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DYNAMICAL ANALYSIS OF A FRACTIONAL ORDER

PREY-PREDATOR SYSTEM WITH A RESERVED AREA

D. MUKHERJEE, R. MONDAL

Abstract. This paper deals with a fractional order prey-predator system in
a reserved area. The existence, uniqueness, non-negativity, boundedness and

persistence of the solutions are proved for the considered model. Sufficient

condition for local as well as global stability of the equilibrium points are de-
rived. A numerical analysis for Hopf type bifurcation is presented. Finally

numerical simulations are carried out to validate the results obtained.

1. Introduction

Fractional calculus is the branch of mathematics that generalizes derivatives
and integration of arbitrary order. In particular, fractional differential equations
are used to explain certain nonlinear phenomena [10]. The process of developing
a differential system of integer order into fractional order becomes an important
issue in dynamical system. Recently several studies are carried out in fractional
order biological systems [2],[6],[9],[13]. The main reason for using fractional order
systems is that they allow greater degree of freedom in the model. Moreover, frac-
tional order systems are more realistic than integer order in biological modeling due
to memory effects.
Lot of works have been done numerically in fractional systems still some problems
are unsolved and a few analytical results have been developed. Results on stability
are addressed in [11]. Recently, global stability analysis is discussed elaborately in
[14].
In recent years, it is observed that many species in ecological system become ex-
tinct due to various reasons like, over exploitation, over predation, environmental
pollution etc. To protect these species, appropriate measures such as restriction
on harvesting, employing reserve zones/refuges should be taken so that species can
grow in these regions without any external disturbances.
In view of above, Mukherjee [12] studied a prey-predator system with a reserved
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area with Holling type II predator functional response function as follows :

dx

dt
= r1x(1− x

k1
)−m1x+m2y −

c1xz

h+ x
,

dy

dt
= r2y(1− y

k2
) +m1x−m2y,

dz

dt
= z(

c2x

h+ x
− d) (1)

Here x(t) is the density of prey species inside the unreserved area. y(t) is the density
of prey species in the reserved area where predation is not allowed. z(t) represents
the predator density. r1 and r2 are the intrinsic growth rates of prey species inside
the unserved and reserved area respectively. k1 and k2 are their respective carrying
capacities. c1, c2 and d are the capturing rate, conversion rate and death rate of
predator respectively. m1 and m2 are migration rates from the unreserved area to
the reserved area and the reserved area to the unreserved area respectively. h is
the half saturation constant. Stability, Hopf bifurcation and persistence in integer
order system (1) with h = 1 are studied in [12]. In the present paper, we introduce
the fractional order derivative by replacing the usual integer order derivative by
fractional order Caputo-type derivative to obtain the following fractional order
system :

cDαx(t) = r1x(1− x

k1
)−m1x+m2y −

c1xz

h+ x
,

cDαy(t) = r2y(1− y

k2
) +m1x−m2y,

cDαz(t) = z(
c2x

h+ x
− d) (2)

with initial conditions
x(0) = x0 > 0, y(0) = y0 > 0 and z(0) = z0 > 0,
where α ∈ (0, 1) and cDα is the standard Caputo differentiation. All the parame-
ters of fractional order system (2) are non-negative for all time t ≥ 0. The Caputo
fractional derivative of order α is defined by

cDαf(t) =
1

Γ(n− α)

∫ t

0

(t− s)n−α−1f (n)(s)ds, n− 1 < α < n, n ∈ N.

From literature survey, the dynamics of a fractional order prey-predator system with
reserved area has not studied before. Motivated by these observations, a fractional
order prey-predator system with reserved area is considered. Contributions of these
work can be summarized as follows : Firstly, we show existence and uniqueness of
the solutions of system (2). Secondly, we prove non-negativity and boundedness
of the solutions for system (2). Thirdly, sufficient conditions are derived to ensure
local and global stability of the equilibrium points of system (2). Fourthly, persis-
tence conditions are presented. Furthermore, the emergence of Hopf bifurcation in
the fractional order system (2) is demonstrated. Finally, by numerical simulations,
we discuss the effect of fractional order on the solutions of system (2).
The paper structured as follows. In Section 2, the existence, uniqueness, non-
negativity, boundedness , stability analysis, persistence and Hopf bifurcation of
fractional order system (2) are presented. In Section 3, numerical simulations are
provided to validate the results obtained. Finally, a brief discussion concludes our
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paper in Section 4.

2. Main results

In this section, we study the existence, uniqueness, non-negativity and bound-
edness of the solutions of a fractional order system (2). In addition, the stability
of boundary equilibria, persistence, Hopf bifurcation and global stability of coexis-
tence equilibrium point are analyzed.

2.1. Existence and uniqueness. We now discuss the sufficient condition for ex-
istence and uniqueness of the fractional order system (2).

Theorem 1. For each non-negative initial condition, there exists a unique solution
of fractional order system (2).

Proof. We study the existence and uniqueness of the fractional order system
(2) in the region B × (0, T ] where
B = {(x, y, z) ∈ R3 : max(|x|, |y|, |z| ≤ M)}. We follow the approach used in [7].
We denote X = (x, y, z) and X̄ = (x̄, ȳ, z̄). Consider a mapping
H(X) = (H1(X), H2(X), H3(X)) and

H1(X) = r1x(1− x

k1
)−m1x+m2y −

c1xz

h+ x
,

H2(X) = r2y(1− y

k2
) +m1x−m2y,

H3(X) = z(
c2x

h+ x
− d). (3)

For X, X̄ ∈ B, it follows from (3) that
‖H(X)−H(X̄)‖
= |H1(X)−H1(X̄)|+ |H2(X)−H2(X̄)|+ |H3(X)−H3(X̄)|
= |r1x(1− x

k1
)−m1x+m2y − c1xz

h+x − r1x̄(1− x̄
k1

) +m1x̄−m2ȳ + c1x̄z̄
h+x̄ |

+ |r2y(1− y
k2

) +m1x−m2y− r2ȳ(1− ȳ
k2

)−m1x̄+m2ȳ|+ |z( c2xzh+x −d)− z̄( c2x̄z̄h+x̄ −d)|
= |r1(x− x̄)− r1

k1
(x2− x̄2)−m1(x− x̄) +m2(y− ȳ) + c1h(x̄z̄−xz)+c1xx̄(z̄−z)

(h+x)(h+x̄) |+ |r2(y−
ȳ)− r2

k2
(y2 − ȳ2) +m1(x− x̄)−m2(y − ȳ)|+ | c2h(xz−x̄z̄)+c2xx̄(z−z̄)

(h+x)(h+x̄) − d(z − z̄)|
≤ r1|x−x̄|+ r1

k1
|x+x̄||x−x̄|+m1|x−x̄|+m2|y− ȳ|+ c1h|x̄z̄−x̄z+x̄z−xz|

(h+x)(h+x̄) + c1xx̄|z−z̄|
(h+x)(h+x̄) +

r2|y−ȳ|+ r2
k2
|y+ȳ||y−ȳ|+m1|x−x̄|+m2|y−ȳ|+ c2h|xz−x̄z+x̄z−x̄z̄|

(h+x)(h+x̄) + c2xx̄|z−z̄|
(h+x)(h+x̄)+d|z−z̄|

≤ (r1+ 2Mr1
k1

+m1)|x−x̄|+(r2+ 2Mr2
k2

+m2)|y−ȳ|+ c1h|x̄(z̄−z)+z(x̄−x)|
(h+x)(h+x̄) + c2h|z(x−x̄)+x̄(z−z̄)|

(h+x)(h+x̄) +
(c1+c2)x̄|z−z̄|

h+x̄ + d|z − z̄|
≤ [r1+ 2r1M

k1
+m1+{M(c1+c2)

h+x̄ }]|x−x̄|+[r2+ 2r2M
k2

+m2]|y−ȳ|+{ 2(c1+c2)x̄
h+x̄ +d}|z−z̄|

≤ L‖X − X̄‖,
where
L = max{r1 + 2r1M

k1
+ M(c1+c2)

h+x̄ +m1, r2 + 2r2M
k2

+m2,
2x̄(c1+c2)
h+x̄ + d}.

Thus, H(X) satisfies the Lipschitz condition. Consequently, the existence and
uniqueness of fractional order system (2) follows.
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2.2. Non-negativity and boundedness. For biological validity, we are only in-
terested in solutions that are non-negative and bounded. The following result
establishes the non-negativity and boundedness of the solutions of fractional order
system (2).
Theorem 2 All the solutions of fractional order system (2) which start in R3

+ are
uniformly bounded and non-negative.

Proof. Define the function
V (t) = x(t) + y(t) + c1

c2
z. For each d > 0,

cDαV (t) + dV (t)
= r1x(1− x

k1
)−m1x+m2y− c1xzh+x+r2y(1− y

k2
)+m1x−m2y+ c1xz

h+x−
c1dz
c2

+dx+dy+ dc1z
c2

= − r1
k1
x2 + (r1 + d)x− r2

k2
y2 + (r2 + d)y

= − r1
k1
{x− k1(r1+d)

2r1
}2 + k1(r1+d)2

4r1
− r2

k2
{y − k2(r2+d)

2r2
}2 + k2(r2+d)2

4r2

≤ k1(r1+d)2

4r1
+ k2(r2+d)2

4r2
.

By using the standard comparison theorem for fractional order [3],

V (t) ≤ V (0)Eα(−d(t)α) + {k1(r1+d)2

4r1
+ k2(r2+d)2

4r2
}(t)αEα,α+1(−d(t)α)

where Eα is the Mittag-Leffler function. According to Lemma 5 and Corollary 6 in
[3],

V (t) ≤ k1(r1+d)2

4r1
+ k2(r2+d)2

4r2
, t→∞.

Therefore, all the solutions of fractional order system (2) starting in R3
+ are confined

to the region Ω where

Ω = {(x, y, z) ∈ R3
+ : V ≤ k1(r1 + d)2

4r1
+
k2(r2 + d)2

4r2
+ ε, ε > 0}. (4)

Next, we show that the solutions of the fractional order system (2) are non-negative.
From Eq.(1) of system (2)

cDαx(t) = r1x(1− x

k1
)−m1x+m2y −

c1xz

h+ x
. (5)

From (4), one can see that

x+ y +
c1
c2
z ≤ k1(r1 + d)2

4r1
+
k2(r2 + d)2

4r2
= k. (6)

Based on (5) and (6), we get
cDαx(t) ≥ r1x(1− x

k1
)−m1x− c2k

h x

= {r1(1− k
k1

)−m1 − c2k
h }x = βx

where
β = r1(1− k

k1
)−m1 − c2k

h }.
According to the standard comparison theorem for fractional order [3] and the
positivity of Mittag-Leffler function Eα,1(t) > 0 for any α ∈ (0, 1) [15],
x ≥ x0Eα,1(βtα)⇒ x ≥ 0.
From Eq.2 of system (2)
cDαy(t) = r2y(1− y

k2
) +m1x−m2y

≥ r2y(1− k
k2

)−m2y
= β1y
where
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β1 = r2(1− k
k2

)−m2.

Therefore, y ≥ y0Eα,1(β1t
α)⇒ y ≥ 0.

Again, from Eq.3 of (2),
cDαz(t) = z( c2xzh+x − d) ≥ −dz.
Therefore,
z ≥ z0Eα,1(−dtα)⇒ z ≥ 0.
Thus, it has been proved that, the solutions of system (2) are non-negative.

2.3. Equlibria and stability. Equilibria of system (2) are solutions to the system

cDαx(t) = 0,cDαy(t) = 0,cDαz(t) = 0.

Then, the fractional order system (2) has three equilibrium points as follows :
1. The population free equilibrium point E0 = (0, 0, 0). The point E0 always exist.
2. The predator free equilibrium point E1 = (x̄, ȳ, 0). From system (2) we have

r1x̄(1− x̄

k1
)−m1x̄+m2ȳ = 0, (7)

r2ȳ(1− ȳ

k2
) +m1x̄−m2ȳ = 0. (8)

From (7) and (8) we find

ȳ = 1
m2
{ r1x̄

2

k1
− (r1 −m1)x̄} and x̄ is the positive root of the following equation

b0x
3 + b1x

2 + b2x+ b3 = 0, (9)

where
b0 =

r21r2
m2

2k
2
1k2

, b1 = − 2r1r2(r1−m1)
k1k2m2

2
, b2 = r2(r1−m1)

k2m2
2
− r1(r2−m2)

k1m2
, b3 = r1r2−r2m1−r1m2

m2
.

Eq. (9) has a positive root if r1r2 < r1m2 + r2m1. For ȳ to be positive, we must

have x̄ > k1(r1−m1)
r1

.

3. The coexistence equilibrium point E2(x∗, y∗, z∗). From system (2) we have

x∗ = dh
c2−d , y

∗ =
k2(r2−m2)+

√
k22(r2−m2)2+4k2m1x∗r2

2r2
, z∗ = h+x∗

c1x∗ {r1x
∗(1 − x∗

k1
) −

m1x
∗ +m2y

∗}.
The coexistence equilibrium point E2 for the fractional order system (2) exists if

c2 > d and m2y
∗ + r1x

∗ > x∗(m1 + r1x
∗

k1
).

The Jacobian matrix of system (2) at any point (x, y, z) is given by

J(x, y, z) =

 r1(1− 2x
k1

)−m1 − c1zh
(h+x)2 m2 − c1x

h+x

m1 r2(1− 2y
k2

)−m2 0
c2hz

(h+x)2 0 c2x
h+x − d


Theorem 3. The equilibrium point E0 of system (2) is an asymptotically stable
equilibrium point if ri < mi, i = 1, 2 and a saddle point either r1 > m1 or r2 > m2.

Proof. The Jacobian matrix of system (2) at E0 is given by

J(E0) =

 r1 −m1 m2 0
m1 r2 −m2 0
0 0 −d


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Eigenvalues of matrix J(E0) are obtained by solving the characteristic equation

P (λ) = det(J(E0)−Iλ) = {λ2−λ(r1−m1+r2−m2)+r1r2−r1m2−r2m1}(d+λ) = 0.

The eigenvalues corresponding to the equilibrium point E0 are

λ1,2 =
r1−m1+r2−m2±

√
(r1−m1+r2−m2)2−4(r1r2−r1m2−r2m1)

2 and λ3 = −d. If r1+r2 >

m1 + m2 and (r1 −m1 + r2 −m2)2 > 4(r1r2 − r1m2 − r2m1) then | arg λ1| = 0 <
απ
2 , | arg λ2| = 0 < απ

2 and | arg λ3| = π > απ
2 .

According to the Matignon’s condition [11], the equilibrium point E0 is a saddle
point if r1 + r2 > m1 + m2 and (r1 −m1 + r2 −m2)2 > 4(r1r2 − r1m2 − r2m1).
If r1 + r2 < m1 + m2 and (r1 − m1 + r2 − m2)2 > 4(r1r2 − r1m2 − r2m1) then
| arg λi| = π > απ

2 , i = 1, 2. Then E0 is locally asymptotically stable.
Theorem 4. The equilibrium point E1 of system (2) is locally asymptotically sta-
ble if c2x̄

h+x̄ < d.

Proof. The Jacobian matrix of system (2) at E1 is given by

J(E1) =

 r1(1− 2x̄
k1

)−m1 m2 − c1x̄
h+x̄

m1 r2(1− 2ȳ
k2

)−m2 0

0 0 c2x̄
h+x̄ − d


Eigenvalues of matrix J(E1) are λ1 = c2x̄

h+x̄ − d and the other λ2, λ3 are obtained
by solving the equation

λ2 − {r1(1− 2x̄

k1
)−m1 + r2(1− 2ȳ

k2
)−m2}λ+ {r1(1− 2x̄

k1
)−m1}{r2(1− 2ȳ

k2
)−m2} −m1m2 = 0 (10)

Now, r1(1− x̄
k1

)−m1 + m2ȳ
x̄ = 0.

Therefore, r1(1− 2x̄
k1

)−m1 = − r1x̄k1 −
m2ȳ
x̄ .

Similarly,
r2(1− 2ȳ

k2
)−m2 = − r2ȳk2 −

m1x̄
ȳ . Thus (10) becomes

λ2 + (
r1x̄

k1
+
m2ȳ

x̄
+
r2ȳ

k2
+
m1x̄

ȳ
)λ+ (

r1x̄

k1
+
m2ȳ

x̄
)(
r2ȳ

k2
+
m1x̄

ȳ
)−m1m2 = 0.

Clearly, ( r1x̄k1 +m2ȳ
x̄ + r2ȳ

k2
+m1x̄

ȳ )2 > 4{( r1x̄k1 +m2ȳ
x̄ )( r2ȳk2 +m1x̄

ȳ )−m1m2}. So λ2, λ3 < 0

Thus, E1 is locally asymptotically stable if | arg λi| > απ
2 , i = 1 .Thus, E1 is locally

asymptotically stable if | arg λi| > απ
2 , i = 1, 2, 3. Now | arg λ1| = π if c2x̄

h+x̄ < d.

Furthermore,| arg λ2,3| = π > απ
2 . This completes the proof.

To analyze the stability of equilibrium point E2, we compute J(E2). Now

J(E2) =

 r1(1− 2x∗

k1
)−m1 − c1z

∗h
(h+x∗)2 m2 − c1dc2

m1 r2(1− 2y∗

k2
)−m2 0

c2hz
∗

(h+x∗)2 0 0


Eigenvalues of matrix J(E2) are obtained solving the by solving the characteristic
equation

λ3 + a1λ
2 + a2λ+ a3 = 0,

where
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a1 = −{r1(1− 2x∗

k1
)−m1 − c1z

∗h
(h+x∗)2 + r2(1− 2y∗

k2
)−m2}, a2 = {r1(1− 2x∗

k1
)−m1 −

c1z
∗h

(h+x∗)2 }{r2(1− 2y∗

k2
)−m2} −m1m2 + c1dhz

∗

(h+x∗)2 , a3 = c1dhz
∗

(h+x∗)2 {
m1x

∗

y∗ + r2y
∗

k2
}, and its

discriminant is given by :

D(P ) = 18a1a2a3 + (a1a2)2 − 4a3a
3
1 − 4a3

2 − 27a2
3.

We note that a3 > 0.
Theorem 5. The equilibrium point E2 of system (2) is locally asymptotically sta-
ble if one of the following conditions are satisfied.
1. D(P ) > 0, a1 > 0, and a1a2 > a3.
2. D(P ) < 0, a1 ≥ 0, a2 ≥ 0, and α < 2

3 .
3. D(P ) < 0, a1 > 0, a2 > 0, a1a2 = a3 and for all α ∈ (0, 1).

Proof. Proceeding along the lines in [2], we can prove Theorem 5.

2.4. Persistence. Persistence in biological systems implies long term survival of
the population. So study of persistence is important as it is concerned with the
stability of some equilibrium solutions of the dynamical system.
We have already proved in Theorem 2 that

x+ y +
c1
c2
z ≤ k1(r1 + d)2

4r1
+
k2(r2 + d)2

4r2
= k.

This implies that x(t) ≤ k, y(t) ≤ k, z(t) ≤ kc2
c1
.

The solution of Eq.1 of system (2) is
x(t)

= x0 + 1
Γ(α)

∫ t
0
(t− s)α−1{r1x(s)(1− x(s)

k1
)−m1x(s) +m2y(s)− c1x(s)z(s)

h+x(s) }ds
> 1

Γ(α)

∫ t
0
(t− s)α−1x(s){r1(1− k

k1
)−m1 − c2

h }ds
= β

Γ(α)

∫ t
0
(t− s)α−1x(s)ds

= Eα(βtα) = p1 > 0 where β = r1(1− k
k1

)−m1 − c2
h .

Similarly one can show that
y(t) > Eα(γtα) > 0 if γ > 0 where γ = r2(1− k

k2
)−m2. Now using the estimate of

x(t), we get

z(t) > 1
Γ(α)

∫ t
0
(t−s)α−1z(s){ c2p1h+p1

−d}ds = Eα(δtα) > 0 if δ > 0 where δ = c2p1
h+p1

−d.
Thus we have the following theorem.

Theorem 6. The solution of system (2) is persistence if
r1(1− k

k1
) > m1 + c2k

h , r2(1− k
k2

) > m2 and c2p1
h+p1

> d holds.

2.5. Global stability. In this section, we present global stability of coexistence
equilibrium point E2.

Theorem 7. The coexistence equilibrium point E2 of system (2) is globally asymp-

totically stable if r1h
k1
≥ c1z

∗

h+x∗ .
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Proof. Consider the following positive definite function about E2

V (x, y, z) = (x− x∗ − x∗ln x
x∗

) + q1(y − y∗ − y∗ln y
y∗

) + q2(z − z∗ − z∗ln z
z∗

)

where q1 and q2 are positive constants to be chosen later.
We compute the α order derivative of V (x, y, z) along the solution of system (2) by
applying Lemma 3.1 in [14]. Thus we have
cDαV (x, y, z)

≤ (1− x∗

x )cDαx(t) + q1(1− y∗

y )cDαy(t) + q2(1− z∗

z )cDαz(t)

= (x− x∗){r1(1− x
k1

)−m1 + m2y
x −

c1z
h+x}+ q1(y − y∗){r2(1− y

k2
) + m1x

y −m2}+

q2(z − z∗)( c2xh+x − d)

= (x−x∗){− r1
k1

(x−x∗)+m2(yx∗−xy∗)
xx∗ + c1(h+x∗)(z∗−z)+c1z∗(x−x∗)

(h+x)(h+x∗) }+q1(y−y∗){− r2
k2

(y−
y∗) + m1(xy∗−yx∗)

yy∗ }+ q2c2(z−z∗)(x−x∗)
(h+x)(h+x∗) .

≤ −( r1k1 −
c1z

∗

h(h+x∗) )(x− x∗)2 − y∗m2r2(y−y∗)2

k2m1x∗ − m2(x∗y−xy∗)2

xyx∗

where q1 = m2y
∗

m1x∗ and q2 = c1(h+x∗)
c2

Consequently, cDαV (x, y, z) ≤ 0, when r1h
k1
≥ c1z

∗

h+x∗ .

The result follows by the application of Lemma 4.6 in Huo et al.[8].

2.6. Hopf bifurcation. In this section, we identify the parameters which gives
Hopf bifurcation in the fractional order system (2). Due to mathematical com-
plexity, we carry out numerical simulations for finding the outcomes of the dy-
namical behavior. To determine this, we follow the approach developed in [1].
In the fractional order system, the stability of E2 is determined by the sign of
fi(α, k1) = απ

2 −| arg(λi(k1))|, i = 1, 2, 3. Hopf bifurcation result in fractional order
system can be described as
D(PE2

(k∗1)) < 0, f1,2(α, k∗1) = 0, and λ3(k∗1) 6= 0, ∂fi∂k1
|k1=k∗1

6= 0.

3. Numerical simulations

In this section, we numerically simulate the theoretical results to justify and
develop this paper for different fractional orders 0 < α ≤ 1. We have applied
Adamas-type predictor corrector method for the fractional order differential equa-
tion (FODE)[4, 5]. We first have replaced the FODE system (2) by the equivalent
fractional order integral system and then used the approach of PECE (predict,
evaluate, correct, evaluate) method.
In Fig. 1, we have showed the global stability of positive equilibrium point of sys-
tem (2) with the choice of parameters set r1 = 1.2, k1 = 1.5, c1 = 4.2, r2 = 1.25,
k2 = 5, c2 = 2, d = 1, m1 = 1, m2 = 2, h = 2. Here we have taken different
values of α (including integer value also). Such choice of parameters, Theorem 7
is satisfied. Fig. 2 and Fig. 3 represent the phase portrait of system (2) which
show that all solution of system (2) with different initial points converge to the
coexistence equilibrium point.
There is a role of fractional order α to stabilize the system. We have considered
a parameter set r1 = 85/22, k1 = 7.5, c1 = 90/11, r2 = 2, k2 = 2, c2 = 2,
d = 1, m1 = 1, m2 = 2, h = 1. At α = 0.98, a limit cycle occurs around co-
existence equilibrium point (see Fig. 4). When we decrease the value α, limit
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cycle disappears and coexistence equilibrium point becomes stable (see Fig. 5).
We draw the bifurcation diagram (see Fig. 6) of system (2) around the coexis-
tence equilibrium point E2(0.959, 0.9672, 1.0314) when α is taken as parameter with
r1 = 85/22, k1 = 8, c1 = 90/11, r2 = 2, k2 = 2, c2 = 2, d = 1,m1 = 1,m2 = 1, h = 1.
Fig. 7 is developed by Theorem 5 which denote the stability regions of the frac-
tional order with the carrying capacity of the prey. In integer order system (1)
it was shown k1 as a bifurcation parameter [12]. So two parameters bifurcation
diagram in α− k1 plane are generated. The stability regions are divided into three
parts : red colored region corresponds to locally asymptotically stable region, yel-
low region represents oscillatory zone and black colored line denotes Hopf line and
unstable region. This indicates the fact that a system with fraction order is more
stable than a system with integer order.

4. CONCLUSION

In this paper, we have investigated a fractional order prey-predator model in a
reserved area. The existence, uniqueness, non-negativity and boundedness of the
model system have been shown. Local stability of the boundary equilibrium points
is discussed. Persistence result is discussed. Sufficient condition for global stability
of the coexistence equilibrium point has been derived by constructing a suitable
Lyapunov function. Moreover, we address the emergence of Hopf bifurcation in
the the fractional order system (2). The analytical results obtained in this paper
are verified through numerical simulations. The simulations shows vital dynamics
of the fractional order system (2). The numerical studies also show the impact of
fractional order α on each population densities. The fractional order model (2) is
more stable than the integer model (2).
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Figure 1. Time series of x1, x2 and y population for α =
0.5, 0.6, 0.7, 0.8, 0.9, 1 and r1 = 1.2; k1 = 1.5; c1 = 4.2; r2 = 1.25;
k2 = 5; c2 = 2; d = 1; m1 = 1; m2 = 2; h = 2.
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Figure 7. Bifurcation diagram in (α, k1) space. Red colored re-
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