# RELATIVE $(p, q)-\varphi$ ORDER ORIENTED SOME GROWTH PROPERTIES OF $\boldsymbol{P}$-ADIC ENTIRE FUNCTIONS 

TANMAY BISWAS


#### Abstract

Let $\mathbb{K}$ be a complete ultrametric algebraically closed field and $\mathcal{A}(\mathbb{K})$ be the $\mathbb{K}$-algebra of entire function on $\mathbb{K}$. For any $p$ adic entire functions $f \in \mathcal{A}(\mathbb{K})$ and $r>0$, we denote by $|f|(r)$ the number $\sup \{|f(x)|:|x|=r\}$ where $|\cdot|(r)$ is a multiplicative norm on $\mathcal{A}(\mathbb{K})$. In this paper we introduce the concept of relative $(p, q)-\varphi$ order where $p, q$ are any two positive integers and $\varphi(r):[0,+\infty) \rightarrow(0,+\infty)$ is a non-decreasing unbounded function of $r$. Then we study some growth properties of $p$-adic entire functions on the basis of their relative $(p, q)-\varphi$ order.


## 1. Definitions

Let $\mathbb{K}$ be an algebraically closed field of characteristic 0 , complete with respect to a $p$-adic absolute value $|\cdot|$ (example $\mathbb{C}_{p}$ ). For any $\alpha \in \mathbb{K}$ and $\left.R \in\right] 0,+\infty[$, the closed disk $\{x \in \mathbb{K}:|x-\alpha| \leq R\}$ and the open disk $\{x \in \mathbb{K}:|x-\alpha|<R\}$ are denoted by $d(\alpha, R)$ and $d\left(\alpha, R^{-}\right)$respectively. Also $C(\alpha, r)$ denotes the circle $\{x \in \mathbb{K}:|x-a|=r\}$. Moreover $\mathcal{A}(\mathbb{K})$ represents the $\mathbb{K}$-algebra of analytic functions in $\mathbb{K}$ i.e. the set of power series with an infinite radius of convergence. For the most comprehensive study of analytic functions inside a disk or in the whole field $\mathbb{K}$, we refer the reader to the books $[10,11,15,17]$. During the last several years the ideas of $p$-adic analysis have been studied from different aspects and many important results were gained (see [8] to [13], [12, 14]).

Let $f \in \mathcal{A}(\mathbb{K})$ and $r>0$, then we denote by $|f|(r)$ the number $\sup \{|f(x)|:|x|=r\}$ where $|\cdot|(r)$ is a multiplicative norm on $\mathcal{A}(\mathbb{K})$. Moreover, if $f$ is not a constant, the $|f|(r)$ is strictly increasing function of $r$ and tends to $+\infty$ with $r$ therefore there exists its inverse function $\widehat{|f|}:(|f(0)|, \infty) \rightarrow(0, \infty)$ with $\lim _{s \rightarrow \infty} \widehat{|f|}(s)=\infty$.

Further $f \in \mathcal{A}(\mathbb{K})$ and $g \in \mathcal{A}(\mathbb{K})$ are said to be asymptotically equivalent if there exists $l, 0<l<\infty$ such that $\frac{|f|(r)}{|g|(r)} \rightarrow l$ as $r \rightarrow \infty$ and in this case we write $f \sim g$. If $f \sim g$ then clearly $g \sim f$.

[^0]For $x \in[0, \infty)$ and $k \in \mathbb{N}$, we define $\log ^{[k]} x=\log \left(\log ^{[k-1]} x\right)$ and $\exp ^{[k]} x=\exp \left(\exp ^{[k-1]} x\right)$ where $\mathbb{N}$ is the set of all positive integers. We also denote $\log ^{[0]} x=x$ and $\exp ^{[0]} x=x$. Throughout the paper, log denotes the Neperian logarithm. Further we assume that throughout the present paper $p, q$ and $m$ always denote positive integers. Taking this into account the $(p, q)$-th order and $(p, q)$-th lower order of an entire function $f \in \mathcal{A}(\mathbb{K})$ are defined as follows:
Definition 1. [3] Let $f \in \mathcal{A}(\mathbb{K})$. Then the $(p, q)$-th order and $(p, q)$-th lower order of $f$ are respectively defined as:

$$
\rho^{(p, q)}(f)=\limsup _{r \rightarrow \infty} \frac{\log ^{[p]}|f|(r)}{\log ^{[q]} r} \text { and } \lambda^{(p, q)}(f)=\liminf _{r \rightarrow \infty} \frac{\log ^{[p]}|f|(r)}{\log ^{[q]} r}
$$

Definition 1 avoids the restriction $p \geq q$ of the original definition of $(p, q)$-th order (respectively $(p, q)$-th lower order) of entire functions introduced by Juneja et al. [16] in complex context.

When $q=1$, we get the definitions of generalized order and generalized lower order of an entire function $f \in \mathcal{A}(\mathbb{K})$ which symbolize as $\rho^{(p)}(f)$ and $\lambda^{(p)}(f)$ respectively. If $p=2$ and $q=1$ then we write $\rho^{(2,1)}(f)=\rho(f)$ and $\lambda^{(2,1)}(f)=$ $\lambda(f)$ where $\rho(f)$ and $\lambda(f)$ are respectively known as order and lower order of $f \in \mathcal{A}(\mathbb{K})$ introduced by Boussaf et al. [8].

In this connection we just introduce the following definition:
Definition 2. An entire function $f \in \mathcal{A}(\mathbb{K})$ is said to have index-pair $(p, q)$ if $b<\rho^{(p, q)}(f)<\infty$ and $\rho^{(p-1, q-1)}(f)$ is not a nonzero finite number, where $b=1$ if $p=q$ and $b=0$ otherwise. Moreover if $0<\rho^{(p, q)}(f)<\infty$, then

$$
\left\{\begin{array}{lc}
\rho^{(p-n, q)}(f)=\infty & \text { for } \quad n<p \\
\rho^{(p, q-n)}(f)=0 & \text { for } \quad n<q \\
\rho^{(p+n, q+n)}(f)=1 & \text { for } \quad n=1,2, \cdots
\end{array}\right.
$$

Similarly for $0<\lambda^{(p, q)}(f)<\infty$,

$$
\begin{cases}\lambda^{(p-n, q)}(f)=\infty & \text { for } \quad n<p \\ \lambda^{(p, q-n)}(f)=0 & \text { for } \quad n<q \\ \lambda^{(p+n, q+n)}(f)=1 & \text { for } \quad n=1,2, \cdots\end{cases}
$$

An entire function $f \in \mathcal{A}(\mathbb{K})$ of index-pair $(p, q)$ is said to be of regular $(p, q)$ th growth if its $(p, q)$-th order coincides with its $(p, q)$-th lower order, otherwise $f$ is said to be of irregular $(p, q)$-th growth.

The concepts of $(p, q)-\varphi$ order and $(p, q)-\varphi$ lower order of entire functions in complex context were introduced by Shen et al. [18] where $p \geq q \geq 1$ and $\varphi$ $:[0,+\infty) \rightarrow(0,+\infty)$ is a non-decreasing unbounded function. For details about $(p, q)-\varphi$ order and $(p, q)-\varphi$ lower order, one may see [18]. Considering the ideas developed by Shen et al. [18], one can define the $(p, q)-\varphi$ order and $(p, q)-\varphi$ lower order of an entire function $f \in \mathcal{A}(\mathbb{K})$ respectively in the following way:

Definition 3. Let $f \in \mathcal{A}(\mathbb{K})$. Also let $\varphi(r):[0,+\infty) \rightarrow(0,+\infty)$ be a nondecreasing unbounded function of $r$. The $(p, q)-\varphi$ order $\rho^{(p, q)}(f, \varphi)$ and $(p, q)-\varphi$ lower order $\lambda^{(p, q)}(f, \varphi)$ of $f$ are respectively defined as:

$$
\rho^{(p, q)}(f, \varphi)=\limsup _{r \rightarrow \infty} \frac{\log ^{[p]}|f|(r)}{\log ^{[q]} \varphi(r)} \text { and } \lambda^{(p, q)}(f, \varphi)=\liminf _{r \rightarrow \infty} \frac{\log ^{[p]}|f|(r)}{\log ^{[q]} \varphi(r)}
$$

If $\varphi(r)=r$, then Definition 1 is a special case of Definition 3.
Extending the notion of index-pair $(p, q)$, one may also introduce the definition of index-pair $(p, q)-\varphi$ in the following manner:
Definition 4. An entire function $f \in \mathcal{A}(\mathbb{K})$ is said to have index-pair $(p, q)-\varphi$ if $b<\rho^{(p, q)}(f, \varphi)<\infty$ and $\rho^{(p-1, q-1)}(f, \varphi)$ is not a nonzero finite number, where $b=1$ if $p=q$ and $b=0$ otherwise. Moreover if $0<\rho^{(p, q)}(f, \varphi)<\infty$, then

$$
\left\{\begin{array}{lc}
\rho^{(p-n, q)}(f, \varphi)=\infty & \text { for } \quad n<p \\
\rho^{(p, q-n)}(f, \varphi)=0 & \text { for } \quad n<q, \\
\rho^{(p+n, q+n)}(f, \varphi)=1 & \text { for } \quad n=1,2, \cdots
\end{array} .\right.
$$

Similarly for $0<\lambda^{(p, q)}(f, \varphi)<\infty$,

$$
\left\{\begin{array}{lc}
\lambda^{(p-n, q)}(f, \varphi)=\infty & \text { for } \quad n<p \\
\lambda^{(p, q-n)}(f, \varphi)=0 & \text { for } \quad n<q \\
\lambda^{(p+n, q+n)}(f, \varphi)=1 & \text { for } \quad n=1,2, \cdots
\end{array}\right.
$$

An entire function $f \in \mathcal{A}(\mathbb{K})$ of index-pair $(p, q)-\varphi$ is said to be of regular $(p, q)-\varphi$ growth if its $(p, q)-\varphi$ order coincides with its $(p, q)-\varphi$ lower order, otherwise $f$ is said to be of irregular $(p, q)-\varphi$ growth.

However the notion of relative order was first introduced by Bernal [1]. In order to make some progress in the study of $p$-adic analysis, recently Biswas [2] introduced the definition of relative order and relative lower order of entire function $f \in \mathcal{A}(\mathbb{K})$ with respect to another entire function $g \in \mathcal{A}(\mathbb{K})$ in the following way:

$$
\rho_{g}(f)=\limsup _{r \rightarrow \infty} \frac{\log \widehat{|g|}(|f|(r))}{\log r} \text { and } \lambda_{g}(f)=\liminf _{r \rightarrow \infty} \frac{\log \widehat{|g|}(|f|(r))}{\log r}
$$

Further the function $f \in \mathcal{A}(\mathbb{K})$, for which relative order and relative lower order with respect to another function $g \in \mathcal{A}(\mathbb{K})$ are the same is called a function of regular relative growth with respect to $g$. Otherwise, $f$ is said to be irregular relative growth with respect to $g$.

In the case of relative order, it therefore seems reasonable to define suitably the $(p, q)$-th relative order of entire function belonging to $\mathcal{A}(\mathbb{K})$. With this in view one may introduce the definition of $(p, q)$-th relative order $\rho_{g}^{(p, q)}(f)$ and $(p, q)$-th relative lower order $\lambda_{g}^{(p, q)}(f)$ of an entire function $f \in \mathcal{A}(\mathbb{K})$ with respect to another entire function $g \in \mathcal{A}(\mathbb{K})$, in the light of index-pair which are as follows:
Definition 5. [3] Let $f, g \in \mathcal{A}(\mathbb{K})$. Also let the index-pairs of $f$ and $g$ are $(m, q)$ and $(m, p)$, respectively. Then the $(p, q)$-th relative order $\rho_{g}^{(p, q)}(f)$ and $(p, q)$-th relative lower order $\lambda_{g}^{(p, q)}(f)$ of $f$ with respect to $g$ are defined as

$$
\rho_{g}^{(p, q)}(f)=\limsup _{r \rightarrow \infty} \frac{\log ^{[p]} \widehat{|g|}(|f|(r))}{\log ^{[q]} r}=\limsup _{r \rightarrow \infty} \frac{\log ^{[p]} \widehat{|g|}(r)}{\log ^{[q]} \widehat{|f|}(r)}
$$

and

$$
\lambda_{g}^{(p, q)}(f)=\liminf _{r \rightarrow \infty} \frac{\log ^{[p]} \widehat{g \mid}(|f|(r))}{\log ^{[q]} r}=\liminf _{r \rightarrow \infty} \frac{\log ^{[p]} \widehat{|g|}(r)}{\log ^{[q]} \widehat{|f|}(r)}
$$

Now in order to make some progress in the study of relative order, one may introduce the definitions of relative $(p, q)-\varphi$ order and relative $(p, q)-\varphi$ lower order of entire functions belonging to $\mathcal{A}(\mathbb{K})$ and to investigate some of its properties, which
we attempt in this paper. With this in view one may introduce the definition of relative $(p, q)-\varphi$ order $\rho_{g}^{(p, q)}(f, \varphi)$ and relative $(p, q)-\varphi$ lower order $\lambda_{g}^{(p, q)}(f, \varphi)$ of an entire function $f \in \mathcal{A}(\mathbb{K})$ with respect to another entire function $g \in \mathcal{A}(\mathbb{K})$ which are as follows:

Definition 6. Let $f, g \in \mathcal{A}(\mathbb{K})$ and $\varphi(r):[0,+\infty) \rightarrow(0,+\infty)$ be a non-decreasing unbounded function of $r$. Also let the index-pairs of $f$ and $g$ are $(m, q)-\varphi$ and $(m, p)$, respectively. The relative $(p, q)-\varphi$ order denoted as $\rho_{g}^{(p, q)}(f, \varphi)$ and relative $(p, q)-\varphi$ lower order denoted by $\lambda_{g}^{(p, q)}(f, \varphi)$ of $f$ with respect to $g$ are defined as

$$
\rho_{g}^{(p, q)}(f, \varphi)=\limsup _{r \rightarrow \infty} \frac{\log ^{[p]} \widehat{|g|}(|f|(r))}{\log ^{[q]} \varphi(r)}=\limsup _{r \rightarrow \infty} \frac{\log ^{[p]} \widehat{|g|}(r)}{\log ^{[q]} \varphi(\widehat{|f|}(r))}
$$

and

$$
\lambda_{g}^{(p, q)}(f, \varphi)=\liminf _{r \rightarrow \infty} \frac{\log ^{[p]} \widehat{|g|}(|f|(r))}{\log ^{[q]} \varphi(r)}=\liminf _{r \rightarrow \infty} \frac{\log ^{[p]} \widehat{|g|}(r)}{\log ^{[q]} \varphi(\widehat{|f|}(r))}
$$

If $\varphi(r)=r$, then Definition 5 is a special case of Definition 6. Further if relative $(p, q)-\varphi$ order and the relative $(p, q)-\varphi$ lower order of $f$ with respect to $g$ are the same, then $f$ is called a function of regular relative $(p, q)-\varphi$ growth with respect to $g$. Otherwise, $f$ is said to be irregular relative $(p, q)-\varphi$ growth with respect to $g$.

The main aim of this paper is to establish some results related to the growth rates of $p$-adic entire functions on the basis of relative $(p, q)-\varphi$ order and relative $(p, q)-\varphi$ lower order.

## 2. Results

First of all, we recall one related known property which will be needed in order to prove our results, as we see in the following lemma.

Lemma 1. [6] Let $f \in \mathcal{A}(\mathbb{K})$ and $\alpha>1,0<\beta<\alpha$, then for all large $r$,

$$
\beta|f|(r) \leq|f|(\alpha r)
$$

Theorem 1. Let $f, g, h \in \mathcal{A}(\mathbb{K})$. Also let $0<\lambda_{h}^{(m, q)}(f, \varphi) \leq \rho_{h}^{(m, q)}(f, \varphi)<\infty$ and $0<\lambda_{h}^{(m, p)}(g) \leq \rho_{h}^{(m, p)}(g)<\infty$. Then

$$
\begin{aligned}
\frac{\lambda_{h}^{(m, q)}(f, \varphi)}{\rho_{h}^{(m, p)}(g)} & \leq \lambda_{g}^{(p, q)}(f, \varphi) \leq \min \left\{\frac{\lambda_{h}^{(m, q)}(f, \varphi)}{\lambda_{h}^{(m, p)}(g)}, \frac{\rho_{h}^{(m, q)}(f, \varphi)}{\rho_{h}^{(m, p)}(g)}\right\} \\
& \leq \max \left\{\frac{\lambda_{h}^{(m, q)}(f, \varphi)}{\lambda_{h}^{(m, p)}(g)}, \frac{\rho_{h}^{(m, q)}(f, \varphi)}{\rho_{h}^{(m, p)}(g)}\right\} \leq \rho_{g}^{(p, q)}(f, \varphi) \leq \frac{\rho_{h}^{(m, q)}(f, \varphi)}{\lambda_{h}^{(m, p)}(g)}
\end{aligned}
$$

Proof. From the definitions of $\rho_{g}^{(p, q)}(f, \varphi)$ and $\lambda_{g}^{(p, q)}(f, \varphi)$ we get that

$$
\begin{align*}
& \log \rho_{g}^{(p, q)}(f)=\limsup _{r \rightarrow \infty}\left(\log ^{[p+1]} \widehat{|g|}(r)-\log ^{[q+1]} \varphi(\widehat{|f|}(r))\right)  \tag{1}\\
& \log \lambda_{g}^{(p, q)}(f)=\liminf _{r \rightarrow \infty}\left(\log ^{[p+1]} \widehat{|g|}(r)-\log ^{[q+1]} \varphi(\widehat{|f|}(r))\right) \tag{2}
\end{align*}
$$

Now from the definitions of $\rho_{h}^{(m, q)}(f, \varphi)$ and $\lambda_{h}^{(m, q)}(f, \varphi)$, it follows that

$$
\begin{align*}
& \log \rho_{h}^{(m, q)}(f)=\limsup _{r \rightarrow \infty}\left(\log ^{[m+1]} \widehat{|h|}(r)-\log ^{[q+1]} \varphi(\widehat{|f|}(r))\right)  \tag{3}\\
& \log \lambda_{h}^{(m, q)}(f)=\liminf _{r \rightarrow \infty}\left(\log ^{[m+1]} \widehat{|h|}(r)-\log ^{[q+1]} \varphi(\widehat{|f|}(r))\right) \tag{4}
\end{align*}
$$

Similarly, from the definitions of $\rho_{h}^{(m, p)}(g)$ and $\lambda_{h}^{(m, p)}(g)$, we obtain that

$$
\begin{align*}
& \log \rho_{h}^{(m, p)}(g)=\limsup _{r \rightarrow \infty}\left(\log ^{[m+1]} \widehat{|h|}(r)-\log ^{[p+1]} \widehat{|g|}(r)\right),  \tag{5}\\
& \log \lambda_{h}^{(m, p)}(g)=\liminf _{r \rightarrow \infty}\left(\log ^{[m+1]} \widehat{|h|}(r)-\log ^{[p+1]} \widehat{|g|}(r)\right) \tag{6}
\end{align*}
$$

Therefore from (2), (4) and (5), we get that

$$
\begin{aligned}
\log \lambda_{g}^{(p, q)}(f, \varphi)=\liminf _{r \rightarrow \infty}\left[\log ^{[m+1]} \widehat{|h|}(r)\right. & -\log ^{[q+1]} \varphi(\widehat{|f|}(r)) \\
& \left.-\left(\log ^{[m+1]} \widehat{|h|}(r)-\log ^{[p+1]} \widehat{|g|}(r)\right)\right]
\end{aligned}
$$

$$
\text { i.e., } \begin{align*}
& \log \lambda_{g}^{(p, q)}(f, \varphi) \geq\left[\liminf _{r \rightarrow \infty}\left(\log ^{[m+1]} \widehat{|h|}(r)-\log ^{[q+1]} \varphi(\widehat{|f|}(r))\right)\right. \\
&\left.-\limsup _{r \rightarrow \infty}\left(\log ^{[m+1]} \widehat{|h|}(r)-\log ^{[p+1]} \widehat{|g|}(r)\right)\right] \\
& \text { i.e., } \log \lambda_{g}^{(p, q)}(f, \varphi) \geq\left(\log \lambda_{h}^{(m, q)}(f, \varphi)-\log \rho_{h}^{(m, p)}(g)\right) . \tag{7}
\end{align*}
$$

Similarly, from (1), (3) and (6), it follows that

$$
\begin{align*}
& \log \rho_{g}^{(p, q)}(f, \varphi)=\limsup _{r \rightarrow \infty}\left[\log ^{[m+1]} \widehat{|h|}(r)\right.-\log ^{[q+1]} \varphi(\widehat{|f|}(r)) \\
&\left.-\left(\log ^{[m+1]} \widehat{|h|}(r)-\log ^{[p+1]} \widehat{|g|}(r)\right)\right] \\
& \text { i.e., } \log \rho_{g}^{(p, q)}(f, \varphi) \leq\left[\limsup _{r \rightarrow \infty}\left(\log ^{[m+1]} \widehat{|h|}(r)-\log ^{[q+1]} \varphi(\widehat{|f|}(r))\right)\right. \\
&\left.-\underset{r \rightarrow \infty}{\lim }\left(\log ^{[m+1]} \widehat{|h|}(r)-\log ^{[p+1]} \widehat{|g|}(r)\right)\right] \\
& \text { i.e., } \log \rho_{g}^{(p, q)}(f, \varphi) \leq\left(\log \rho_{h}^{(m, q)}(f, \varphi)-\log \lambda_{h}^{(m, p)}(g)\right) . \tag{8}
\end{align*}
$$

Again, in view of (2) we obtain that

$$
\begin{aligned}
\log \lambda_{g}^{(p, q)}(f, \varphi)=\liminf _{r \rightarrow \infty}\left[\log ^{[m+1]} \widehat{|h|}(r)\right. & -\log ^{[q+1]} \varphi(\widehat{|f|}(r)) \\
& \left.-\left(\log ^{[m+1]} \widehat{|h|}(r)-\log ^{[p+1]} \widehat{|g|}(r)\right)\right]
\end{aligned}
$$

By taking $A=\left(\log ^{[m+1]} \widehat{|h|}(r)-\log ^{[q+1]} \varphi(\widehat{|f|}(r))\right)$ and $B=\left(\log ^{[m+1]} \widehat{|h|}(r)-\log ^{[p+1]} \widehat{|g|}(r)\right)$, we get from above that

$$
\log \lambda_{g}^{(p, q)}(f, \varphi) \leq \min \left(\liminf _{r \rightarrow \infty} A+\limsup _{r \rightarrow \infty}-B, \limsup _{r \rightarrow \infty} A+\liminf _{r \rightarrow \infty}-B\right)
$$

i.e., $\log \lambda_{g}^{(p, q)}(f, \varphi) \leq \min \left(\liminf _{r \rightarrow \infty} A-\liminf _{r \rightarrow \infty} B, \limsup _{r \rightarrow \infty} A-\limsup _{r \rightarrow \infty} B\right)$.

Therefore in view of (3), (4), (5) and (6) we get from above that $\log \lambda_{g}^{(p, q)}(f, \varphi) \leq$

$$
\begin{equation*}
\min \left\{\log \lambda_{h}^{(m, q)}(f, \varphi)-\log \lambda_{h}^{(m, p)}(g), \log \rho_{h}^{(m, q)}(f, \varphi)-\log \rho_{h}^{(m, p)}(g)\right\} . \tag{9}
\end{equation*}
$$

Further from (1) it follows that

$$
\begin{aligned}
\log \rho_{g}^{(p, q)}(f, \varphi)=\limsup _{r \rightarrow \infty}\left[\log ^{[m+1]} \widehat{|h|}(r)\right. & -\log ^{[q+1]} \varphi(\widehat{|f|}(r)) \\
& \left.-\left(\log ^{[m+1]} \widehat{|h|}(r)-\log ^{[p+1]} \widehat{|g|}(r)\right)\right]
\end{aligned}
$$

By taking $A=\left(\log ^{[m+1]} \widehat{|h|}(r)-\log ^{[q+1]} \varphi(\widehat{|f|}(r))\right)$ and $B=\left(\log ^{[m+1]} \widehat{|h|}(r)-\log ^{[p+1]} \widehat{|g|}(r)\right)$, we obtain from above that

$$
\log \rho_{g}^{(p, q)}(f, \varphi) \geq \max \left(\liminf _{r \rightarrow \infty} A+\limsup _{r \rightarrow \infty}-B, \limsup _{r \rightarrow \infty} A+\liminf _{r \rightarrow \infty}-B\right)
$$

$$
\text { i.e., } \log \rho_{g}^{(p, q)}(f, \varphi) \geq \max \left(\liminf _{r \rightarrow \infty} A-\liminf _{r \rightarrow \infty} B, \limsup _{r \rightarrow \infty} A-\limsup _{r \rightarrow \infty} B\right) \text {. }
$$

Therefore in view of $(3),(4),(5)$ and $(6)$, it follows from above that

$$
\log \rho_{g}^{(p, q)}(f, \varphi) \geq
$$

$$
\begin{equation*}
\max \left\{\log \lambda_{h}^{(m, q)}(f, \varphi)-\log \lambda_{h}^{(m, p)}(g), \log \rho_{h}^{(m, q)}(f, \varphi)-\log \rho_{h}^{(m, p)}(g)\right\} \tag{10}
\end{equation*}
$$

Thus the theorem follows from (7), (8), (9) and (10).
The conclusion of the following remark can be carried out after applying the same technique of Theorem 1 and therefore its proof is omitted.

Remark 1. Let $f, g \in \mathcal{A}(\mathbb{K})$. Also let $0<\lambda^{(m, q)}(f, \varphi) \leq \rho^{(m, q)}(f, \varphi)<\infty$ and $0<\lambda^{(m, p)}(g) \leq \rho^{(m, p)}(g)<\infty$. Then

$$
\begin{aligned}
\frac{\lambda^{(m, q)}(f, \varphi)}{\rho^{(m, p)}(g)} & \leq \lambda_{g}^{(p, q)}(f, \varphi) \leq \min \left\{\frac{\lambda^{(m, q)}(f, \varphi)}{\lambda^{(m, p)}(g)}, \frac{\rho^{(m, q)}(f, \varphi)}{\rho^{(m, p)}(g)}\right\} \\
& \leq \max \left\{\frac{\lambda^{(m, q)}(f, \varphi)}{\lambda^{(m, p)}(g)}, \frac{\rho^{(m, q)}(f, \varphi)}{\rho^{(m, p)}(g)}\right\} \leq \rho_{g}^{(p, q)}(f, \varphi) \leq \frac{\rho^{(m, q)}(f, \varphi)}{\lambda^{(m, p)}(g)} .
\end{aligned}
$$

Remark 2. From the conclusion of Theorem 1, one may write $\rho_{g}^{(p, q)}(f, \varphi)=$ $\frac{\rho_{h}^{(m, q)}(f, \varphi)}{\rho_{h}^{(m, p)}(g)}$ and $\lambda_{g}^{(p, q)}(f, \varphi)=\frac{\lambda_{h}^{(m, q)}(f, \varphi)}{\lambda_{h}^{(m, p)}(g)}$ when $\lambda_{h}^{(m, p)}(g)=\rho_{h}^{(m, p)}(g)$. Similarly $\rho_{g}^{(p, q)}(f, \varphi)=\frac{\lambda_{h}^{(m, q)}(f, \varphi)}{\lambda_{h}^{(m, p)}(g)}$ and $\lambda_{g}^{(p, q)}(f, \varphi)=\frac{\rho_{h}^{(m, q)}(f, \varphi)}{\rho_{h}^{(m, p)}(g)}$ when $\lambda_{h}^{(m, q)}(f, \varphi)=\rho_{h}^{(m, q)}(f, \varphi)$.

Theorem 2. Let $f, g, h \in \mathcal{A}(\mathbb{K})$. If $g \sim h$ then $\rho_{g}^{(p, q)}(f, \varphi)=\rho_{h}^{(p, q)}(f, \varphi)$ and $\lambda_{g}^{(p, q)}(f, \varphi)=\lambda_{h}^{(p, q)}(f, \varphi)$.

Proof. Let $\varepsilon>0$. Since $g \sim h$, for any $l(0<l<\infty)$ it follows for all sufficiently large positive numbers of $r$ that

$$
|g|(r)<(l+\varepsilon)|h|(r) .
$$

Now for $\alpha>\max \{1,(l+\varepsilon)\}$, we get by Lemma 1 and above for all sufficiently large positive numbers of $r$ that

$$
\begin{align*}
|g|(r) & <|h|(\alpha r) \\
\text { i.e., } \widehat{|h|}(r) & <\alpha \widehat{|g|}(r) . \tag{11}
\end{align*}
$$

Therefore we get from (11) that

$$
\begin{gathered}
\rho_{h}^{(p, q)}(f, \varphi)=\limsup _{r \rightarrow \infty} \frac{\log ^{[p]} \widehat{|h|}(|f|(r))}{\log ^{[q]} \varphi(r)} \leq \limsup _{r \rightarrow \infty} \frac{\log ^{[p]} \alpha \widehat{|g|}(|f|(r))}{\log ^{[q]} \varphi(r)} \\
\text { i.e., } \rho_{h}^{(p, q)}(f, \varphi) \leq \limsup _{r \rightarrow \infty} \frac{\log ^{[p]} \widehat{|g|}(|f|(r))+O(1)}{\log ^{[q]} \varphi(r)} .
\end{gathered}
$$

Therefore from above we get that $\rho_{h}^{(p, q)}(f, \varphi) \leq \rho_{g}^{(p, q)}(f, \varphi)$. The reverse inequality is clear because $h \sim g$ and so $\rho_{g}^{(p, q)}(f, \varphi)=\rho_{h}^{(p, q)}(f, \varphi)$.

In a similar manner, $\lambda_{h}^{(p, q)}(f, \varphi)=\lambda_{g}^{(p, q)}(f, \varphi)$.
This proves the theorem.
Theorem 3. Let $f, g, h \in \mathcal{A}(\mathbb{K})$. If $f \sim h$ then $\rho_{g}^{(p, q)}(h, \varphi)=\rho_{g}^{(p, q)}(f, \varphi)$ and $\lambda_{g}^{(p, q)}(h, \varphi)=\lambda_{g}^{(p, q)}(f, \varphi)$ where $\varphi(r):[0,+\infty) \rightarrow(0,+\infty)$ is a non-decreasing unbounded function with $\lim _{r \rightarrow \infty} \frac{\log ^{[q]} \varphi(a r)}{\log ^{[q]} \varphi(r)}=1$ for any $\alpha>0$.

Proof. Since $f \sim h$, for any $\varepsilon>0$ we obtain that

$$
|f|(r)<(l+\varepsilon)|h|(r),
$$

where $0<l<\infty$.
Therefore for $\alpha>\max \{1,(l+\varepsilon)\}$ and in view of Lemma 1, we get from above for all sufficiently large positive numbers of $r$ that

$$
\begin{equation*}
|f|(r)<|h|(\alpha r) . \tag{12}
\end{equation*}
$$

Now we obtain from (12) that

$$
\begin{aligned}
\rho_{g}^{(p, q)}(f, \varphi) & =\limsup _{r \rightarrow \infty} \frac{\log ^{[p]} \widehat{|g|}(|f|(r))}{\log ^{[q]} \varphi(r)} \\
& \leq \limsup _{r \rightarrow \infty}\left(\frac{\log ^{[p]} \widehat{|g|}(|h|(\alpha r))}{\log ^{[q]} \varphi(\alpha r)} \cdot \frac{\log ^{[q]} \varphi(\alpha r)}{\log ^{[q]} \varphi(r)}\right) \\
& \leq \limsup _{r \rightarrow \infty} \frac{\log ^{[p]} \widehat{|g|}(|h|(\alpha r))}{\log ^{[q]} \varphi(\alpha r)} \cdot \lim _{\sigma \rightarrow+\infty} \frac{\log ^{[q]} \varphi(\alpha r)}{\log ^{[q]} \varphi(r)} .
\end{aligned}
$$

Now from above we get that $\rho_{g}^{(p, q)}(f, \varphi) \leq \rho_{g}^{(p, q)}(h, \varphi)$. Further $f \sim h \Rightarrow$ $h \sim f$, so we also obtain that $\rho_{g}^{(p, q)}(h, \varphi) \leq \rho_{g}^{(p, q)}(f, \varphi)$ and therefore $\rho_{g}^{(p, q)}(h, \varphi)=$ $\rho_{g}^{(p, q)}(f, \varphi)$.

In a similar manner, $\lambda_{g}^{(p, q)}(h, \varphi)=\lambda_{g}^{(p, q)}(f, \varphi)$.
This proves the theorem.

Theorem 4. Let $f, g, h \in \mathcal{A}(\mathbb{K})$. If $g \sim h$ and $f \sim k$ then $\rho_{f}^{(p, q)}(g, \varphi)=$ $\rho_{k}^{(p, q)}(h, \varphi)=\rho_{f}^{(p, q)}(h, \varphi)=\rho_{k}^{(p, q)}(g, \varphi)$ and $\lambda_{f}^{(p, q)}(g, \varphi)=\lambda_{k}^{(p, q)}(h, \varphi)=\lambda_{f}^{(p, q)}(h, \varphi)=$ $\lambda_{k}^{(p, q)}(g, \varphi)$ where $\varphi(r):[0,+\infty) \rightarrow(0,+\infty)$ is a non-decreasing unbounded function with $\lim _{r \rightarrow \infty} \frac{\log ^{[q]} \varphi(a r)}{\log ^{[q]} \varphi(r)}=1$ for any $\alpha>0$.

Theorem 4 follows from Theorem 2 and Theorem 3.
Now we state the following four theorems which can easily be carried out from the definitions of relative $(p, q)-\varphi$ order and relative $(p, q)-\varphi$ lower order and with the help of Theorem 2, Theorem 3 and Theorem 4 and therefore their proofs are omitted.
Theorem 5. Let $f, g, h \in \mathcal{A}(\mathbb{K})$. Also let $g \sim h, 0<\lambda_{g}^{(p, q)}(f, \varphi) \leq \rho_{g}^{(p, q)}(f, \varphi)<$ $\infty$ and $0<\lambda_{h}^{(p, q)}(f, \varphi) \leq \rho_{h}^{(p, q)}(f, \varphi)<\infty$. Then

$$
\liminf _{\sigma \rightarrow+\infty} \frac{\log ^{[p]} \widehat{|g|}(|f|(r))}{\log ^{[p]} \widehat{|h|} \mid(|f|(r))} \leq 1 \leq \limsup _{\sigma \rightarrow+\infty} \frac{\log ^{[p]} \widehat{|g|}(|f|(r))}{\log ^{[p]}|\widehat{h \mid}|(|f|(r))}
$$

Theorem 6. Let $f, g, h \in \mathcal{A}(\mathbb{K})$. Also let $f \sim h, 0<\lambda_{g}^{(p, q)}(f, \varphi) \leq \rho_{g}^{(p, q)}(f, \varphi)<$ $\infty$ and $0<\lambda_{g}^{(p, q)}(h, \varphi) \leq \rho_{g}^{(p, q)}(h, \varphi)<\infty$ where $\varphi(r):[0,+\infty) \rightarrow(0,+\infty)$ is a non-decreasing unbounded function with $\lim _{r \rightarrow \infty} \frac{\log ^{[q]} \varphi(\text { ar })}{\log { }^{[q]} \varphi(r)}=1$ for any $\alpha>0$.

$$
\liminf _{\sigma \rightarrow+\infty} \frac{\log ^{[p]} \widehat{|g|}(|f|(r))}{\log ^{[p]} \widehat{|g|}(|h|(r))} \leq 1 \leq \limsup _{\sigma \rightarrow+\infty} \frac{\log ^{[p]} \widehat{|g|}(|f|(r))}{\log ^{[p]} \widehat{|g|}(|h|(r))}
$$

Theorem 7. Let $f, g, h, k \in \mathcal{A}(\mathbb{K})$. Also let $f \sim h$ and $g \sim k, 0<\lambda_{g}^{(p, q)}(f) \leq$ $\rho_{g}^{(p, q)}(f)<\infty$ and $0<\lambda_{k}^{(p, q)}(h) \leq \rho_{k}^{(p, q)}(h)<\infty$ where $\varphi(r):[0,+\infty) \rightarrow(0,+\infty)$ is a non-decreasing unbounded function with $\lim _{r \rightarrow \infty} \frac{\log ^{[q]} \varphi(a r)}{\log ^{[q]} \varphi(r)}=1$ for any $\alpha>0$.

$$
\liminf _{\sigma \rightarrow+\infty} \frac{\log ^{[p]} \widehat{|g|}(|f|(r))}{\log ^{[p]} \widehat{|k|}(|h|(r))} \leq 1 \leq \limsup _{\sigma \rightarrow+\infty} \frac{\log ^{[p]} \widehat{\log ^{[p]}} \widehat{|k|}(|f|(r))}{|h|(r))}
$$

Theorem 8. Let $f, g, h, k \in \mathcal{A}(\mathbb{K})$. Also let $f \sim h$ and $g \sim k, 0<\lambda_{g}^{(p, q)}(h) \leq$ $\rho_{g}^{(p, q)}(h)<\infty$ and $0<\lambda_{k}^{(p, q)}(f) \leq \rho_{k}^{(p, q)}(f)<\infty$ where $\varphi(r):[0,+\infty) \rightarrow(0,+\infty)$ is a non-decreasing unbounded function with $\lim _{r \rightarrow \infty} \frac{\log ^{[q]} \varphi(a r)}{\log ^{[q]} \varphi(r)}=1$ for any $\alpha>0$.

$$
\liminf _{\sigma \rightarrow+\infty} \frac{\log ^{[p]} \widehat{|g|}(|h|(r))}{\log ^{[p]} \widehat{|k|} \mid(|f|(r))} \leq 1 \leq \limsup _{\sigma \rightarrow+\infty} \frac{\log ^{[p]} \widehat{|g|}(|h|(r))}{\log ^{[p]}} \widehat{|k|}(|f|(r))
$$

## Acknowledgment

The author is extremely grateful to the anonymous learned referee for his/her keen reading, valuable suggestion and constructive comments for the improvement of the paper.

## References

[1] L. Bernal, Orden relativo de crecimiento de funciones enteras, Collect. Math. 39 (1988), 209-229.
[2] T. Biswas, Some growth properties of composite $p$-adic entire functions on the basis of their relative order and relative lower order, Asian-Eur. J. Math. $12(3)(2019)$, 1950044, 15 pp, https://doi.org/10.1142/S179355711950044X.
[3] T. Biswas, Some growth aspects of composite $p$-adic entire functions in the light of their $(p, q)$-th relative order and ( $p, q$ )-th relative type, J. Chungcheong Math. Soc., 31 (4) (2018), 429-460.
[4] T. Biswas, On some growth analysis of $p$-adic entire functions on the basis of their $(p, q)$-th relative order and $(p, q)$-th relative lower order, Uzbek Math. J., 2018(4) (2018), 160-169.
[5] T. Biswas, Relative order and relative type based growth properties of iterated $p$-adic entire functions, Korean J. Math., 26(4) (2018), 629-663.
[6] T. Biswas, A note on $(p, q)$-th relative order and $(p, q)$-th relative type of $p$-adic entire functions, Honam Math. J., 40(4 )(2018), 621-659.
[7] T. Biswas, $(p, q)$-th order oriented growth measurement of composite $p$-adic entire functions, Carpathian Math. Publ., 10(2) (2018), 248-272.
[8] K. Boussaf, A. Boutabaa and A. Escassut, Growth of $p$-adic entire functions and applications, Houston J. Math., 40(3) (2014), 715-736.
[9] K. Boussaf, A. Boutabaa and A. Escassut, Order, type and cotype of growth for p-Adic entire functions, A survey with additional properties, p-Adic Numbers Ultrametric Anal. Appl. 8(4), (2016), 280-297.
[10] A. Escassut, Analytic Elements in p-adic Analysis. World Scientific Publishing Co. Pte. Ltd. Singapore, 1995.
[11] A. Escassut, p-adic Value Distribution. Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis, p. 42- 138. Math. Monogr., Series 11. Science Press.(Beijing 2008).
[12] A. Escassut, Value Distribution in p-adic Analysis. World Scientific Publishing Co. Pte. Ltd. Singapore, 2015.
[13] A. Escassut, K. Boussaf and A. Boutabaa, Order, type and cotype of growth for $p$-adic entire functions, Sarajevo J. Math. $12(25)$ (2016), no. 2, suppl., 429-446.
[14] A. Escassut and J. Ojeda, Exceptional values of $p$-adic analytic functions and derivative, Complex Var. Elliptic Equ., 56(1-4) (2011), 263-269.
[15] P. C. Hu and C. C. Yang, Meromorphic Functions over non-Archimedean Fields, Kluwer Academic Publishers, (publ. city), 2000.
[16] O. P. Juneja, G. P. Kapoor and S. K. Bajpai, On the (p,q)-order and lower (p,q)-order of an entire function, J. Reine Angew. Math., 282 (1976), 53-67.
[17] A. Robert, A Course in p-adic analysis, Graduate texts. Springer (publ. city), 2000..
[18] X. Shen, J. Tu and H. Y. Xu, Complex oscillation of a second-order linear differential equation with entire coefficients of $[p, q]-\varphi$ order, Adv. Difference Equ. 2014, 2014:200, 14 pages, http://www.advancesindifferenceequations.com/content/2014/1/200.

Tanmay Biswas, Rajbari, Rabindrapalli, R. N. Tagore Road, P.O.- Krishnagar, DistNadia, PIN- 741101, West Bengal, India

E-mail address: tanmaybiswas@rediffmail.com


[^0]:    Key words and phrases. $\quad p$-adic entire function, growth, relative $(p, q)-\varphi$ order, relative $(p, q)-\varphi$ lower order.
    2010 Mathematics Subject Classification. 12J25, 30D35, 30G06, 46S10.
    Submitted April 4, 2019. Revised June 2, 2019.

