ci =
i−α

Γ(1− α)
, C1 =

1

Γ(1− α)
, i = 1, 2, 3, · · ·, n+ 1. (30)

Lemma Assume that 0 < α < 1, then the coefficients wi and Ci satisfy for i ≥ 1
the properties.

0 < wi+1 < wi < · · · < w1 = α < 1,

0 < Ci+1 < Ci < · · · < C1 =
1

Γ(1− α)
.

4.4.1. NSFDM for fractional differential equations. We construct NSFDM for ob-
taining explicit discretization of equations (5)-(7). Using nonstandard technique
and equation (28). The new system is described as follows:

Xn+1−
n+1∑
i=1

wiXn+1−i−Cn+1Xo = (φ(h))α(λα(1−Xn+1−Yn)Mn−(λαo +dα)Xn+1

− ααoXn+1Yn + qαvαYn),

(31)

Yn+1 −
n+1∑
i=1

wiYn+1−i − Cn+1Yo = ((φ(h))α)(βα(1−Xn − Yn)Yn+1

− (vα + dα)Yn+1 + ααoXnYn+1), (32)

Mn+1 −
n+1∑
i=1

wiMn+1−i − Cn+1Mo = ((φ(h))α)(µαYn − µαoMn+1). (33)

The explicit form expressions for Xn+1 , Yn+1 and Mn+1:

Xn+1 =

∑n+1
i=1 ωiXn+1−i + Cn+1Xo + (φ(h))α(λα(1− Yn)Mn + qαvαYn)

1 + (φ(h))α(λαMn + λαo + dα + αα0 Yn)
,

Yn+1 =

∑n+1
i=1 wiYn+1−i + Cn+1Yo

1 + (φ(h))α(vα + dα − βα(1−Xn − Yn)− ααoXn)
,

Mn+1 =

∑n+1
i=1 w1Mn+1−i + Cn+1Mo + (φ(h))αµαYn

1 + µαo (φ(h))α
.

(34)

4.4.2. Properties of the solutions of the proposed model. In the following, the prop-
erties of a numerical scheme that given by (34) are analyzed [15].

• Positivity and boundedness of NSFDM scheme:
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Theorem [Positivity] Suppose that Xo ≥ 0, Yo ≥ 0, Mo ≥ 0., then Xn ≥ 0, Yn ≥
0, Mn ≥ 0. It is satisfied for all n = 1, 2, · · ·.
Proof. By induction, for n = 0, we have from a system (34).

X1 =
w1Xo + C1Xo + (φ(h))α(λα(1− Yo)M0 + qαvαYo)

1 + (φ(h))α(λαMo + λαo + dα + ααo Yo)
≥ 0,

Y1 =
w1Yo + C1Yo

1 + ((φ(h))α)(vα + dα − βα(1−Xo − Yo)− ααoXo)
≥ 0,

M1 =
w1Mo + C1Mo + (φ(h))αµαYo

1 + µαo (φ(h))α
≥ 0.

(35)

Notice: All parameters are positive. We suppose that Xn ≥ 0, Yn ≥ 0, Mn ≥
0. for all n < n+ 1. Thus for n+ 1.

Xn+1 =

∑n+1
i=1 ωiXn+1−i + Cn+1Xo + (φ(h))α(λα(1− Yn)Mn + qαvαYn)

1 + (φ(h))α(λαMn + λαo + dα + αα0 Yn)
≥ 0,

Yn+1 =

∑n+1
i=1 wiYn+1−i + Cn+1Yo

1 + ((φ(h))α)(vα + dα − βα(1−Xn − Yn)− ααoXn)
≥ 0,

Mn+1 =

∑n+1
i=1 wiMn+1−i + Cn+1Mo + (φ(h))αµαYn

1 + µαo (φ(h))α
≥ 0.

(36)
Theorem [Boundedness] Suppose that initial conditions are Xmo = 0, Xo =
0, Yo = 1, where X(t) + Xm(t) + Y (t) = 1, then Xn, Yn, Mn are bounded for
all n = 1, 2, ....
Proof Multiplying each equation in system (34) by its denominator give:

Xn+1(1+(φ(h))α(λαo+dα))+Yn+1(1+(φ(h))α(vα+dα−βα)) =

n+1∑
i=1

ωi(Xn+1−i+Yn+1−i)

+ Cn+1(Xo + Yo). (37)

Mn+1(1 + µo((φ(h))α)) =

n+1∑
i=1

wiMn+1−i + Cn+1Mo. (38)

By induction, using Lemma 4.4, it follows that for n = 0:

X1(1+(φ(h))α(λαo+dα))+Y1(1+(φ(h))α(vα+dα−βα)) = ω1(Xo+Yo)+C1(Xo+Yo)

= ω1 + C1 = K1. (39)

M1(1 + µo((φ(h))α)) = w1Mo + C1Mo ' 0. (40)

So, we have

X1 ≤
K1

(1 + (φ(h))α(λαo + dα))
, Y1 ≤

K1

(1 + (φ(h))α(vα + dα − βα))
. (41)

i.e,
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X1 ≤ K1, Y1 ≤ K1, M1 ' 0.

For n = 1, we have:

X2(1 + (φ(h))α(λαo + dα)) + Y2 (1 + (φ(h))α(vα + dα − βα)) = ω2(Xo + Yo) + ω1(X1 + Y1)
+C2(Xo + Yo) ≤ω1(2K1) + w1 + C1,
=K1(2α+ 1) = K2,

(42)

M2(1 + µo((φ(h))α)) = w2Mo + w1M1 + C1Mo ' 0. (43)

So X2 ≤ K2, Y2 ≤ K2, M2 ' 0..

For n = 2, we have:

X3(1 + (φ(h))α(λαo + dα)) + Y3(1 + (φ(h))α (vα + dα − βα)) = ω3(Xo + Yo) + ω2(X1 + Y1)
+ω1(X2 + Y2) + C3(Xo + Yo)
≤ ω1 + w1(2K1) + w1(2K2) + w1 + C1,
= K2(2α+ 1) = K3.

(44)

M3(1 + µo(φ(h))α) ' 0. (45)

So X3 ≤ K3, Y3 ≤ K3, M3 ' 0.

Now, we suppose that

Xn(1 + (φ(h))α(λαo + dα)) + Yn(1 + (φ(h))α(vα + dα − βα)) ≤ Kn−1(2α+ 1) = Kn.
(46)

Mn ' 0. (47)

i.e.

Xn ≤ Kn, Yn ≤ Kn, Mn ' 0.

So Mn+1 ' 0 is closer to zero as increasing n, then Mn+1, it is bounded.
To proof Xn+1 ≤ Kn+1, Yn+1 ≤ Kn+1.

Xn(1 + (φ(h))α(λαo + dα)) + Yn(1 + (φ(h))α(vα + dα − βα)) = ωn+1(Xo + Yo) + ωn(X1 + Y1) + ...
+ ω2(Xn−1 + Yn−1) + w1(Xn + Yn) + Cn+1(Xo + Yo)
≤ ω1 + w1(2K1) + ...+ w1(2Kn−1) + w1(2Kn) + C1,
= Kn(2α+ 1) = Kn+1.

(48)

Remark Concerning the convergence of the method, we refer to ([22]-[24]) and
the references cited there in.

5. Numerical Simulations

In this section, we use the proposed NSFDM (34) to simulate the solution of
(5)-(7). In order to test stability properties of the schemes, we compared the
proposed method with GEM and PCM at different values of the parameter βα.
Throughout this section, some of simulations are performed with initial conditions
(X0, Y0,M0) = (0.38, 0.3, 0.09), and different values of α. The values of the pa-
rameters are taken from Table 1 and we used φ(h) = 1 − e−h. We consider the
solutions which obtained by Matlab Ode45 as the exact solution. Figure 1, shows
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the behaviour of the approximation solutions X(t), Y (t) and M(t) at α = 1 using
different methods are convergent to the endemic equilibrium when Ro > 1. Figure
2, shows the NSFDM is more stable than GEM and PCM. Figure 3, show how the
solutions of system (5)-(7) obtained by the proposed NSFDM change when α takes
different values. Table 2, reports the convergence behaviour of the solutions when
Ro < 1 of following numerical methods: NSFDM, PCM and GEM. Table 3, reports
the convergence behaviour of the solutions when Ro > 1 using the same methods
in Table 2. We can conclude from these tables that NSFDM is convergent for large
h while PCM and the GEM converge only when h is small. So, NSFDM can save
the computational time.

Table 2. Results for different time step sizes h, β = 0.35 and Ro < 1.

h GEM PCM NSFDM
0.01 Convergence Convergence Convergence
0.05 Convergence Convergence Convergence
0.1 Convergence Convergence Convergence
0.5 Convergence Convergence Convergence
1 Convergence Convergence Convergence
20 Divergence Divergence Convergence

Table 3. Results for different time step sizes h, β = 0.5 and Ro > 1.

h GEM PCM NSFDM
0.01 Convergence Convergence Convergence
0.05 Convergence Convergence Convergence
0.1 Convergence Convergence Convergence
0.5 Convergence Convergence Convergence
1 Convergence Convergence Convergence
20 Divergence Divergence Convergence
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Figure 1. Behavior of the approximation solutions X(t), Y (t) and
M(t) when, Ro > 1 and α = 1 using different methods.

Figure 2. Behavior of the approximate solutions of infection pop-
ulation when h = 20 by using different methods.



38 N. H. SWEILAM, S. M. AL−MEKHLAFI, S. A. SHATTA JFCA-2020/11(1)

Figure 3. The approximation solutions X(t), Y (t) and M(t) in
case Ro > 1, βα = 0.5α and different values of α using NSFDM.
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6. Conclusions

In this article, a fractional model for the effects of awareness programs on the
epidemic outbreaks is presented. It is concluded that the proposed fraction order
model is more suitable to describe the biological phenomena with memory than the
integer order model and can include easily the memory effects presented in many
real world phenomena. Three numerical methods are given to solve numerically the
proposed model. NSFDM is constructed such that the numerical solutions have the
same properties of the analytical solutions. Moreover, NSFDM can decrease the
calculation’s time since it is able to use larger time steps and it provides good
approximations for the proposed model and it is more stable than other methods.
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