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ON THE BOUNDEDNESS AND OSCILLATION OF

NON-CONFORMABLE LIÉNARD EQUATION

JUAN E. NÁPOLES VALDÉS, CEMIL TUNÇ

Abstract. In this work we study the boundary and oscillation of the solutions

of the non conformable equation (1), without making use of the second method
of Lyapunov.

1. Introduction.

Various questions on the stability, oscillation and periodicity of solutions of clas-
sical Liénard equation x′′ + f(x)x′ + a(t)g(x) = 0 have received a considerable
amount of attention in the last years (see [6], [9], [10], [11], [15], [16], [19], [25], [27],
[28], [33], [34] and the references cited there) under condition f(x)>0 for all x ∈ R.
The fractional case is very different, although there are works in this direction, the
results are scarce, first, because in the case of classical fractional derivatives there
is no chain rule, which prevents the direct use of the second method of Lyapunov.
In [14] we studied the stability of the fractional Liénard equation with derivative
Caputo. As we said, since the chain rule was not valid, then the difficulties that we
had to overcome were several. In [3] the results obtained with Caputo fractional
derivatives and Caputo fractional Dini derivatives of Lyapunov functions are illus-
trated by the examples. It is emphasized that in some cases these techniques cannot
be used. In this regard, it can also be consulted [31], see [13]) and in the case of
local fractional derivatives, development time is very little (see [14]). Other results
of various qualitative properties in the fractional case are [4, 8, 5, 1, 24, 30, 20] in
the global case and [2, 23, 32, 35] in the local case.

In this paper, we study the asymptotic behaviors of solutions of (2) without
considering the positivity of the function f and using a new method in which
the usual Lyapunov function is not used. As we will see later, the method used
allows the construction of a certain boundary region, where by imposing natural
conditions, the oscillation of the solutions can be guaranteed.
To apply the direct method of Lyapunov to the classic Liénard equation, we usually
define a Lyapunov function V (t, x, y) given by

V (t, x, y) = b(t)W (t, x, y),
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where

W (t, x, y) = G(x) +
y2

2 [a(t)]

with G(x) =
∫ x

0
g(t)dt, b(t) = exp

(
−
∫ t

0
a′(s)−

a(s) ds
)
and a′(t)− = max(−a′(t), 0).

Let V ′(t, x, y) be the total derivative along the solutions of Liénard equation, which
is given in the abstract of the this paper. If V ′(t, x, y) is non-positive in a suitable
neighborhood of the (0, 0), then the stability of the zero solution of Liénard equation
is followed. For the non-positivity of V ′(t, x, y) we need that F (x) satisfies the
following condition:

F (−x) ≤ 0 ≤ F (x) somewhere in x ≥ 0, (1)

since V ′(t, x, y) = − b(t)
a(t)

[
a′(t)−G(x) + y2a′(t)+

2a2(t) + a(t)g(x)F (x)
]
. In other point

of view, the non-positivity of derivative of V implies that every solutions of Liénard
equation departing from a bounded region by a closed curve, remains in this region
as t increases. This fact play an essential role in our work where the assumptions
(1) is not used. So, we need alternative assumptions on F (x) and g(x) under which
the last remark is still valid.

We consider the following equation

Nα
1 (Nα

1 x) + f(x)Nα
1 x+ a(t)g(x) = 0, (2)

where a, f and g are continuous functions satisfying the following conditions:

a) xg(x)> 0 for x ̸= 0, g ∈ C1(R).
b) N1

Jα
0 g(+∞) = +∞.

c) 0 < a ≤ a(t) ≤ A < +∞ for t ∈ [0,+∞) .

It is necessary to present some necessary definitions for our work. Let α ∈ (0, 1]
and we consider a continuous function f : [t0,+∞) → R.

First, let us remember the definition of Nα
1 f(t), a non conformable fractional

derivative of a function in a point t defined in [12] and that is the basis of our
results, that are close resemblance of those found in classical qualitative theory.

Definition 1 Given a function f : [t0,+∞) → R, t0 > 0. Then the N -

derivative of f of order α is defined by Nα
1 f(t) = lim

ε→0

f(t+εet
−α

)−f(t)
ε for all t > 0,

α ∈ (0, 1). If f is α−differentiable in some (0, a), and lim
t→0+

N
(α)
1 f(t) exists, then

define N
(α)
1 f(0) = lim

t→0+
N

(α)
1 f(t).

If the N -derivative of the function x(t) of order α exists and is finite in (t0,∞),
we will say that x(t) is N -differentiable in I = (t0,∞).

Remark 1 The N-derivative solves almost all the insufficiencies that are indi-
cated to the classical fractional derivatives. In particular we have the following
result.

Theorem 1 (See [12]) Let f and g be N -differentiable at a point t > 0 and
α ∈ (0, 1]. Then, we have the following relations:

a) Nα
1 (af + bg)(t) = aNα

1 (f)(t) + bNα
1 (g)(t).
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b) Nα
1 (t

p) = et
−α

ptp−1, p ∈ R.
c) Nα

1 (λ) = 0, λ ∈ R.
d) Nα

1 (fg)(t) = fNα
1 (g)(t) + gNα

1 (f)(t).

e) Nα
1 (

f
g )(t) =

gNα
1 (f)(t)−fNα

1 (g)(t)
g2(t) .

f) If, in addition, f is differentiable, then Nα
1 (f) = et

−α

f ′(t).

g) If f is differentiable and α = n integer, then we have Nn
1 (f)(t) = et

−n

f ′(t).

Remark 2 The relations a), c), d) and (e) are similar to the classical results
mathematical analysis, these relationships are not established (or do not occur) for
fractional derivatives of global character (see [18] and [26] and bibliography there).
The relation c) is maintained for the fractional derivative of Caputo. Cases c), f)
and g) are typical of this non conformable local fractional derivative.

Now we will present the equivalent result, for Nα
1 , of the well-known chain rule

of classic calculus and that is basic in the second method of Lyapunov to study of
stability of perturbed motion.

Theorem 2 (See [12]) Let α ∈ (0, 1]. If g is N-differentiable at t > 0 and f is
differentiable at g(t), then Nα

1 (f ◦ g)(t) = f ′(g(t))Nα
1 g(t).

Definition 2 The non conformable fractional integral of order α is defined by

the expression NJα
t0f(t) =N1

Jα
t0f(t) =

∫ t

t0

f(s)

es−α ds.

The following statement is analogous to the one known from the ordinary calcu-
lus.

Theorem 3 Let f be N -differentiable function in (t0,∞) with α ∈ (0, 1]. Then
for all t > t0 we have

a) If f is differentiable NJα
t0 (N

α
1 f(t)) = f(t)− f(t0).

b) Nα
1

(
NJα

t0f(t)
)
= f(t).

Proof

a) From the given definition, we have

NJα
t0 (N

α
1 f(t)) =

∫ t

t0

Nα
1 f(s)

es−α ds =

∫ t

t0

f ′(s)es
−α

es−α ds = f(t)− f(t0).

b) Analogously, we have

Nα
1

(
NJα

t0f(t)
)
= et

−α d

dt

[∫ t

t0

f(s)

es−α ds

]
= f(t).

2. Preliminary results.

The equation (2) is equivalent to the system:

Nα
1 x = y − F (x),

Nα
1 y = −a(t)g(x),

}
(3)

with F (x) =N1
Jα
t0f(t) =

∫ t

t0

f(s)

es−α ds. The regularity of functions involved in this

system ensures existence and uniqueness of solutions of (3). The condition a) shows
that (0, 0) is the only point of equilibrium of this system and the condition b) en-
sures that results obtained are in global sense. From [21], obtain that condition c)
is consistent with common sense.
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Let β be a given real. We indicate by Ωβ the following open set:
Ωβ ≡ R2 if β ≡ 0;
Ωβ =

{
(x, y) : y > F (x)− β−1

}
if β>0;

Ωβ =
{
(x, y) : y < F (x)− β−1

}
if β<0. Let Fg(R) = {f ∈ C(R) : for x ≥

0, f(x)− βAg(x) > 0 and for x ≤ 0, f(x)− βAg(x) < 0}.
Consider the positive definite function Vβ given by

Vβ(t, x, y) =
1

a(t)
Wβ(x, y) +G(x), (4)

with G(x) =N1
Jα
t0g(x) and Wβ(x, y) =

∫ y−F (x)

0
sds

βs+1 . It can be immediately

verified that the derivative of V related to the system (3) is

Nα
1 Vβ(t, x, y) ≤ −Nβ

1 a(t)

a2(t)
Wβ(x, y)−

(y − F (x))2 (f(x)− βa(t)g(x))

a(t) [β(y − F (x)) + 1]
−

(5)

−Nα
1 a(t)

a2(t)

(y − F (x))2

2
− (y − F (x))2

a(t)
f(x)

Because β(y − F (x)) + 1 > 0 for all (x, y) ∈ Ωβ , it follow that the sign of
Nα

1 Vα(t, x, y) is the same of f(x) − βa(t)g(x). We observe that if f(x) ∈ Fg(R),
then f(x)− βa(t)g(x) > 0. In view of this fact we have the following result.

Lemma 1 Under conditions a)-c) if f(x) ∈ Fg(R) and Nα
1 a(t) > 0, then all

solutions of system (3) are continuable to the future, i.e., for all t ≥ t0 ≥ 0.
Proof It is known (see [17]) that a solution (x(t), y(t)) of system (3) is not

continuable to +∞ if there is a certain T>t0 such that

lim
t→T−

(
x2(t) + y2(t)

)
= +∞ (6)

Let (x(t), y(t)) be a solution of (3) satisfying (6). From (5) we obtain that Vβ is
a decreasing function along solutions of system (5). So, we have that

A−1Wβ(x(t), y(t))≤Vβ(t, x(t), y(t)) ≤ Vβ(t0, x0, y0),

where (x0, y0) = (x(t0), y(t0)). From here and condition b) we obtain that x(t) is
equibounded, i.e., there is M>0 such that

|x(t)| < M for t0 ≤ t ≤ T. (7)

This completes the proof.

3. Main Results.

Now we will establish various results on the oscillatory character of system (3).
For this we will redefine the functions b(t) and c(t) used in the classic case. By this

way, we have b(t) = exp
(
−N1J

α
0

(
Nα

1 a(s)−

a(s)

)
(t)

)
, c(t) = a(0) exp

(
−N1J

α
0

(
Nα

1 a(s)+

a(s)

)
(t)

)
,
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Nα
1 a(t)

− = max(−Nα
1 a(t), 0), N

α
1 a(t)

+ = max(Nα
1 a(t), 0) andNα

1 a(t) = Nα
1 a(t)

+−
Nα

1 a(t)
−
.

So, we now sate the following theorem.
Theorem 4 Let the following conditions hold:

1) N1J
α
0

(
Nα

1 a(t)−

a(t)

)
(+∞) < ∞.

2) xg(x)>0, x ̸= 0.
3) There is N > 0 such that |F (x)| ≤ N for x ∈ R. Then all solutions of the

system (3) are oscillatory if and only if

N1J
α
t0a(t)g [±k(t− t0)] (+∞) = ±∞, (8)

for all k>0 and all t0 ≥ 0.
ProofNecessity. We suppose that all solution of (3) are oscillatory, but condition

(8) is not satisfy for some k > 0. We shall construct a non-oscillatory solution of
system (3). Making in (8) s = ±k(t− t0), then we have

±kN1J
α
t0a(t)g[±k(t− t0)](+∞) =N1 Jα

t0a(±
s

k
+ t0)g(s)(±∞).

Thus, it follows that

N1J
α
t0a(±

s

k
+ t0)g(s)(±∞) = M < +∞,

for some k > 0 and some t0 ≥ 0. We consider a solution of system (3), (x(t), y(t))
such that x(t0) = 0, y(t0) = A with A>k +N . While that y(t) > k +N we have
Nα

1 x(t) ≥ k>0. From this inequality, after integration between t0 and t, we obtain
x(t)≥k(t− t0). Then, there is x

−1(s) such that x−1(s) ≤ s
k + t0. We also have that

0<b1 ≤ b(t) ≤ 1 for 0 ≤ t<+∞, for some b1.
Since a(t) = b(t)c(t), then we obtain

M = N1J
α
t0a(t)g[k(t− t0)](+∞) =N1 Jα

t0b(t)c(t)g[k(t− t0)](+∞) ≥
≥ b1N1

Jα
t0c(t)g[k(t− t0)](+∞)

and hence it follows that

N1J
α
t0c(t)g[k(t− t0)](+∞) ≤ M

b1
≡ M1.

From the second equation of system (3) we deduce that

Nα
1 y(t)

b(t)
= c(t)g(x(t)). (9)

Thus, it is clear that Nα
1 y(t) ≥

Nα
1 y(t)
b(t) = c(t)g(x(t)). Integrating (9) between t0

and t and taking into account the above inequality, we have

y(t) ≥ y(t0)−N1J
α
t0c(s)g(x(s))(t) ≥ A− 1

k
N1J

α
t0c(s)g(x(s))N

α
1 x(t)(t) =

= A− 1

k
N1J

α
t0c(x

−1(s))g(s)(x(t)).

Since x−1(s) ≤ s
k + t, then we have c(x−1(s)) ≤ c( sk + t0). Hence, we obtain
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y(t) ≥ A− 1

kN1

Jα
0 c

( s

k
+ t0

)
g(s)(x(t)) ≥ A− M1

k
.

Taking A such that A − M1

k ≥ k + N for t ≥ t0, then we have that x(t) ≥
k(t − t0) → +∞ as t → +∞. This is a contradictory with the initial supposition.
Thus, we have the necessity of condition (8). Next, the case x ≤ 0 can be proved
in a similar way.

Sufficiency. Let (x(t), y(t)) be the solution of system (3) leaving a pointB(x0, F (x0)),
at t = 0. Suppose that (x(t), y(t)) does not traverse the y− axis. Then (x(t), y(t))
stays in the region R2 = {(x, y) : x ≥ 0, y < F (x)} as long as the solution is defined
for t ≥ 0. Hence, Nα

1 x(t) < 0 and therefore x(t) ≤ x(t0). Let F1 = max
0≤x≤x0

|F (x)|,

then the solution (x(t), y(t)) does not traverse the curve

Vβ(t, x(t), y(t)) = Vβ(x0, F (x0)) =
1

A
N1J

α
0

(
s

αs+ 1

)
(F (x0) +N1) +G(x0)

as t increases. Therefore, the orbit (x(t), y(t)) traverses the y−axis at C(0, yC).
Since Nα

1 x = 0 and Nα
1 y < 0 on the curve y = F (x) in the region x > 0, F (0) = 0

implies that yC ≤ 0. Thus the orbit traverses the negative y − axis at some finite
time t1. We choose x(t1) = 0, y(t1) = yC . In the region R3 = {(x, y) : x ≤ 0, y <
F (x)}, Nα

1 x(t) ≤ yC , so we have x(t) ≤ yC(t− t0) from here x−1(s) ≥ s
yC

+ t0 and
Nα

1 y
C1

≥ −d(t)g(x(t)). It follows then, for all t > t1, that

y(t) ≥ yC − b1
yC N1

Jα
t0c(s)g(x(s))(N

α
1 x(s))(t).

Hence, we have

y(t) ≥ yC − b1
yC N1

Jα
t0c(

r

y0
+ t0)g(r)(x(t)). (10)

Since y(t)<F (x(t)) if x(t) → +∞, then from above inequality we have that
y(t) → +∞, and the orbit (x(t), y(t)) traverses the curve y = F (x). Now consider
the region R3 = {(x, y) : x < 0, y > F (x)}, here x′(t) > 0, y′(t) > 0, the analysis of
phases velocities show the existence of a point D(0, yD) on the y− axis positive. If
x(t) is bounded, i.e., x(t1) ≥ x(t) ≥ M we have that x(t) → M− while that y(t) is
increasing. Again an analysis of phases velocities show that there is a finite time t′
such that y(t′) = F (x(t′)). This completes the proof of the theorem.

Remark 3 The simple case Nα
1 (N

α
1 x) − Nα

1 x + αt−(α+1)x = 0, with non-
oscillatory solution x(t) = et, shows that positivity of f is probably necessary
in some sense. This is an open problem.

Theorem 5 Under assumptions of Lemma 2 the following conditions:

1) Nα
1 a(t)>0 for t ≥ 0,

2) |F (x)| ≤ N for some N>0 and x ∈ R,
3) G(∞) = ∞,

hold. Then the solutions of the equation (2) are bounded if and only if the
condition (8) is fulfilled.

Proof We suppose that condition (8) is fulfilled. Then all solutions of are oscil-
latory. In this case c(t) = a(t) for all t ≥ t0 ≥ 0. We taking in account the function
Vβ defined in (4) and his total derivative (5) we have that:
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Vβ(t, x(t), y(t)) ≤ Vβ(t0, x(t0), y(t0)).

From Theorem 3 there are t2 ≥ t1 ≥ t0 such that x(t1) > 0, x(t2) < 0, and
y(t1) = F (x(t1)), y(t2) = F (x(t2)). Also we obtain, from decreasing of functions
Vβ , that:

Vβ(t, x(t), y(t)) ≤ Vβ(t1, x(t1), y(t1)) = G(x(t1))

and consequently:

G(x(t)) ≤ G(x(t1)).

From this we obtain that x(t) ≤ x(t1). Similarly, we can obtain that x(t2) ≤
x(t). So, putting M = max(−x(t2), x(t1)) we have |x(t)| ≤ M for t ≥ max{t2, t1}.
This prove the sufficiency. In Theorem 3 we proved that if the condition is not
true, there are unbounded solutions of equation (2). Thus the proof of theorem is
finished.

Lemma 2 If in addition to conditions of previous the theorem we have that g(x)
is not increasing function and a(t) → +∞ as t → +∞. Then condition (8) does
not hold.

Proof If condition (8) is not valid, then there exits k> 0 and t0 ≥ 0 such that

N1J
α
t0a(t)g [k(t− t0)] (+∞) = M∗ < +∞,

(the negative case is similar). From Lemma 2, the equation (2) has non-oscillatory
solutions defined for t ≥ t0 ≥ 0. We consider a solution x = x(t) with this property,
without loss of generality we can suppose that there exists T1 ≥ t0 such that for
some m, a(t)>m if t ≥ T1 (the case x(t)< −m<0 is analogous). It is easy follow
that for m>0 there exists T2 ≥ t0 such that:

k(t− t0)>m>0, t ≥ T2. (11)

By using the above inequality and assumptions on g, we have

g[k(t− t0)] ≥ g(m)>0, t ≥ T2.

Therefore, we obtain that

a(t)g(m) ≤ a(t)g[k(t− t0)), t ≥ T2. (12)

Let us consider T = max{T1, T2}. After integration of (12) between T and +∞,
we obtain

g(m)N1J
α
T a(t)(+∞) ≤N1 Jα

T a(t)g[k(t− t0)](+∞) = M∗ < +∞,

hence

N1J
α
T a(t)(+∞) ≤ M∗

g(m)
< +∞. (13)

Since a(t) → +∞ as t → +∞, then we have that

N1J
α
T a(t)(+∞) = +∞,



JFCA-2020/11(2) NON-CONFORMABLE LIÉNARD EQUATION 99

which is a contradiction to (13). Hence, the condition (8) holds. Thus, the proof
is now complete.

Corollary 1 Under the conditions of Lemma 3 all solutions of equation (2) are
oscillatory if the following conditions hold:

a) N1J
α
0

(
Nα

1 a(t)−

a(t)

)
(+∞) < ∞.

b) There exists N>0 such that F (x) ≤ N for x ∈ R.
Proof Taking into account Lemma 3, Lemma 2 and Theorem 8, the proof can

be easily completed We omit the details of the proof.
Corollary 2 Under condition of Lemma 3 all solutions of equation (2) are

bounded if the following conditions hold:

a) Nα
1 a(t)>0 for all t ≥ 0.

b) there exists N > 0 such that F (x) ≤ N for x ∈ R.
Proof It is enough applying Lemma 3 and Theorem 3.
Theorem 6 Under condition Lemma 2 if the conditions

a) N1J
α
0

(
Nα

1 a(t)−

a(t)

)
(+∞) < ∞,

b) G(x) → +∞ as |x| → +∞,

hold, then all solutions of equation (2) are bounded.
Proof By similar arguments to sufficiency of Theorem 3 we obtain that there

exists R > 0 such that |x(t)| ≤ R.

4. Conclusions

In this work, we study the oscillatory character of non-conformable equation
(2) of order 2α by using the analysis of the phase plane. By this way, we extend
known results for classic Liénard equation and fractional differential equations with
the classical derivative of Caputo or Riemann-Liouville. In particular, in [13] we
study the Equation of Liénard in the framework of the fractional derivative of
Caputo, since it did not have a similar result to (5) the conclusions obtained were
derived by methods less “usual”; in the case of [2] the study of an equation of
order 1 + α, was based on the properties of nonlocal fractional calculus generated
by conformable derivatives. Hence, the results differ from ours; en [23] with the
definition of conformable fractional derivative and using averaging functions obtain
oscillation results for an equation of order α with 1 < α < 2; finally in [32] they also
worked on a conformable fractional differential equation; our results are different
from all of these, since the derivative used “does not return” the classical derivative
when α tends to 1, so the equation studied cannot be reduced to the classical
Liénard equation. The example presented in Remark 3 shows the consistency of
our results.
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Department of Mathematics, Faculty of Sciences,, Van Yuzuncu Yil University, 65080,
Van, Turkey

E-mail address: cemtunc@yahoo.com


