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ANALYTIC SOLUTION FOR SECOND-ORDER FRACTIONAL

DIFFERENTIAL EQUATIONS VIA HPM

M. ILIE

Abstract. Fractional differential equations usually appear perplexing to solve.

Therefore, finding comprehensive methods for solving them sounds of high im-
portance. In this article, Homotopy Perturbation Method is used to solve
specific second-order fractional differential equations based on conformable

fractional derivative. The results obtained demonstrate the efficiency of the
proposed method. Some numerical examples are presented to illustrate the
proposed approach.

1. Introduction

Many phenomena in our real world are described by fractional differential equa-
tions [1-10]. Although having the exact solution of fractional equations in ana-
lyzing the phenomena is essential, there are many fractional differential equations
which cannot be solved exactly. Due to this fact, finding the desired approximate
solutions of fractional differential equations is clearly vital. In recent years, many
effective methods have been proposed for finding approximate solution to fractional
differential equations, such as Adomian decomposition method [11, 12], homotopy
perturbation method [13-15], homotopy analysis method [16], Optimal homotopy
asymptotic method [17, 18], variational iteration method [19], generalized differen-
tial transform method [20], finite difference method [21], semi-disrete scheme and
Chebyshev collocation method [22], Wavelet Operational [23], First integral method
[24], Modified Kudryashov and sine-Gordon expansion method [25, 26], some nu-
merical methods [27, 28], and other methods [29- 36]. In this paper, homotopy
perturbation method is utilized to obtain an approximate solution of linear and
nonlinear of specific second-order fractional differential equations, based on con-
formable fractional derivative.
The organization of the paper is as follows: In Section 2, the basic definitions such
as conformable fractional derivative and integral will be described. In Section 3,
the HPM method and the fractional general homotopy perturbation method for
fractional differential equations will be explained. In Section 4, some examples, as
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illustrative examples, by means of the proposed approach will be solved. Finally,
conclusions will be given in Section 5.

2. Basic definitions

The purpose of this section is to recall some preliminaries of the proposed
method.

2.1. Conformable fractional derivative. Given a function f : [0,∞) → R.
Then conformable fractional derivative of f of order α is defined by

Tα(f)(x) = lim
ε→0

(f(x+ εx1−α)− f(x))

ε
(1)

for all x > 0, α ∈ (0, 1). If f is α-differentiable in some (0, a), a > 0, and provided
that lim

x→0+
Tα(f)(x) exists, then define Tα(f)(0) = lim

x→0+
Tα(f)(x).

If the conformable derivative of f of order α exists, then we simply say that f is α-
differentiable (see [37, 38]).
One can easily show that Tα satisfies all the following properties (see [37]):

Let α ∈ (0, 1] and f, g be α-differentiable at a point x > 0, then

A: For a, b ∈ R Tα(af + bg) = aTα(f) + bTα(g),
B: For all p ∈ R Tα(x

p) = pxp−α,
C: For all constant functions f(x) = λ, Tα(λ) = 0,
D: Tα(f.g) = g.Tα(f) + f.Tα(g),

E: Tα

(
f

g

)
=

g.Tα(f)− f.Tα(g)

g2
,

F: Tα(f) = x1−α df

dx
.

2.2. Conformable fractional integral. Given a function f : [a,∞) → R, a ≥ 0.
Then the conformable fractional integral of f is defined by

Iaα(f)(x) =

∫ x

a

f(t)

t1−α
dt, (2)

where the integral is the usual Riemann improper integral, and α ∈ (0, 1) ( see
[37, 38]). For the sake of simplicity, lets consider I0α(f)(x) = Iα(f)(x). One of the
most useful results is the following statement (see [37]):

For all x ≥ a, and any continuous function in the domain of Iaα, we have

Tα(I
a
αf(x)) = f(x).

3. Overviews of the methods

In this section, homotopy perturbation method is remembered, and then this
approach is presented for solving specific second-order fractional differential equa-
tions, which is called fractional general homotopy perturbation method.
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3.1. Homotopy perturbation method. To illustrate the basic ideas of this
method, consider the following functional equation

A(u)− f(r) = 0, r ∈ Ω (3)

with the following boundary conditions

B(u,
∂u

∂n
) = 0, r ∈ Γ,

where A is a functional operator, B is a boundary operator, f(r) is a known func-
tion, and Γ is the boundary of the domain Ω. The operator A can be decomposed
into a linear part and a non-linear one, designated as L and N respectively.
Therefore, Eq. (3) can be written as follows

L(u) +N(u)− f(r) = 0.

Using the homotopy technique, a homotopy v(r, p) : Ω × [0, 1] → R can be con-
structed which satisfies

H(v, p) = (1− p)[L(v)− L(u0)] + p[A(v)− f(r)] = 0, (4)

where p ∈ [0, 1] is an embedding parameter and u0 is an initial approximation of
the solution of Eq. (3) which satisfies the boundary conditions. Obviously, from
Eq. (4) we have

H(v, 0) = L(v)− L(u0) = 0,

H(v, 1) = A(v)− f(r) = 0.

By changing the value of p from zero to unity, v(r, p) changes from u0(r) to u(r);
in topology this is called deformation and L(v)−L(u0) and A(v)− f(r) are called
homotopic. Due to the fact that p ∈ [0, 1] can be considered as a small parameter,
consequently, we consider the solution of Eq. (4) as a power series in p as the
following form

v =
∞∑

n=0

vnp
n, (5)

setting p = 1, yields the solution of Eq. (3) with the boundary conditions as follows

u = lim
p→1

v = v0 + v1 + v2 + · · · .

3.2. Fractional general homotopy perturbation method. Consider the gen-
eral second-order fractional differential equations with initial value

TαTαu+Q(x)Tαu+ F (x, u) = g(x),

u(0) = A, Tαu(0) = B,
(6)

where F is a functional operator, and Q, g are known function, and A,B are certain
constant, and u is an unknown function. We construct the following fractional
general homotopy perturbation,

(1− p)(TαTαy +Q(x)Tαy) + p [TαTαy +Q(x)Tαy + F (x, y)− g(x)] = 0,

TαTαy +Q(x)Tαy + p [F (x, y)− g(x)] = 0, (7)

where p ∈ [0, 1] is the embedding parameter. We assume that solution of (7) is as
follows

y =
∞∑

n=0

ynp
n = y0 + y1p+ y2p

2 + y3p
3 + · · · . (8)
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Substitution of (8) into Eq. (7), we drive

∞∑
n=0

TαTαynp
n +

∞∑
n=0

Q(x)Tαynp
n + p

(
F

(
x,

∞∑
n=0

ynp
n

)
− g(x)

)
= 0. (9)

Collecting terms of like powers p in (9), we obtain

p0 : TαTαy0 +Q(x)Tαy0 = 0, y0(0) = A, (Tαy0)(0) = B

p1 : TαTαy1 +Q(x)Tαy1 + F (x, y0) = g(x), y1(0) = 0, (Tαy1)(0) = 0, (10)

p2 : TαTαy2 +Q(x)Tαy2 + y1
∂

∂y0
F (x, y0) = 0, y2(0) = 0, (Tαy2)(0) = 0,

p3 : TαTαy3 +Q(x)Tαy3 + y2
∂

∂y0
F (x, y0) +

1

2
y21

∂2

∂y20
F (x, y0) = 0, y3(0) = 0,

(Tαy3)(0) = 0,

p4 : TαTαy4 +Q(x)Tαy4 + y3
∂

∂y0
F (x, y0) + y1y2

∂2

∂y20
F (x, y0) +

1

6
y31

∂3

∂y30
F (x, y0) = 0,

y4(0) = 0, (Tαy4)(0) = 0,

...

Solving Eqs. (10) leads to, solution of fractional differential equation (7) as the
following

u(x) = lim
p→1

y = y0 + y1 + y2 + · · · .

4. Examples

In this section, to illustrate the proposed method, five examples will be presented.

4.1. Example. Consider the following linear fractional differential equation with
initial value

TαTαu− 3Tαu+ 2u = 2

(
1

α
xα

)2

+

(
1

α
xα

)
+ 1, u(0) = (Tαu)(0) = 1. (11)

The exact solution of Eq. (11), is u(x) = 5
4 exp(

2
αx

α) − 5 exp
(
1
αx

α
)
+
(
1
αx

α
)2

+
7
2

(
1
αx

α
)
+ 19

4 .
According to the proposed fractional general homotopy perturbation method, we
have

p0 : TαTαy0 − 3Tαy0 = 0, y0(0) = 1, (Tαy0)(0) = 1,

p1 : TαTαy1 − 3Tαy1 + 2y0 = 2(
1

α
xα)2 + (

1

α
xα) + 1, y1(0) = 0, (Tαy1)(0) = 0,

p2 : TαTαy2 − 3Tαy2 + 2y1 = 0, y2(0) = 0, (Tαy2)(0) = 0,

p3 : TαTαy3 − 3Tαy3 + 2y2 = 0, y3(0) = 0, (Tαy3)(0) = 0,

p4 : TαTαy4 − 3Tαy4 + 2y3 = 0, y4(0) = 0, (Tαy4)(0) = 0,

...
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Corresponding solution of this system equations are

y0 =
1

3
exp

(
3

α
xα

)
+

2

3
,

y1 =

(
−2

9

(
1

α
xα

)
+

10

81

)
exp

(
3

α
xα

)
− 2

9

(
1

α
xα

)3

− 7

18

(
1

α
xα

)2

− 4

27

(
1

α
xα

)
− 10

81
,

y2 =

(
2

27

(
1

α
xα

)2

− 32

243

(
1

α
xα

)
+

82

729

)
exp

(
3

α
xα

)
− 1

4

(
1

α
xα

)4

− 11

81

(
1

α
xα

)3

− 5

27

(
1

α
xα

)2

− 50

243

(
1

α
xα

)
− 82

729
,

y3 =

(
− 4

243

(
1

α
xα

)3

+
44

729

(
1

α
xα

)2

− 28

243

(
1

α
xα

)
+

212

2187

)
exp

(
3

α
xα

)
− 2

405

(
1

α
xα

)5

− 5

162

(
1

α
xα

)4

− 20

243

(
1

α
xα

)3

− 110

729

(
1

α
xα

)2

− 128

729

(
1

α
xα

)
− 212

2187
,

...

Therefore, seven-terms approximation to the solution of Eq. (11), will be obtained
as the following form

u(x) =

(
0.8784173596− 0.7369359910

(
1

α
xα

)
+ 0.2865981360

(
1

α
xα

)2

− 0.06672424597

(
1

α
xα

)3

+ 0.009923961456

(
1

α
xα

)4

− 0.0009077207065

(
1

α
xα

)5

+ 0.00004064421074

(
1

α
xα

)6
)
exp

(
3

α
xα

)

+ 0.1215826404− 0.8983160878

(
1

α
xα

)
− 1.028668281

(
1

α
xα

)2

− 0.5964029873(
1

α
xα)3 − 0.1228894647

(
1

α
xα

)4

− 0.01826618571

(
1

α
xα

)5

− 0.001920438957

(
1

α
xα

)6

− 0.0001306421060

(
1

α
xα

)7

− 0.000004354736865

(
1

α
xα

)8

.

In Figures 1, the exact and approximate solutions of fractional equation for α = 0.5,
up to 1.0, is plotted.
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Figure 1.a : The comparison 7th-order approximation of HPM and exact solution
for Example 4.1

Figure 1.b : The 7th-order approximation of HPM for different values α versus
exact solution
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4.2. Example. Consider the following linear fractional differential equation with
initial value

TαTαu+ 2Tαu+ u = exp

(
− 1

α
xα

)
, u(0) = 0, (Tαu) (0) = 1. (12)

The exact solution of Eq. (12), is u(x) =

(
1

2

(
1

α
xα

)2

+
1

α
xα

)
exp

(
− 1

α
xα

)
.

Conforming to the proposed fractional general homotopy, results in

p0 : TαTαy0 + 2Tαy0 = 0, y0(0) = 0, (Tαy0)(0) = 1,

p1 : TαTαy1 + 2Tαy1 + y0 = exp(− 1

α
xα), y1(0) = 0, (Tαy1)(0) = 0,

p2 : TαTαy2 + 2Tαy2 + y1 = 0, y2(0) = 0, (Tαy2)(0) = 0,

p3 : TαTαy3 + 2Tαy3 + y2 = 0, y3(0) = 0, (Tαy3)(0) = 0,

p4 : TαTαy4 + 2Tαy4 + y3 = 0, y4(0) = 0, (Tαy4)(0) = 0,

...

Matching solution of this system equations are a follows

y0 =− 1

2
exp

(
− 2

α
xα

)
+

1

2
,

y1 =− exp

(
− 1

α
xα

)
− 1

4

(
1

α
xα

)
+

3

4
,

y2 =− exp

(
− 1

α
xα

)
+

(
− 1

16

(
1

α
xα

)2

+
1

16

(
1

α
xα

)
+

5

16

)
exp

(
− 2

α
xα

)

+
1

16

(
1

α
xα

)2

− 7

16

(
1

α
xα

)
+

11

16
,

y3 =− exp

(
− 1

α
xα

)
+

(
− 1

96

(
1

α
xα

)3

+
5

32

(
1

α
xα

)
+

11

32

)
exp

(
− 2

α
xα

)

− 1

96

(
1

α
xα

)3

+
1

8

(
1

α
xα

)2

− 15

32

(
1

α
xα

)
+

21

32
,

...

Thus, seven-terms approximation to the solution of Eq. (12), will be obtained as
the following form

u(x) =

(
1.533691406 + 0.6801757812

(
1

α
xα

)
+ 0.1069335938

(
1

α
xα

)2
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+ 0.001953125000

(
1

α
xα

)3

− 0.001627604167

(
1

α
xα

)4

− 0.0002278645833

(
1

α
xα

)5

− 0.00001085069444

(
1

α
xα

)6
)

exp

(
− 2

α
xα

)
+ 4.466308594− 2.612792969

(
1

α
xα

)
+ 0.6860351562

(
1

α
xα

)2

− 0.1035156250

(
1

α
xα

)3

+ 0.009440104167

(
1

α
xα

)4

− 0.0004882812500

(
1

α
xα

)5

+ 0.00001085069444

(
1

α
xα

)6

− 6 exp

(
− 1

α
xα

)
.

In Figures 2, the exact and approximate solutions of fractional equation for
α = 0.5, up to 1.0 , is plotted

Figure 2.a : The comparison 7th-order approximation of CGHPM and exact
solution for Example 4.2.



JFCA-2020/11(1) ANALYTIC SOLUTION FOR SECOND-ORDER FRACTIONA 129

Figure 2.b : The 7th-order approximation of HPM for different values α versus
exact solution.

4.3. Example. Consider the following linear fractional differential equation with
initial value(

1

α
xα

)
TαTαu+ 8Tαu+

(
1

α
xα

)2

u =

(
1

α
xα

)6

−
(
1

α
xα

)5

+ 44

(
1

α
xα

)3

− 30

(
1

α
xα

)2

,

u(0) = (Tαu)(0) = 0. (13)

The exact solution of Eq. (13), is u(x) =

(
1

α
xα

)4

−
(
1

α
xα

)3

.

Consistent with the fractional general homotopy perturbation method, we obtain

p0 :

(
1

α
xα

)
TαTαy0 + 8Tαy0 = 0, y0(0) = (Tαy0)(0) = 0,

p1 :

(
1

α
xα

)
TαTαy1 + 8Tαy1 +

(
1

α
xα

)2

y0 =

(
1

α
xα

)6

−
(
1

α
xα

)5

+ 44

(
1

α
xα

)3

− 30

(
1

α
xα

)2

, y1(0) = (Tαy1)(0) = 0

p2 :

(
1

α
xα

)
TαTαy2 + 8Tαy2 +

(
1

α
xα

)2

y1 = 0, y2(0) = (Tαy2)(0) = 0,

p3 :

(
1

α
xα

)
TαTαy3 + 8Tαy3 +

(
1

α
xα

)2

y2 = 0, y3(0) = (Tαy3)(0) = 0,

...
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Corresponding solution of this system equations are

y0 =0,

y1 =
1

98

(
1

α
xα

)7

− 1

78

(
1

α
xα

)6

+

(
1

α
xα

)4

−
(
1

α
xα

)3

,

y2 =− 1

16660

(
1

α
xα

)1

0 +
1

11232

(
1

α
xα

)9

− 1

98

(
1

α
xα

)7

+
1

78

(
1

α
xα

)6

,

y3 =
1

4331600

(
1

α
xα

)1

3− 1

2560896

(
1

α
xα

)1

2 +
1

16660

(
1

α
xα

)1

0− 1

11232

(
1

α
xα

)9

,

...

Then, four-terms approximation to the solution of Eq. (13), will be obtained as the
following form

u(x) =

(
1

α
xα

)4

−
(
1

α
xα

)3

+
1

4331600

(
1

α
xα

)13

− 1

2560896

(
1

α
xα

)12

.

In Figures 3, the exact and approximate solutions of fractional equation for α = 0.5,
up to 1.0, is plotted.

Figure 3.a : The comparison 7th-order approximation of CGHPM and exact
solution for Example 4.3.
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Figure 3.b :The 4th-order approximation of HPM for different values α versus
exact solution.

4.4. Example. Consider the following nonlinear fractional differential equation
with initial value

TαTαu− 2Tαu+ u2 = 0, u(0) =
1

2
, (Tαu)(0) = 1. (14)

The approximate solution of Eq. (14), is uapp(x) =
1

2
+

(
1

α
xα

)
+

7

8

(
1

α
xα

)2

+

5

12

(
1

α
xα

)3

+
5

96

(
1

α
xα

)4

− 7

80

(
1

α
xα

)5

.

By the proposed fractional general HPM approach,

p0 : TαTαy0 − 2Tαy0 = 0, y0(0) =
1

2
, (Tαy0)(0) = 1,

p1 : TαTαy1 − 2Tαy1 + y20 = 0, y1(0) = 0, (Tαy1)(0) = 0,

p2 : TαTαy2 − 2Tαy2 + 2y0y1 = 0, y2(0) = 0, (Tαy2)(0) = 0,

p3 : TαTαy3 − 2Tαy3 + y21 + 2y0y2 = 0, y3(0) = 0, (Tαy3)(0) = 0,

p4 : TαTαy3 − 2Tαy3 + 2y1y2 + 2y0y3 = 0, y4(0) = 0, (Tαy4)(0) = 0,

...
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Corresponding solution of this system equations are

y0 =
1

2
exp

(
2

α
xα

)
,

y1 =− 1

32
exp(

(
4

α
xα

)
+

1

16
exp

(
2

α
xα

)
− 1

32
,

y2 =
1

768
exp

(
6

α
xα

)
− 1

128
exp(

(
4

α
xα

)
+

(
1

64

(
1

α
xα

)
+

1

256

)
exp

(
1

α
xα

)
+

1

384
,

y3 =− 7

147456
exp

(
8

α
xα

)
+

1

2048
exp

(
6

α
xα

)(
− 1

512

(
1

α
xα

)
+

1

4096

)
exp

(
4

α
xα

)
+

(
1

1536

(
1

α
xα

)
+

25

18432

)
exp

(
2

α
xα

)
+

1

2048

(
1

α
xα

)
+

11

16348
,

...

Consequently, seven-terms approximation to the solution of Eq. (14), will be ob-
tained as the following form

u(x) =

((
05649925850 + 0.1579214555

(
1

α
xα

)

+ 0.0001109970940

(
1

α
xα

)2 )
exp

(
2

α
xα

)(
0.00004959106445

(
1

α
xα

)2

+ 0.002166027493

(
1

α
xα

)
+ 0.03853380450

)
exp

(
4

α
xα

)
+
(
0.000004768371582

(
1

α
xα

)2

+ 0.0001511838701

(
1

α
xα

)
+ 0.0001754174630

)
exp

(
6

α
xα

)
−
(
0.0000008406462493

(
1

α
xα

)
+ 0.00007003545761

)
exp

(
8

α
xα

)
−
(
0.000000251664055

(
1

α
xα

)
+ 0.000002693622201

)
exp

(
10

α
xα

)
− 0.00000009148209183 exp

(
12

α
xα

)
+ 0.00000001646223522 exp

(
14

α
xα

))

− 0.02814552344 + 0.0003902753194

(
1

α
xα

)
− 0.000005722045898

(
1

α
xα

)2

.

In Figures 4, the approximate solution and solution of general HPM of fractional
equation, for α = 0.5, up to 1.0, is plotted.
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Figure 4.a : The comparison 7th-order approximation of HPM and approximate
solution for Example 4.4.

Figure 4.b : The 7th-order approximation of HPM for different values α versus
exact solution.
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4.5. Example. Consider the conformable fractional Bratu-type equation with ini-
tial value

TαTαu+ π2 exp(−u) = 0, u(0) = 0, (Tαu)(0) = π. (15)

The exact solution of Eq. (15), is u(x) = ln
(
1 + sin

(π
α
xα
))

.

According to the proposed fractional general HPM approach, reads

p0 : TαTαy0 = 0, y0(0) = 0, (Tαy0)(0) = π,

p1 : TαTαy1 + π2 exp(−y0) = 0, y1(0) = 0, (Tαy1)(0) = 0,

p2 : TαTαy2 − π2y1 exp(−y0) = 0, y2(0) = 0, (Tαy2)(0) = 0,

p3 : TαTαy3 − π2y2 exp(−y0) +
1

2
π2y1

2 exp(−y0) = 0, y3(0) = 0, (Tαy3)(0) = 0,

...

Corresponding solution of this system equations are

y0 =
π

α
xα

y1 = − exp
(
−π

α
xα
)
−
(π
α
xα
)
+ 1,

y2 =
(
−π

α
xα
)
exp

(
−π

α
xα
)
− exp

(
−π

α
xα
)
− 1

4
exp

(
−2π

α
xα

)
− π

2α
xα +

5

4
,

...

In Figures 5, the exact and seven-terms approximate solutions of fractional equation
for α = 0.5, up to 1.0, are plotted.
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Figure 5.a : The comparison 7th-order approximation of CGHPM and exact
solution for Example 4.5.

Figure 5.b : The 7th-order approximation of HPM for different values α versus
exact solution.

5. Conclusion

In this paper, Homotopy Perturbation method has been applied to obtain the
solutions of fractional differential equations. To this aim, a conformable fractional
derivative has been used to find the solution. The results showed that the definition
is the simplest tool to obtain the approximation solutions of linear and nonlinear
specific second-order fractional differential equations in comparison to the other
definitions. To show the effectiveness and simplicity of the method, some second-
order fractional differential equations as an example have been solved with form
conformable fractional derivative and the fractional general homotopy perturbation
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method. It can be concluded from the result that, the convergence as well as the
accuracy of approximate solution of general HPM approach for fractional differential
equation is similar to HPM method for ordinary differential equation.
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