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FRACTIONAL ANALOGUE OF THE LYAPUNOV INEQUALITY

IN CONFORMABLE SENSE

JAGAN MOHAN JONNALAGADDA, BASUA DEBANANDA

Abstract. In this article, we derive a few Lyapunov-type inequalities for two-
point conformable fractional boundary value problems associated with mixed

boundary conditions. To demonstrate the applicability of established results,

we obtain sufficient conditions for disconjugacy and disfocality of conformable
fractional boundary value problems and estimate lower bound for eigenvalues

of the corresponding fractional eigenvalue problem.

1. Introduction

In 1907, Lyapunov [7] proved the following result, which provides a necessary
condition for the existence of a nontrivial solution of Hill’s equation associated with
Dirichlet boundary conditions.

Theorem 1.1. [7] If the boundary value problem{
y′′(t) + p(t)y(t) = 0, a < t < b,

y(a) = 0, y(b) = 0,
(1.1)

has a nontrivial solution, where p : [a, b]→ R is a continuous function, then∫ b

a

|p(s)|ds > 4

(b− a)
. (1.2)

The inequality (1.2), known as Lyapunov inequality, has several applications
in various problems related to differential equations, including oscillation theory,
asymptotic theory, eigenvalue problems, disconjugacy, etc. Due to its importance,
the Lyapunov inequality has been generalized in many forms. For more details on
Lyapunov-type inequalities and their applications, we refer [3, 8, 9, 11, 12, 13] and
the references therein.

On the other hand, Abdeljawad [2] and Gholami et al. [4] independently gener-
alized Theorem 1.1 to the case where the classical second-order derivative in (1.1)
is replaced by an αth-order (1 < α ≤ 2) conformable fractional derivative.
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Theorem 1.2. [2] If the boundary value problem{(
Tαa+y

)
(t) + p(t)y(t) = 0, a < t < b,

y(a) = 0, y(b) = 0,
(1.3)

has a nontrivial solution, where p : [a, b]→ R is a continuous function, then∫ b

a

|p(s)|ds > αα

(α− 1)α−1(b− a)α−1
. (1.4)

Here Tαa+ denotes the αth-order conformable differential operator. Motivated by
these works, in this article, we derive Lyapunov-type inequalities for the following
two-point conformable fractional boundary value problems:{(

Tαa+y
)
(t) + p(t)y(t) = 0, 1 < α ≤ 2, a < t < b,

y′(a) = 0, y(b) = 0,
(1.5)

and {(
Tαa+y

)
(t) + p(t)y(t) = 0, 1 < α ≤ 2, a < t < b,

y(a) = 0, y′(b) = 0.
(1.6)

2. Preliminaries

Throughout, we shall use the following notations, definitions and known results
of conformable fractional calculus [1, 6].

Definition 2.1. [1] Let y : [a,∞)→ R and 0 < α ≤ 1. The αth-order conformable
fractional derivative of y starting from a is defined by(

Tαa+y
)
(t) = lim

ε→0

[y(t+ ε(t− a)1−α
)
− y(t)

ε

]
, t ∈ (a,∞).

If
(
Tαa+y

)
exists on (a, b) then,(

Tαa+y
)
(a) = lim

t→a+

(
Tαa+y

)
(t).

Definition 2.2. [1] Let y : [a,∞) → R, α > 0 and choose n ∈ N1 such that
n − 1 < α ≤ n. Assume that y(n−1) exists on (a,∞). The αth-order conformable
fractional derivative of y starting from a is defined by(

Tαa+y
)
(t) =

(
Tα−n+1
a+ y(n−1)

)
(t)

= lim
ε→0

[y(n−1)(t+ ε(t− a)n−α
)
− y(n−1)(t)

ε

]
, t ∈ (a,∞).

If y(n) exists on (a,∞), we have(
Tαa+y

)
(t) = (t− a)n−αy(n)(t), t ∈ (a,∞).

Also, we define (
T 0
a+y

)
(t) = y(t), t ∈ (a,∞).

Definition 2.3. [1] Let y : [a, b] → R, α > 0 and choose n ∈ N1 such that
n− 1 < α ≤ n. The αth-order conformable fractional integral of y starting from a
is defined by(

Iαa+y
)
(t) =

1

(n− 1)!

∫ t

a

(t− s)n−1(s− a)α−ny(s)ds, t ∈ [a, b].
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Theorem 2.1. [1] Let y : [a, b] → R, α > 0 and choose n ∈ N1 such that n− 1 <
α ≤ n. If y(n−1) exists on (a, b) then,(

Iαa+T
α
a+y

)
(t) = y(t)−

n−1∑
k=0

y(k)(a)(t− a)k

k!
, t ∈ (a, b).

3. Boundary Value Problem 1.5

In this section, we derive a few properties of the Green’s function for the bound-
ary value problem (1.5) and obtain the corresponding Lyapunov-type inequality.

Theorem 3.1. Let 1 < α ≤ 2 and h : [a, b] → R is a continuous function. The
conformal fractional boundary value problem{(

Tαa+y
)
(t) + h(t) = 0, a < t < b,

y′(a) = 0, y(b) = 0,
(3.1)

has the unique solution

y(t) =

∫ b

a

G(t, s)h(s)ds, (3.2)

where

G(t, s) =

{
(b− s)(s− a)α−2, a < t ≤ s ≤ b,
(b− t)(s− a)α−2, a < s ≤ t ≤ b.

(3.3)

Proof. Applying Iαa+ on both sides of (3.1) and using Theorem 2.1, we have

y(t) = C1 + C2(t− a)−
∫ t

a

(t− s)(s− a)α−2h(s)ds. (3.4)

Further, we have

y′(t) = C2 −
∫ t

a

(s− a)α−2h(s)ds. (3.5)

Using y′(a) = 0 in (3.5) we get C2 = 0. Using y(b) = 0 in (3.4) we get

C1 =

∫ b

a

(b− s)(s− a)α−2h(s)ds. (3.6)

Then, from (3.4) and (3.6), we have

y(t) =

∫ b

a

(b− s)(s− a)α−2h(s)ds−
∫ t

a

(t− s)(s− a)α−2h(s)ds

=

∫ t

a

[
(b− s)− (t− s)

]
(s− a)α−2h(s)ds+

∫ b

t

(b− s)(s− a)α−2h(s)ds

=

∫ t

a

(b− t)(s− a)α−2h(s)ds+

∫ b

t

(b− s)(s− a)α−2h(s)ds

=

∫ b

a

G(t, s)h(s)ds.

�

Lemma 3.2. The Green’s function G(t, s) defined in (3.3) satisfies the following
properties:

(1) G(t, s) ≥ 0, (t, s) ∈ [a, b]× (a, b] and
[
(s− a)2−αG(t, s)

]
s=a

= 0, t ∈ [a, b].
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(2) G(t, s) ≤ G(s, s), (t, s) ∈ [a, b]× [a, b].
(3) (s− a)2−αG(s, s) ≤ (b− a), s ∈ [a, b].

(4)
∫ b
a
G(t, s)ds ≤ (b−a)α

α(α−1) , t ∈ [a, b].

(5)
∫ b
a

(s− a)2−αG(t, s)ds ≤ (b−a)2
2 , t ∈ [a, b].

(6)
∫ b
a

∣∣G′(t, s)∣∣ds ≤ (b−a)α−1

(α−1) , t ∈ [a, b].

(7)
∫ b
a

∣∣(s− a)2−αG′(t, s)
∣∣ds ≤ (b− a), t ∈ [a, b].

Proof. The proofs of (1) and (3) are trivial. To prove (2), consider

G(t, s)

G(s, s)
=

{
1, a ≤ t ≤ s ≤ b,
(b−t)
(b−s) , a ≤ s ≤ t ≤ b.

.

Clearly,
G(t, s)

G(s, s)
≤ 1 for all (t, s) ∈ [a, b]× [a, b].

Hence the proof of (2). Now, consider∫ b

a

G(t, s)ds =

∫ t

a

(b− t)(s− a)α−2ds+

∫ b

t

(b− s)(s− a)α−2ds

=
(b− a)α

α(α− 1)
− (t− a)α

α(α− 1)
. (3.7)

We know that

0 ≤ (t− a)α

α(α− 1)
≤ (b− a)α

α(α− 1)
, t ∈ [a, b]. (3.8)

Using (3.8) in (3.7), we have (4). To prove (5), consider∫ b

a

(s− a)2−αG(t, s)ds =

∫ t

a

(b− t)ds+

∫ b

t

(b− s)ds = (b− t)
(b+ t

2
− a
)
. (3.9)

We know that

0 ≤ (b− t)
(b+ t

2
− a
)
≤ (b− a)2

2
, t ∈ [a, b]. (3.10)

Using (3.10) in (3.9), we get (5). Next, we consider∫ b

a

∣∣G′(t, s)∣∣ds =

∫ t

a

(s− a)α−2ds =
(t− a)α−1

(α− 1)
≤ (b− a)α−1

(α− 1)
,

for all t ∈ [a, b]. The proof of (6) is complete. Finally, consider∫ b

a

∣∣(s− a)2−αG′(t, s)
∣∣ds =

∫ t

a

ds = (t− a) ≤ (b− a),

for all t ∈ [a, b]. Hence the proof of (7). �

We are now able to formulate a Lyapunov-type inequality for the left focal bound-
ary value problem.

Theorem 3.3. If (1.5) has a nontrivial solution, then∫ b

a

∣∣(s− a)α−2p(s)
∣∣ds > 1

(b− a)
. (3.11)
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Proof. Let C[a, b] be the Banach space of continuous functions y on [a, b] with the
norm

‖y‖C = max
t∈[a,b]

|y(t)|.

It follows from Theorem 3.1 that a solution to (1.5) satisfies the equation

y(t) =

∫ b

a

G(t, s)p(s)y(s)ds.

Hence,

|y(t)| =
∣∣∣ ∫ b

a

G(t, s)p(s)y(s)ds
∣∣∣

≤
∫ b

a

G(t, s)|p(s)||y(s)|ds

≤ ‖y‖
∫ b

a

G(s, s)|p(s)|ds

= ‖y‖
∫ b

a

[
(s− a)2−αG(s, s)

]∣∣(s− a)α−2p(s)
∣∣ds,

implies

‖y‖ ≤ ‖y‖ max
s∈[a,b]

[
(s− a)2−αG(s, s)

][ ∫ b

a

∣∣(s− a)α−2p(s)
∣∣ds].

An application of Theorem 3.2 yields the result. �

4. Boundary Value Problem 1.6

In this section, we derive a few properties of the Green’s function for the bound-
ary value problem (1.6) and obtain the corresponding Lyapunov-type inequality.

Theorem 4.1. Let 1 < α ≤ 2 and h : [a, b] → R is a continuous function. The
conformal fractional boundary value problem{(

Tαa+y
)
(t) + h(t) = 0, a < t < b,

y(a) = 0, y′(b) = 0,
(4.1)

has the unique solution

y(t) =

∫ b

a

G(t, s)h(s)ds, (4.2)

where

G(t, s) =

{
(t− a)(s− a)α−2, a ≤ t ≤ s ≤ b,
(s− a)α−1, a ≤ s ≤ t ≤ b.

(4.3)

Proof. Using y(a) = 0 in (3.4) we get C1 = 0. Using y′(b) = 0 in (3.5) we get

C2 =

∫ b

a

(s− a)α−2h(s)ds. (4.4)
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Then, from (3.4) and (4.4), we have

y(t) =

∫ b

a

(t− a)(s− a)α−2h(s)ds−
∫ t

a

(t− s)(s− a)α−2h(s)ds

=

∫ t

a

[
(t− a)− (t− s)

]
(s− a)α−2h(s)ds+

∫ b

t

(t− a)(s− a)α−2h(s)ds

=

∫ t

a

(s− a)α−1h(s)ds+

∫ b

t

(t− a)(s− a)α−2h(s)ds

=

∫ b

a

G(t, s)h(s)ds.

�

Lemma 4.2. The Green’s function G(t, s) defined in (4.3) satisfies the following
properties:

(1) G(t, s) ≥ 0, (t, s) ∈ [a, b]× [a, b].
(2) G(t, s) ≤ (b− a)α−1, (t, s) ∈ [a, b]× [a, b].

(3)
∫ b
a
G(t, s)ds ≤ (b−a)α

(α−1) , t ∈ [a, b].

(4)
∫ b
a

∣∣G′(t, s)∣∣ds ≤ (b−a)α−1

(α−1) , t ∈ [a, b].

Proof. The proof of (1) and (2) are trivial. Consider∫ b

a

G(t, s)ds =

∫ t

a

(s− a)α−1ds+

∫ b

t

(t− a)(s− a)α−2ds

=
(t− a)α

α
+ (t− a)

[ (b− a)α−1

(α− 1)
− (t− a)α−1

(α− 1)

]
=

(t− a)(b− a)α−1

(α− 1)
− (t− a)α

α(α− 1)
. (4.5)

For t ∈ [a, b], we have

0 ≤ (t− a)α

α(α− 1)
≤ (b− a)α

α(α− 1)
, (4.6)

and

0 ≤ (t− a)(b− a)α−1

(α− 1)
≤ (b− a)α

(α− 1)
. (4.7)

Using (4.6) and (4.7) in (4.5), we get (4). To prove (5), consider∫ b

a

∣∣G′(t, s)∣∣ds =

∫ b

t

(s− a)α−2ds =
(b− a)α−1

(α− 1)
− (t− a)α−1

(α− 1)
≤ (b− a)α−1

(α− 1)
,

for all t ∈ [a, b]. The proof of (5) is complete. �

We are now able to formulate a Lyapunov-type inequality for the right focal
boundary value problem.

Theorem 4.3. If (1.6) has a nontrivial solution, then∫ b

a

|p(s)|ds > 1

(b− a)α−1
. (4.8)
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5. Applications

In this section, we discuss two applications of the established results in Section
4. We begin with disconjugacy and disfocality.

Definition 5.1. The conformable fractional boundary value problem (1.3) is dis-
conjugate on [a, b] if and only if each nontrivial solution has less than [α] + 1 zeros
on [a, b].

Definition 5.2. The conformable fractional boundary value problem (1.3) is left
disfocal on [a, b] if and only if each nontrivial solution has less than [α] zeros on
[a, b].

Definition 5.3. The conformable fractional boundary value problem (1.3) is right
disfocal on [a, b] if and only if each nontrivial solution has less than [α] zeros on
[a, b].

Using these definitions, we introduce a non-existence criterion for nontrivial so-
lutions as follows:

Theorem 5.1. The conformable fractional boundary value problem (1.3) is discon-
jugate if ∫ b

a

|p(s)|ds ≤ αα

(α− 1)α−1(b− a)α−1
. (5.1)

Proof. If possible, suppose that the conformable fractional boundary value problem
(1.3) is not disconjugate on [a, b]. Then, there exists at least one nontrivial solution
y such that y(t) has at least two zeros on [a, b]. According to Theorem 1.2, we have
(1.4). This is a contradiction to (5.1). Hence the proof. �

Theorem 5.2. Assume that the assumptions of Theorem 5.1 are satisfied. Then,
the conformable fractional boundary value problem (1.3) has no nontrivial solution
on [a, b].

Proof. The proof is the same as of Theorem 5.1. �

Theorem 5.3. The conformable fractional boundary value problem (1.5) is left
disfocal if ∫ b

a

∣∣(s− a)α−2p(s)
∣∣ds ≤ 1

(b− a)
. (5.2)

Proof. If possible, suppose that the conformable fractional boundary value problem
(1.5) is not left disfocal on [a, b]. Then, there exists at least one nontrivial solution
y such that y(t) has at least one zero on [a, b]. According to Theorem 3.3, we have
(3.11). This is a contradiction to (5.2). Hence the proof. �

Theorem 5.4. Assume that the assumptions of Theorem 5.3 are satisfied. Then,
the conformable fractional boundary value problem (1.5) has no nontrivial solution
on [a, b].

Proof. The proof is the same as of Theorem 5.3. �

Theorem 5.5. The conformable fractional boundary value problem (1.6) is right
disfocal if ∫ b

a

|p(s)|ds ≤ 1

(b− a)α−1
. (5.3)
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Proof. The proof is the same as of Theorem 5.3. �

Theorem 5.6. Assume that the assumptions of Theorem 5.5 are satisfied. Then,
the conformable fractional boundary value problem (1.6) has no nontrivial solution
on [a, b].

Proof. The proof is the same as of Theorem 5.3. �

Next, we estimate a lower bound for the eigenvalues of the conformable fractional
eigenvalue problem corresponding to the conformable fractional boundary value
problems (1.3), (1.5) and (1.6).

Theorem 5.7. Assume that 1 < α < 2 and y is a nontrivial solution of the
conformable fractional eigenvalue problem{(

Tαa+y
)
(t) + λy(t) = 0, a < t < b,

y(a) = 0, y(b) = 0,
(5.4)

where y(t) 6= 0 for each t ∈ (a, b). Then,

|λ| > αα

(α− 1)α−1(b− a)α
. (5.5)

Theorem 5.8. Assume that 1 < α < 2 and y is a nontrivial solution of the
conformable fractional eigenvalue problem{(

Tαa+y
)
(t) + λy(t) = 0, a < t < b,

y′(a) = 0, y(b) = 0,
(5.6)

where y(t) 6= 0 for each t ∈ (a, b). Then,

|λ| > (α− 1)

(b− a)α
. (5.7)

Theorem 5.9. Assume that 1 < α < 2 and y is a nontrivial solution of the
conformable fractional eigenvalue problem{(

Tαa+y
)
(t) + λy(t) = 0, a < t < b,

y(a) = 0, y′(b) = 0,
(5.8)

where y(t) 6= 0 for each t ∈ (a, b). Then,

|λ| > 1

(b− a)α
. (5.9)
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