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STUDY OF A FRACTIONAL-ORDER MODEL FOR HIV

INFECTION OF CD4+ T-CELLS WITH TREATMENT

A. J. FERRARI, E. A. SANTILLAN MARCUS

Abstract. In view of the problem of human immunodeficiency virus (HIV)
infection of CD4+ T-cells, further considering the effect caused by treatment

therapy on the infected patient, an analytical model with fractional differential

equations for susceptible cells density, infected cells density and virus density
is presented in order to test how infection develops. Existence and uniqueness

of the model solution are explicitly proved and its positive invariance and

stability are studied.

1. Introduction

HIV is a virus, a microorganism that does not have the capacity to replicate itself.
To do so it must penetrate certain types of cells. HIV has the peculiarity of invading
the body’s defense cells, CD4+ T-lymphocytes, progressively destroying them if left
untreated. In this way, the immune system is weakened and the body is unable to
defend itself, so the infected person can develop opportunistic diseases [3, 5, 21].
Antiretroviral therapy (ART) consists of the use of drugs to prevent the virus from
reproducing. Nowadays, ARTs last a lifetime and use combinations of three or
more drugs. Although ART reduces the progression of infection by causing viral
load to become undetectable and restores the defenses, antiretrovirals may have
undesirable side effects (like any other drug) [5, 21]. It is for this reason that one of
the main objectives of this work is to find out how effective a drug should be so that
ART can be carried out only with this drug, instead of needing the combination of
several of them, thus achieving a simpler treatment and less exposure to possible
side effects caused by the medication. A fractional-order model of HIV infection
presented in [5] will be analyzed in this work along with the immune system cells,
the CD4+ T-lymphocytes. In [5] existence and uniqueness of the solution of the
problem are stated, and non-negativity of the solution is proved. An explicit proof
of existence and uniqueness of the solution will be shown here, plus its positive
invariance. Furthermore, stability of the solution will be studied to obtain results
about the efficacy of the drug in order to achieve an undetectable level of virus
density. The paper is organized as follows: the model is presented in section 2,
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some basic definitions of fractional derivatives are shown in section 3, existence and
uniqueness of the model solution is proved in section 4, its positive invariance is
demonstrated in section 5, stability of the model is studied in section 6 and finally
conclusions are presented in section 7.

2. Model description

This work is based on the models presented by Arafa, Rida, Khalil [5] and Sri-
vastava, Banerjee and Chandra [21] in which the presence of a reverse transcriptase
(RT) inhibitor is considered, as it is the most recurrent in treatments. At first,
three variables could be considered in the model: virus density, infected CD4+

T-cells, and uninfected CD4+ T-cells. However, there is a phase in the cycle of
the virus called eclipse phase prior to reverse transcription during which no virus
is being produced [21]. Therefore, there are considered two subsets within the set
of infected CD4+ T-cells: those that are latently infected (in eclipse phase) and
those productively infected (producing virus). Thus, the variables considered in
the model are: T : density of susceptible CD4+ T-cells; I: density of infected CD4+

T-cells before reverse transcription (pre-RT class); V : density of infected CD4+ T-
cells in which reverse transcription is completed (post-RT class) and so are capable
of producing virus; L: virus density. In addition, the following positive parameters
have been considered: s: inflows rate of CD4+ T-cells; k: interaction infection rate
of CD4+ T-cells; µ: natural death rate of CD4+ T-cells; η: efficacy of RT inhibitor
(0 < η < 1); ε: transition rate of pre-RT class infected CD4+ T-cells to post-RT
class; b: reverting rate of infected cells to uninfected class due to non-completion
of reverse transcription; µ1: death rate of infected CD4+ T-cells; δ: death rate of
actively infected CD4+ T-cells; N : total number of viral particles produced by an
infected CD4+ T-cell; c: clearance rate of virus.

The model presented by Arafa, Rida and Khalil [5], in which fractional deriva-
tives in Caputo’s sense have been considered, is the following:

Dα
C(T ) = s− kLT − µT + (ηε+ b)I (A1)

Dα
C(I) = kLT − (µ1 + ε+ b)I (A2)

Dα
C(V ) = (1− η)εI − δV (A3)

Dα
C(L) = NδV − cL (A4)

(A)

where 0 < α ≤ 1 is the fractional derivative order.

3. Fractional Calculus

Fractional derivatives have been extensively applied in many fields with an
overwhelming growth in the last three decades; for example models admitting
backgrounds of heat transfer, viscoelasticity, electrical circuits, electro-chemistry,
economics, polymer physics, and biology are concerned with fractional derivative
[2, 11, 12, 17, 20]. With particular reference to HIV, fractional differential equa-
tions are naturally related to systems with memory which exists in most biological
models [4]. Also, they are closely related to fractals [9]. Moreover, the membranes
of biological organism cells have fractional-order electrical conductance and then
they are classified in groups of non-integer order models [7]. Fractional derivatives
embody essential features of cell rheological behavior and they have enjoyed great-
est success in the field of rheology [10]. Anomalous diffusion of proteins due to
molecular crowding, such as enzymes contained in the HIV, is studied in [6] where
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a fractional order model is considered. There are many approaches to the gener-
alization of the notion of fractional differentiation. For the concept of fractional
derivative, Caputo’s definition is considered because it has the advantage of dealing
properly with initial value problems [8, 14, 18].

Definition 1 The Riemann-Liouville fractional integral of order α > 0 of a
function f : R+ → R is given by [8]:

Jαf(x) =
1

Γ(α)

∫ x

0

(x− t)α−1f(t) dt,

where J0f(x) = f(x), x > 0.
Definition 2 The Riemann-Liouville and the Caputo fractional derivatives of

order α > 0 of a continuous function f : R+ → R are respectively given by [8]:

Dαf(x) = Dm(Jm−αf(x)),

Dα
Cf(x) = Jm−α(Dmf(x)),

where m− 1 < α ≤ m, m ∈ N.
Both definitions of fractional derivative involve an integration which is a non local

operator, so fractional derivative is a non local operator. In other words, calculating
the fractional derivative of a function f(t) at some time t = t1 requires all the
previous history, i.e. f(t) from t = 0 to t = t1. Results derived of the fractional
systems are of a more general nature. However, fundamental solutions of these
equations still exhibit scaling properties that make them useful for applications.
One of the basic reasons of using fractional order differential equations is that they
are, at least, as stable as their integer order counterpart. [3]

4. Existence and Uniqueness of the Model Solution

Denote R4
+ = {x ∈ R4 : x ≥ 0}, and x(t) = (T (t), I(t), V (t), L(t)). Let us

consider these results given in [5] and [16]:
Theorem 1 [Generalized mean value theorem] Let f(x) ∈ AC[0, a], where

AC[0, a] denotes the set of absolutely continuous functions on [0, a]. Then for
0 < α ≤ 1:

f(x) = f(0) +
1

Γ(α+ 1)
(Dα
∗ f)(ξ) · xα,

with 0 ≤ ξ ≤ x, ∀x ∈ [0, a].
Proof. Proof is given in [16].
Remark 1 When α = 1, the generalized mean value theorem reduces to the

classical mean value theorem.
Corollary 1 Suppose that f(x) ∈ AC[0, a] and Dα

∗ f(x) ∈ C(0, a] for 0 < α ≤ 1.
If Dα

∗ f(x) ≥ 0(Dα
∗ f(x) > 0), ∀x ∈ (0, a), then f(x) is non-decreasing (increas-

ing) and if Dα
∗ f(x) ≤ 0 (Dα

∗ f(x) < 0),∀x ∈ (0, a) then f(x) is non-increasing
(decreasing) for all x ∈ [0, a].

Proof. It arises naturally from Theorem 1.
Theorem 2 R4

+ is a non-negative invariant domain for the model solution.
Proof. It arises from Theorem 1 and Corollary 1, see [5].
Existence and uniqueness of the solution is stated in [5], however it is not ex-

plicitly demonstrated. Following, an explicit proof will be given.
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Initial value problems for fractional differential equations are stated in the fol-
lowing form: {

Dα
Cx(t) = f(t, x(t)),

x(k)(t0) = x
(k)
0 , k = 0, 1, . . . , n− 1,

(1)

where the fractional derivative Dα
C is in the sense of Caputo’s definition and the

function f(t, x) : R × Rd → Rd is called vector field (with dimension d ≥ 1) [13].
Then, according to Lemma 6.2 in [8], x(t) is a solution of the initial value problem
(1) if and only if x(t) is a solution of the nonlinear Volterra integral equation of the
second kind:

x(t) =

m−1∑
k=0

(t− t0)k

k!
x(k)(t0) +

1

Γ(α)

∫ t

t0

(t− s)α−1f(s, x(s)) ds, (2)

where α ∈ (m− 1,m), m ∈ N and t ≥ t0. This allow us to discuss the properties of
the solutions of (2) instead of the ones for the initial value problem (1). Besides,
considering α ∈ (0, 1), equation (2) can be written as:

x(t) = x0 +
1

Γ(α)

∫ t

t0

(t− s)α−1f(s, x(s)) ds,

where α ∈ (0, 1) and t ≥ t0.
Theorem 3 (see [13]) Assume that the vector field f(t, x) satisfies:

(1) f(t, x) is Lebesgue measurable with respect to t on R;
(2) f(t, x) is continuous with respect to x on Rd.

Assume also that:

||f(t, x)|| ≤ ω + λ||x||, (3)

for almost every t ∈ R and for all x ∈ Rd, where ω, λ are two positive constants.
Then, there exists a function x(t) on (−∞,+∞) solving the initial value problem

(1).
Remark 2 Besides the hypotheses made in Theorem 3, if ∂f(t, x)/∂x is further

assumed to be continuous with respect to x, then the solution x(t) on (−∞,+∞)
solving (1) exists and it is unique since the hypotheses of Theorem 2.2 in [13] are
fulfilled.

Theorem 4 There exists an unique solution x(t) = (T (t), I(t), V (t), L(t)) for
system (A) with t ≥ 0.

Proof. From (A):

f(t, x) = (s−kLT −µT +(ηε+b)I, kLT −(µ1 +ε+b)I, (1−η)εI−δV, NδV −cL).

f(t, x) satisfies the first two conditions of Theorem 3 in the global space. Now it
will be shown that (3) is satisfied to ensure global existence. Considering the norm

||x|| = ||x||1 =

4∑
i=1

|xi|, and taking into account the positivity of the parameters,

the non-negativity of the variables and that η < 1, results:

||f(t, x)||1 ≤ s+ 2kLT + µT + (2b+ µ1 + 2ε)I + δ(N + 1)V + cL. (4)

Looking at (A1-2), and considering the linearity of the Caputo fractional deriv-
ative operator, it can be deduced that:

Dα
C(T + I) ≤ s− µm(T + I), where µm = min{µ, µ1}.
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From this it follows that lim sup
t→∞

(T + I) ≤ s/µm. Being T and I non-negative,

it is concluded that lim sup
t→∞

T ≤ s/µm and lim sup
t→∞

I ≤ s/µm. Therefore, 0 <

T (t) < M , 0 < I(t) < M for some M > 0, for all t ≥ 0. Thus, a bound for T is
obtained and then from (4):

||f(t, x)||1 ≤ s+ [2kM + µ+ (2b+ µ1 + 2ε) + δ(N + 1) + c] ||x||1.

Therefore, taking ω = s > 0 and λ = 2kM+µ+(2b+µ1 +2ε)+δ(N+1)+c > 0,
the result follows. Finally, from Remark 2 it follows naturally that the solution not
only exists but it is globally unique.

5. Positive invariance

It will be proved that (A) is positively invariant, i.e., it does not exhibit nei-
ther negative nor zero values of the variables for similar initial conditions. Let
B = {(T, I, V, L), T > 0, I ≥ 0, V ≥ 0, L ≥ 0} and B̊ = {(T, I, V, L), T > 0, I >
0, V > 0, L > 0}. Remark that B is the subset of R+

4 with all the possible states
with biological sense for both infected and non-infected patients. To prove that
B̊ is a positively invariant domain, the following lemma states that the number of
susceptible CD4+ T-cells does not vanish in finite time.

Lemma 1 If the initial condition (T0, I0, V0, L0) is in B then T (t) > 0 for all
time for which T, I, V, L are defined.

Proof. Suppose that there exists at least one time t such that T (t) = 0. Let t∗

be the smallest time. Due to the hypotheses, t∗ > 0. Then (A1) can be put as:

Dα
CT (t∗) = s+ (ηε+ b)I(t∗) > 0.

As a consequence of Corollary 1, taking t̃ below and sufficiently close to t∗,
T (t̃) < 0. This contradicts Theorem 2 and completes the proof.

Theorem 5 B̊ is a positively invariant domain for the model solution.
Proof. Cases where one, two or three variables vanish simultaneously will be

discussed. Recall that it is already known that T does not vanish by Lemma 1.
Let us assume that I vanishes first and alone (before the other variables) and let

us denote t∗ the smallest time for which I vanishes. On [0, t∗):

I(t) > 0, V (t) > 0, L(t) > 0,

and in t = t∗:

I(t∗) = 0, V (t∗) > 0, L(t∗) > 0.

in addition to the fact that T (t) > 0 on [0, t∗], according to Lemma 1. From (A2):

Dα
CI(t∗) = kL(t∗)T (t∗) > 0.

This implies that there exists a time t̃ smaller than t∗ at which I(t̃) < 0. This
contradicts Theorem 2 and therefore I does not vanish first and alone. Identical
arguments enable to prove that V and L does not vanish first and alone.

All the cases where two variables vanish simultaneously could be easily analyzed
in the same way.

In the case where I, V and L vanish at the same time, the following initial value
problem appears: {

Dα
CT (t) = s− µT (t)

T (0) = T0.
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The solution for this problem is:

T (t) = sα

∫ t

0

E′α(−µrα)rα−1dr + T0Eα(−µtα).

If t∗ is the smallest vanishing time for I, V and L, applying Theorem 4 with
reversed time, it can be concluded that the (unique) solution is such that

T (t) = sα

∫ t

0

E′α(−µrα)rα−1dr + T0Eα(−µtα) and I = V = L = 0 for all time

t < t∗. This contradicts the definition of t∗ as the smallest vanishing time and
finishes the proof.

Corollary 2 There exists an unique solution x(t) = (T (t), I(t), V (t), L(t)) for
(A) with t ≥ 0 and it is positively invariant.

6. Equilibrium Points and Stability of the Model

Definition 3 Consider the following differential equation:

Dα
Cx(t) = f(t, x(t)), (5)

with α ∈ (0, 1).
Then if f(t, x(t)) = (f1(t, x(t)), f2(t, x(t)), . . . , fd(t, x(t))), the equilibrium points

are defined as the solutions of fi(t, x(t)) = 0, i = 1, . . . , d (see [1]).
From (A) and (5), let us put:

s− kL̄T̄ − µT̄ + (ηε+ b)Ī = 0
kL̄T̄ − (µ1 + ε+ b)Ī = 0
(1− η)εĪ − δV̄ = 0
NδV̄ − cL̄ = 0.

Solving, it turns out that there are two equilibrium points: E1 = (s/µ, 0, 0, 0)
and E2 = (T̄ , Ī, V̄ , L̄), where:

T̄ =
(µ1 + ε+ b)c

Nkε(1− η)
, Ī =

s− µT̄
ε(1− η) + µ1

, V̄ =
(1− η)ε

δ
Ī, L̄ =

Nδ

c
V̄ .

Remark 3 Note that the equilibrium point E1 is a non-infectious state since
there are no infected CD4+ T-cells and no virus density present, while the equi-
librium point E2 is an infectious state as susceptible CD4+ T-cells coexist with
infected cells and virus. It can be seen that given certain conditions, the solution
tends to the non-infectious state. Therefore necessary and sufficient conditions for
the non-infectious state E1 to be asymptotically stable will be analyzed.

Theorem 6 A necessary and sufficient condition for the local asymptotic sta-
bility of an equilibrium point is that the eigenvalues λ of the Jacobian matrix
A = (aij) = (∂fi/xj) evaluated at that point of equilibrium satisfy the following
condition:

|arg(λ)| > απ

2
. (6)

Proof. See Theorem 7.20 from [8].
Remark 4 Note that this Theorem confirms that fractional-order differential

equations with α ∈ (0, 1) are, at least, as stable as their integer order counterpart
since if (6) is satisfied when α = 1, then it is also satisfied when α ∈ (0, 1).
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Let us consider for α = 1 the classical Routh-Hurwitz conditions [15], this is
det(Hj) > 0, j = 1, 2, . . . , n being:

H1 = (a1), H2 =

(
a1 1
a3 a2

)
, H3 =

a1 1 0
a3 a2 a1
a5 a4 a3

 ,

Hn =


a1 1 0 0 . . . 0
a3 a2 a1 1 . . . 0
a5 a4 a3 a2 . . . 0
...

...
...

... . . .
...

a2n−1 a2n−2 a2n−3 a2n−4 . . . an

 ,

where aj = 0 if j > n. To verify (6), for α ∈ (0, 1), these conditions are sufficient
but not necessary. In [1] the following result is established:

Theorem 7

(1) For n = 1, the condition for (6) is a1 > 0.
(2) For n = 2, the conditions for (6) are either Routh-Hurwitz conditions or:

a1 < 0, 4a2 > (a1)2,

∣∣∣∣∣tan−1

(√
4a2 − (a1)2

a1

)∣∣∣∣∣ > απ

2
.

(3) For n = 3:
(a) If the discriminant of P (λ), D(P ) = 18a1a2a3+(a1a2)2−4a3a

3
1−4a32−

27a23 is positive, then Routh-Hurwitz conditions are the necessary and
sufficient conditions for (6) to be satisfied, i.e.:

a1 > 0, a1a2 > a3, a3 > 0.

(b) If D(P ) < 0 and α < 2/3, then sufficient conditions for (6) to be
satisfied are a1 ≥ 0, a2 ≥ 0, a3 > 0.

(c) If D(P ) < 0 and α ∈ (0, 1), then sufficient conditions for (6) to be
satisfied are a1 > 0, a2 > 0, a1a2 = a3.

The Jacobian matrix J(x) for system (A) is the following:

J(x) =


−kL− µ ηε+ b 0 −kT
kL −(µ1 + ε+ b) 0 kT
0 (1− η)ε −δ 0
0 0 Nδ −c

 .

Thus:
det(J(E1)− λI) = (λ+ µ)

{
λ3 + (µ1 + ε+ b+ δ + c)λ2

+ [(µ1 + ε+ b)(δ + c) + cδ]λ
+ cδ(µ1 + ε+ b)−Nδε(1− η)ks/µ} .

Then, the characteristic polynomial for J(E1) is (λ+µ)(λ3+a1λ
2+a2λ+a3) = 0

being:

a1 = µ1 + ε+ b+ δ + c;
a2 = (µ1 + ε+ b)(δ + c) + cδ;
a3 = b1 − b2(1− η) where b1 = cδ(µ1 + ε+ b) and b2 = Nδεks/µ.

(7)

Note that λ = −µ is a real negative eigenvalue and therefore verifies the condition
(6). Hence the cubic polynomial λ3 + a1λ

2 + a2λ+ a3 = 0 must be analyzed.
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According to Theorem 7 (item 3) let us evaluate the sign of the discriminant
D(P ) = 18a1a2a3 + (a1a2)2 − 4a3a

3
1 − 4a32 − 27a23. As in general a1a2 6= a3 and

remembering that α ∈ (0, 1), let us begin by obtaining conditions for D(P ) > 0.
Theorem 8 Let a1, a2, b1, b2 > 0, β ∈ (0, 1]. If the following conditions are

simultaneously satisfied:

a2(a41 + 3a22)

3(a1a2)2 +
a61
9

< 1;

b1

(
9

2
a1a2 − a31 −

27

2
b1

)
> min

{
0; a22

(
a2 −

a21
4

)
− 27

4
b21

}
;

b2

(
a31 +

27

2
b1 −

9

2
a1a2 −

27

2
b2(1− β)

)
> min

{
0; a22

(
a2 −

a21
4

)
+a1

(
a21 −

9

2
a2

)
(b1 + b2β) +

27

2
b1

(
b1
2

+ b2β

)
− 27

4
b22(1− β2)

}
.

(8)

then D(P ) = 18a1a2a3+(a1a2)2−4a3a
3
1−4a32−27a23 > 0, where a3 = b1−b2(1−η)

for every η ∈ [β, 1].
Proof. Writing D(P ) in terms of η:

D(P )(η) = −27b22η
2 + (18a1a2b2 − 4a31b2 − 54b1b2 + 54b22)η

+18a1a2b1 − 18a1a2b2 + a21a
2
2 − 4a31b1

+4a31b2 − 4a32 − 27b21 − 27b22 + 54b1b2.
(9)

The roots of (9) are:

η1,2 = 1
27b2

(
9a1a2 − 2a31 − 27b1 + 27b2 ±

√
108a21a

2
2 + 4a61 − 36a41a2 − 108a32

)
.

Clearly, D(P )(η) is positive for η ∈ (η1, η2) Then, it is enough to ask: ∆(D(P )) > 0
η2 > 1
η1 < β,

which are respectively translated to (8).
This theorem allow us to consider any value of η between β and 1, so β should be

interpreted biologically as the actual efficacy of the RT inhibitor. Now let us analyze
the Routh-Hurwitz conditions from Theorem 7. However, due to the positivity of
all parameters, condition a1 > 0 is trivially verified. Condition a1a2 > a3 is also
always verified since:

a1a2 = (µ1 + ε+ b+ δ + c)[(µ1 + ε+ b)(δ + c) + cδ] >
> cδ(µ1 + ε+ b)−Nδε(1− η)ks/µ = a3.

Therefore, it should only be verified a3 > 0 so that the non-infectious state E1

is asymptotically stable, this is:

cδ(µ1 + ε+ b)−Nδε(1− η)
ks

µ
> 0 =⇒ c(µ1 + ε+ b)

Nε(1− η)k
>
s

µ
=⇒ T̄ >

s

µ
.

In terms of η this translates to η > ηcrit where:

ηcrit = 1− µc(µ1 + ε+ b)

Nεks
.

Theorem 9 Let system (A) be. If equations (8) are satisfied by (7), then
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η > 1− µc(µ1 + ε+ b)/Nεks, (10)

is the necessary and sufficient condition for the asymptotically stability of the non-
infectious state E1.

Remark 5 Condition (10) is a sufficient condition for the non-infection state to
be asymptotically stable, but it is not always necessary.

According to the biological literature [19], let us consider the values of the pa-
rameters shown in Table 1.

Parameter Value Unit
s 10 mm−3day−1

k 0.000024 mm3day−1

µ 0.01 day−1

ε 0.4 day−1

b 0.05 day−1

µ1 0.015 day−1

δ 0.26 day−1

N 1000 dimensionless
c 2.4 day

T (0) 300 mm−3

I(0) 10 mm−3

V (0) 10 mm−3

L(0) 10 mm−3

α 0.99 dimensionless
Table 1. Values of the parameters

Now let us consider the stability results obtained in the previous section, in
accordance to the values of the established parameters and remembering that the
value of the efficacy of RT inhibitor η ∈ [β, 1].

The non-infectious equilibrium E1 turns out to be E1 = (s/µ, 0, 0, 0) =
= (1000, 0, 0, 0). In order to ensure the conditions of its asymptotic stability, it is
easy to check conditions (8) with (7) and β = 0.6 (actual efficacy of a RT inhibitor).
Now referring to Theorem 9, let us compute the value of ηcrit = (b2 − b1)/b2 =
ηcrit = 0.88375.

Therefore, if the reverse transcriptase inhibitor has an efficacy η greater than
ηcrit = 0.88375, then the non-infectious state E1 is asymptotically stable, thus
achieving the undetectable viral load of the patient.

Remark 6 Given the fact that the actual efficacy of the RT inhibitor is approx-
imately 0.6 (i.e., approximately 60%) , ARTs must use combinations of three or
more drugs to achieve the needed efficacy.

7. Conclusions

A model of HIV infection has been analyzed along with the immune system cells,
the CD4+ T-lymphocytes, where a reverse transcriptase inhibitor was provided [5].
Four variables were taken into account: susceptible cells, virus density, infected
cells pre-reverse transcription (i.e. they do not produce viruses), and infected cells
post-reverse transcription (cells that produce viruses). A fractional order model
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was considered, in view of the advantages that this entails. It was explicitly proved
that the solution of this model exists, it is unique and it is positively invariant.
After analyzing the stability of the solution, it was concluded that if the efficacy of
the drug is greater than 88.375%, then an undetectable level of virus density will
be achieved.
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