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A NEW HIGH-ORDER METHOD FOR THE TIME-FRACTIONAL

DIFFUSION EQUATION WITH A SOURCE

HE YANG

Abstract. In this paper, we propose a new high-order finite difference method
to solve the time-fractional diffusion equation with a source. We first construct

a finite difference approximation of the Caputo fractional derivative of order α

(0 < α < 1), and show that the convergence rate of our approximation is (4 −
α). We then investigate the properties of the fractional differentiation matrix

for our new approximations, and introduce an implicit finite difference method

which employs such approximations for the time discretization of the fractional
diffusion equation, coupled with a Fourier-type expansion in space. By taking

advantage of the special structure of our fractional differentiation matrix, each

of the linear systems resulted from our new high-order approximations for
each mode of time-fractional diffusion equation can be solved in order O(N2).

Numerical experiments about the performance of our method in evaluating
fractional derivatives, and solving fractional ordinary differential equations

and time-fractional diffusion equation are also presented, to demonstrate the

efficiency of our method.

1. Introduction

Fractional partial differential equations (FPDEs) have been introduced exten-
sively to replace the classical partial differential equations model in many applica-
tions. Roughly speaking, there are two types of fractional differential equations,
namely, space-fractional differential equations and time-fractional differential equa-
tions. Some examples that belong to the former type include the random walk
with Markovian waiting time and power law step length density, which leads to
non-locality in space dimension. Instead, a continuous random walk with non-
Markovian processes gives a time-fractional differential equation, which indicates a
long memory property of the solution.

Along with the development of the mathematical modeling using FPDEs, there
has been increasing need to design numerical methods to solve these equations.
Many numerical methods, including finite difference methods [20, 15] , finite volume
methods [12, 14], discontinuous Galerkin methods [4, 22] and spectral methods [13,
23], have been proposed for the discretization of spatial fractional derivatives. As
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for the numerical methods of time-fractional diffusion equation, the so-called L1
method [16] has been widely used for the discretization of time-fractional derivative
in the equation due to its simplicity. However, the L1 method only has convergence
order of (2−α) when used to discretize fractional derivative of order α (0 < α < 1).
For α being close to 1, L1 method has only around first order accuracy. In order
to obtain higher accuracy in time, the fractional linear multistep methods [24, 25]
have been proposed for the time discretization to solve the time-fractional diffusion
equation. In [25], the second order convergence rate in time have been shown.
Another innovative method was constructed in [2] to extend the classical L1 method
to L2 − 1σ method in time, which has convergence order of (3 − α). By smartly
choosing the value of a parameter σ ∈ (0, 1), and approximating the equation at
time tj+σ, the author of [2] obtained a second order in time method.

In this paper, we consider the same time-fractional diffusion equation with a
source as in [16, 24, 25, 2]. The FPDE is simply defined by replacing the classical
time derivative in the diffusion equation with fractional derivative of order α (0 <
α < 1). That is,

0D
α
t u = uxx + f(x, t), x ∈ [0, 1], t ∈ [0, T ], (1)

where 0D
α
t is the fractional derivative in the Caputo’s sense. There has been nu-

merous studies to investigate the time-fractional diffusion equation [1, 6, 7, 8, 9,
10, 11, 17, 18, 19]. Our focus is to develop a higher order discretization method
for Caputo fractional derivative, which can be applied to solve (1) without increas-
ing too much computational cost. Our proposed method can be regarded as an
extension of L1 method and L2 − 1σ method. The way to discretize the Caputo
fractional derivative of u is to use cubic interpolation which requires the value of u
at four different discrete time. Because of this, we no longer have lower-triangular
fractional differentiation matrix as in [16] and [2]. However, we can show that if we
apply spatial Fourier transform to (1) and then use our proposed fractional differ-
entiation matrix, we end up with linear systems which can be easily transferred to
lower-Hessenberg linear system. Each of such linear system can be solved in O(N2)
flops.

The remaining of the paper is as follows: in Section 2, we introduce the basic
properties of fractional calculus and the classical L1 method, describe our proposed
numerical methods for Caputo derivative, the properties of fractional differentiation
matrix, and how to apply our high order discretization method to solve fractional
differential equations as well as time-fractional diffusion equation. Some theoret-
ical results including the convergence order and the special properties about the
differentiation matrix are also proved. In Section 3, numerical experiments are pre-
sented to verify some of our theoretical findings in Section 2, to demonstrate the
performance of our scheme.

2. A High Order Discretization of Fractional Derivative

2.1. Background. Historically, there are many different ways to define fractional
derivative. The most popular definitions among those are probably Riemann-
Liouville and Caputo fractional derivatives. The starting point of these two con-
cepts is the so-called Riemann-Liouville fractional integral operator. For n − 1 <
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α < n (n is a positive integer) and any locally integrable function f , the Riemann-
Liouville integral of f is defined to be

Jαf(x) =
1

Γ(α)

∫ x

0

(x− s)α−1f(s)ds. (2)

Note that in the definition (2), the lower limit of the integral is chosen to be 0
for the convenience of the presentation, and it can be any real number in general.
It is easy to see that if α = n, the right hand side of the equation above is just
equal to the n-fold integral of function f . Therefore, the definition given by (2) is
a generalization of the integer cases. The Riemann-Liouville and Caputo fractional
derivative of order α are simply as DnJn−α and Jn−αDn, respectively. Here, Dn

is the standard derivative of integer order n.
In particular, when α ∈ (0, 1), the Caputo fractional derivative of f is defined as

follows

C
0 D

α
xf(x) =

1

Γ(1− α)

∫ x

0

(x− η)−αf ′(η)dη. (3)

There are advantages of using either of these two fractional derivatives. But in our
paper, we choose Caputo fractional derivative because we can use the same initial
condition as the standard diffusion equation. Alternatively, if we choose Riemann-
Liouville fractional derivative in time, we have to use different initial condition
involving fractional derivatives, which is unnatural for many real applications. For
the rest of the paper, we only consider the Caputo fractional derivative, and thus
we ignore the notation C in the definition (3).

One of the simplest methods to discretize 0D
α
t f (0 < α < 1) is L1 method [16].

Let ts = sτ (s = 0, 1, . . .) be the time step with constant step size τ . The L1
method is given by approximating f ′ with finite difference within each subinterval
[ts, ts+1]. That is,

0D
α
tn+1

f =
1

Γ(1− α)

n∑
i=0

∫ ti+1

ti

(tn+1 − η)−αf ′(η)dη

≈ 1

Γ(1− α)

n∑
i=0

f(ti+1)− f(ti)

τ

∫ ti+1

ti

(tn+1 − s)−αds

=

n∑
i=0

bi (f(ti+1)− f(ti)) , (4)

where bi = τ−α
[
(n+ 1− i)1−α − (n− i)1−α] /Γ(2 − α). It is easy to see that

the fractional differentiation matrix corresponding to such approximation is lower-
triangular, if we ignore the first column which contains the coefficients from initial
data of f . Therefore, it is convenient to apply L1 method to solve FPDEs. However,
the error of the approximation above is only O(τ2−α), which approaches O(τ) as
α → 1−. The well-known Grünwald-Letnikov (GL) approximation of 0D

α
tn+1

f is
given by

0D
α
tn+1

f ≈ 1

hα

(
f(tn+1)−

n+1∑
i=1

Cαi f(tn+1−i)

)
, (5)
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where Cαi = (−1)i−1 Γ(α+1)
Γ(ı+1)Γ(α−i+1) . It is proved in [21] that the GL approximation

leads to an error of O(τ). For the rest of Section 2, we will introduce our higher
order method based on L1 and L2− 1σ methods.

2.2. Third Order Approximation for Caputo Fractional Derivatives. We
now define our discretization of 0D

α
T u, for 0 < α < 1, T > 0 and sufficiently smooth

function u = u(t). We first partition [0, T ] into equidistant grid: 0 = t0 < t1 <
· · · < tN = T , with ts = sτ for s = 0, 1, . . . , N and τ = T/N . We then approximate

0D
α
T u by rewriting it as

0D
α
T u =

1

Γ(1− α)

∫ t1

t0

(tN − η)−αu′(η)dη

+
1

Γ(1− α)

N−1∑
s=2

∫ ts

ts−1

(tN − η)−αu′(η)dη

+
1

Γ(1− α)

∫ tN

tN−1

(tN − η)−αu′(η)dη. (6)

For s ≥ 2, we use Π3,su to denote the cubic interpolation at grid points ts−2, ts−1,
ts and ts+1. We define our discretization as

δαN u =
1

Γ(1− α)

∫ t1

t0

(tN − η)−α(Π3,2u(η))′dη

+
1

Γ(1− α)

N−1∑
s=2

∫ ts

ts−1

(tN − η)−α(Π3,su(η))′dη

+
1

Γ(1− α)

∫ tN

tN−1

(tN − η)−α(Π3,N−1u(η))′dη. (7)

It is easy to show that the interpolation polynomial Π3,su is given as

Π3,su(t) = −u(ts−2)
(t− ts−1)(t− ts)(t− ts+1)

6τ3
+ u(ts−1)

(t− ts−2)(t− ts)(t− ts+1)

2τ3

− u(ts)
(t− ts−2)(t− ts−1)(t− ts+1)

2τ3
+ u(ts+1)

(t− ts−2)(t− ts−1)(t− ts)
6τ3

.

Therefore, we have

(Π3,su(t))
′

= −u(ts−2)
3t2 − 6tst+ 3t2s − τ2

6τ3

+ u(ts−1)
3t2 − 2(3ts − τ)t+ 3t2s − 2tsτ − 2τ2

2τ3

− u(ts)
3t2 − 2(3ts − 2τ)t+ 3t2s − 4tsτ − τ2

2τ3

+ u(ts+1)
3t2 − 2(3ts − 3τ)t+ 3t2s − 6tsτ + 2τ2

6τ3
,

which is a quadratic polynomial. We can further collect all of the coefficients of the
resulting polynomial, and obtain (Π3,su(t))

′
= ρ2,st

2 + ρ1,st+ ρ0,s, where

ρ2,s =
1

2τ3
(−us−2 + 3us−1 − 3us + us+1), (8)

ρ1,s = − ts
τ3

(−us−2 + 3us−1 − 3us + us+1) +
1

τ2
(us−1 − 2us + us+1), (9)
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and

ρ0,s =
t2s

2τ3
(−us−2 + 3us−1 − 3us + us+1)− ts

τ2
(us−1 − 2us + us+1)

+
1

6τ
(us−2 − 6us−1 + 3us + 2us+1). (10)

Note that each coefficient of (Π3,su(t))
′

in (8)-(10) is a linear combinations of finite
difference approximations. To be more specific, 1

2τ3 (−us−2 + 3us−1 − 3us + us+1)

is a first order approximation of u′′′(ts),
1
τ2 (us−1 − 2us + us+1) is a second or-

der approximation of u′′(ts) and 1
6τ (us−2 − 6us−1 + 3us + 2us+1) is a third order

approximation of u′(ts).

Now we can calculate
∫ ts
ts−1

(tN − η)−α(Π3,su(η))′dη using (8)-(10) and the fol-

lowing equations:∫ ts

ts−1

(tN − η)−αdη =
τ1−α

1− α
(
(N − s+ 1)1−α − (N − s)1−α) ,∫ ts

ts−1

(tN − η)−αη dη = − τ
2−α

2− α
(
(N − s+ 1)2−α − (N − s)2−α)

+ tN

∫ ts

ts−1

(tN − η)−αdη,∫ ts

ts−1

(tN − η)−αη2 dη =
τ3−α

3− α
(
(N − s+ 1)3−α − (N − s)3−α)

− 2 tN
τ2−α

2− α
(
(N − s+ 1)2−α − (N − s)2−α)

+ t2N

∫ ts

ts−1

(tN − η)−αdη. (11)

Let as :=
∫ ts
ts−1

(tN − η)−αdη, bs :=
∫ ts
ts−1

(tN − η)−αη dη and cs :=
∫ ts
ts−1

(tN −
η)−αη2 dη. Then, for 2 ≤ s ≤ N − 1, we have∫ ts

ts−1

(tN − η)−αu′(η)dη ≈
∫ ts

ts−1

(tN − η)−α(Π3,su(η))′dη =

3∑
i=0

d(i+1)
s us−2+i,

(12)

where

d(1)
s = − cs

2τ3
+
ts
τ3
bs + (− t2s

2τ3
+

1

6τ
)as,

d(2)
s =

3cs
2τ3

+ (−3ts
τ3

+
1

τ2
)bs + (

3t2s
2τ3
− ts
τ2
− 1

τ
)as,

d(3)
s = − 3cs

2τ3
+ (

3ts
τ3
− 2

τ2
)bs + (− 3t2s

2τ3
+

2ts
τ2

+
1

2τ
)as,

d(4)
s =

cs
2τ3

+ (− ts
τ3

+
1

τ2
)bs + (

t2s
2τ3
− ts
τ2

+
1

3τ
)as.

Note that when s = 1 or N , we need to use a different interpolation polynomial to
make sure that the points used are within the domain (see equation (7)). One can
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derive that for general s = 1, 2, . . . , N ,

d(1)
s = − cs

2τ3
+
t?
τ3
bs + (− t2?

2τ3
+

1

6τ
)as,

d(2)
s =

3cs
2τ3

+ (−3t?
τ3

+
1

τ2
)bs + (

3t2?
2τ3
− t?
τ2
− 1

τ
)as,

d(3)
s = − 3cs

2τ3
+ (

3t?
τ3
− 2

τ2
)bs + (− 3t2?

2τ3
+

2t?
τ2

+
1

2τ
)as,

d(4)
s =

cs
2τ3

+ (− t?
τ3

+
1

τ2
)bs + (

t2?
2τ3
− t?
τ2

+
1

3τ
)as,

where ? = s if 2 ≤ s ≤ N − 1; ? = 2 if s = 1; and ? = N − 1 if s = N . According
to (7) and the equations above, we have the discrete operator defined as

δαNu =

(
3∑
i=0

d
(i+1)
1 ui +

N−1∑
s=2

3∑
i=0

d(i+1)
s us−2+i +

3∑
i=0

d
(i+1)
N uN−3+i

)
/Γ(1− α)

=

∑N
s=0 esus

Γ(1− α)
, (13)

where

es =



∑s
i=0 d

(i+1)
s+2−i + d

(s)
1 , for 0 ≤ s ≤ 3∑3

i=0 d
(i+1)
s+2−i, for 4 ≤ s ≤ N − 4∑N−s

i=0 d
(4−i)
s−1+i + d

(s+4−N)
N , for N − 3 ≤ s ≤ N.,

(14)

which concludes the formulation of our discrete Caputo operator δαNu. Next, we
show the convergence order of our finite difference approximation.

Theorem 2.1. For α ∈ (0, 1) and u(t) ∈ C4[0, T ], there is

|0Dα
Tu− δαNu| = O(τ4−α). (15)

Proof. From equation (7), we have

0D
α
Tu− δαN u

=
1

Γ(1− α)

∫ t1

t0

(tN − η)−α(u−Π3,2u(η))′dη

+
1

Γ(1− α)

N−1∑
s=2

∫ ts

ts−1

(tN − η)−α(u−Π3,su(η))′dη

+
1

Γ(1− α)

∫ tN

tN−1

(tN − η)−α(u−Π3,N−1u(η))′dη := Λ1 + Λ2 + Λ3.

(16)

We first estimate Λ2 term. Recall that

u(η)−Π3,su(η) =
u′′′′(ξs)

24
(η − ts−2)(η − ts−1)(η − ts)(η − ts+1), (17)
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where η ∈ [ts−2, ts+1], ξs ∈ (ts−2, ts+1), for 2 ≤ s ≤ N − 1. Therefore,

|Λ2| =

∣∣∣∣∣ 1

Γ(1− α)

N−1∑
s=2

∫ ts

ts−1

(tN − η)−α(u(η)−Π3,su(η))′dη

∣∣∣∣∣
=

∣∣∣∣∣−α 1

Γ(1− α)

N−1∑
s=2

∫ ts

ts−1

(tN − η)−1−α(u(η)−Π3,su(η))dη

∣∣∣∣∣
=

∣∣∣∣∣− α

24

1

Γ(1− α)

N−1∑
s=2

∫ ts

ts−1

(tN − η)−1−αu′′′′(ξs)(η − ts−2)(η − ts−1)

× (η − ts)(η − ts+1)dη|

≤ αmax |u′′′′|
24 Γ(1− α)

N−1∑
s=2

∫ ts

ts−1

(tN − η)−1−α(η − ts−2)(η − ts−1)(ts − η)

×(ts+1 − η)dη

≤ ατ4 max |u′′′′|
6 Γ(1− α)

N−1∑
s=2

∫ ts

ts−1

(tN − η)−1−αdη

=
ατ4 max |u′′′′|

6 Γ(1− α)

∫ tN−1

t1

(tN − η)−1−αdη

=
τ4 max |u′′′′|
6 Γ(1− α)

(
1

τα
− 1

(N − 1)ατα

)
<
τ4−α max |u′′′′|

6 Γ(1− α)
. (18)

Here we have used integration by parts and the fact that (u(η)−Π3,su(η)) vanishes
at ts−1 and ts in the second equality above. Since u(t) ∈ C4[0, T ], max |u′′′′| is
bounded for t ∈ [0, T ], which leads to the conclusion that Λ2 = O(τ4−α). Since
the integrand in term Λ1 has no singularity in [t0, t1], we can follow the previous
procedures to show that Λ1 = O(τ4−α). As for the term Λ3, there is singularity for
the integrand at η = tN . Since for η ∈ [tN−1, tN ], there exists ξ ∈ (tN−3, tN ), such

that (tN −η)−α(u(η)−Π3,N−1u(η)) = −u
′′′′(ξ)
24 (η− tN−3)(η− tN−2)(η− tN−1)(tN −

η)1−α, (tN − η)−α(u(η)−Π3,N−1u(η)) = 0 at η = tN . Thus, we have

|Λ3| =

∣∣∣∣∣ 1

Γ(1− α)

∫ tN

tN−1

(tN − η)−α(u(η)−Π3,N−1u(η))′dη

∣∣∣∣∣
=

∣∣∣∣∣−α 1

Γ(1− α)

∫ tN

tN−1

(tN − η)−1−α(u(η)−Π3,N−1u(η))dη

∣∣∣∣∣
=

∣∣∣∣∣ α24

1

Γ(1− α)

∫ tN

tN−1

(tN − η)−αu′′′′(ξs)(η − tN−3)(η − tN−2)(η − tN−1)dη

∣∣∣∣∣
≤

∣∣∣∣∣ατ3 max |u′′′′|
4 Γ(1− α)

∫ tN

tN−1

(tN − η)−αdη

∣∣∣∣∣ =

∣∣∣∣ατ3 max |u′′′′|
4 Γ(2− α)

τ1−α
∣∣∣∣ = O(τ4−α).

(19)

Therefore, we have shown that each of Λi (i = 1, 2, 3) is of order O(τ4−α), which
implies |0Dα

Tu− δαNu| = Λ1 + Λ2 + Λ3 = O(τ4−α). �

From the theorem above, we know that our proposed approximation is of order
O(τ4−α) for α ∈ (0, 1). As α→ 1−, the convergence order approaches 3.
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2.3. Properties of Fractional Differentiation Matrix. From the previous sec-
tion, we have shown that our approximation lead to high order accuracy when used
as a forward operator. But if we would like to apply such finite difference approx-
imation to the numerical solution of fractional differential equations, we have to
construct the fractional differential matrix. Suppose we are solving a fractional
differential equation involving 0D

α
T u, where u is a sufficiently smooth function in

t and α ∈ (0, 1). We first define 0 = t0 < t1 < · · · < tN = T where ti = iτ with
τ = T/N . Then for 1 ≤ i ≤ N , the ith row of the fractional differentiation matrix
A represents the coefficients of u0, u1, . . . uN in our discretization of 0D

α
ti u, and A

is a N × (N + 1) matrix. For 2 ≤ j ≤ i ≤ N − 1, let d
(1)
i,j , d

(2)
i,j , d

(3)
i,j and d

(4)
i,j be the

coefficient of uj−2, uj−1, uj and uj+1 in
∫ tj
tj−1

(ti − η)−α(Π3,ju(η))′dη, respectively.

That is, the first subindex i in di,j determines the term (ti− η)−α in the integrand,
and the second index j indicates the bound of the integral to be [tj−1, tj ]. Recall
our definition of discretization of Caputo derivative in the previous section, we use
Π3,ju(η), the cubic interpolation of u at tj−2, tj−1, tj and tj+1 to approximate u
within the interval [tj−1, tj ], when 2 ≤ j ≤ N − 1. Therefore, one can show the

following equalities about d
(k)
i,j for k = 1, 2, 3, 4 and 2 ≤ j ≤ i ≤ N − 1:

d
(1)
i,j = − 1

6τ3

∫ tj

tj−1

(ti − η)−α[(η − tj)(η − tj+1) + (η − tj−1)(η − tj+1)

+(η − tj−1)(η − tj)],

d
(2)
i,j =

1

2τ3

∫ tj

tj−1

(ti − η)−α[(η − tj)(η − tj+1) + (η − tj−2)(η − tj+1)

+(η − tj−2)(η − tj)],

d
(3)
i,j = − 1

2τ3

∫ tj

tj−1

(ti − η)−α[(η − tj−1)(η − tj+1) + (η − tj−2)(η − tj+1)

+(η − tj−1)(η − tj−2)],

d
(4)
i,j =

1

6τ3

∫ tj

tj−1

(ti − η)−α[(η − tj−1)(η − tj) + (η − tj−2)(η − tj−1)

+(η − tj−2)(η − tj)]. (20)

In order to prove some main properties of the fractional differential matrix A, we

need the following lemma about d
(k)
i,j .

Lemma 2.2. For k = 1, 2, 3, 4 and 2 ≤ j ≤ i ≤ N − 2, there is d
(k)
i+1,j+1 = d

(k)
i,j .

Proof. This lemma can be proved by applying change of variable: η′ = η+ τ in the

formulation of d
(k)
i,j in (20). �

Now we discuss the properties of the N -by-(N + 1) fractional differentiation
matrix A. For the convenience of the presentation, we use A(i, j) to denote the
(i, j) entry of matrix A, and represent the submatrix of A from ith1 to ith2 row and
jth1 to jth2 column by A(i1 : i2, j1 : j2). Theorem 2.3 gives an important result about
the special structure of a (N − 3)-by-(N − 3) submatrix of A.

Theorem 2.3. A(3:N-1, 5:N+1) is a lower-triangular Toeplitz matrix.
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Proof. Let B = A(3:N-1, 5:N+1), then B(i, j) = A(i + 2, j + 4). To show B is a
lower-triangular matrix, we only need to prove A(i + 2, j + 4) = B(i, j) = 0 when
1 ≤ i < j ≤ N − 3. We first take j = i+ 1 ≤ N − 3, then B(i, j) = A(i+ 2, i+ 5)
is the coefficient of ui+4 in the approximation of 0D

α
ti+2

u. But by our algorithm in
Section 2.2, we only need a linear combination of u0, u1, . . ., ui+3 to approximate

0D
α
ti+2

u. Therefore, A(i + 2, j + 4) = 0 for j = i + 1, i + 2, . . . , N − 3, and B is a
lower-triangular matrix.

Next, we prove that B is also a Toeplitz matrix. We first consider the diagonal

elements of B. By definition, B(i, i) = A(i + 2, i + 4) = d
(4)
i+2,i+2/Γ(1 − α) for

1 ≤ i ≤ N − 3. From Lemma 2.2, d
(4)
i+2,i+2/Γ(1 − α) = d

(k)
i+1,i+1/Γ(1 − α) =

A(i+ 1, i+ 3) = B(i− 1, i− 1). Thus, the diagonal elements of B are constant. We
then consider the sub-diagonal elements of B. Since

B(i+ 1, i) = A(i+ 3, i+ 4) = (d
(3)
i+3,i+3 + d

(4)
i+3,i+2)/Γ(1− α)

= (d
(3)
i+4,i+4 + d

(4)
i+4,i+3)/Γ(1− α)

= A(i+ 4, i+ 5) = B(i+ 2, i+ 1),

for i = 1, 2, . . . , N − 5, the sub-diagonal elements are also constant. Similarly,
we can show the results for other descending off-diagonal elements in the same
manner. �

With Theorem 2.3, we can save the computational cost for the construction of
fractional differentiation matrix. That is, we only need to compute the last row
of this submatrix to obtain all of its the entries, and the total number of entries
that require our computation reduces from O(N2) to O(N). Another important
property of the fractional differentiation matrix A is that the entries with largest
absolute values are mostly concentrated near the diagonal, and we can gives bounds
for most of the lower-triangular elements of A.

Theorem 2.4. Given α ∈ (0, 1) and τ > 0, the following estimates are satisfied:

|A(s, 1)| ≤ C1τ
−α

Γ(2− α)
[s1−α − (s− 2)1−α], for s ≥ 2

|A(s, 2)| ≤ C2τ
−α

Γ(2− α)
[s1−α − (s− 2)1−α]

+
C3τ

−α

Γ(2− α)
[(s− 2)1−α − (s− 3)1−α], for s ≥ 3

|A(s, 3)| ≤ C4τ
−α

Γ(2− α)
[s1−α − (s− 2)1−α] +

C5τ
−α

Γ(2− α)
[(s− 2)1−α − (s− 3)1−α]

+
C6τ

−α

Γ(2− α)
[(s− 3)1−α − (s− 4)1−α], for s ≥ 4, (21)
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where Ci > 0, i = 1, 2, . . . , 6 are constants independent of s, α and τ . Moreover,
for general integer 4 ≤ j ≤ N − 3 and s ≥ j + 1, we have

|A(s, j)| ≤ C7τ
−α

Γ(2− α)
[(s+ 3− j)1−α − (s+ 2− j)1−α]

+
C8τ

−α

Γ(2− α)
[(s+ 2− j)1−α − (s+ 1− j)1−α]

+
C9τ

−α

Γ(2− α)
[(s+ 1− j)1−α − (s− j)1−α]

+
C10τ

−α

Γ(2− α)
[(s− j)1−α − (s− j − 1)1−α], (22)

where C7, C8, C9 and C10 are positive constants which only depend on j, and inde-
pendent of s, α and τ .

Proof. We only prove inequality (22), and (21) can be shown in a similar man-
ner. Recall that when 4 ≤ j ≤ N − 3 and s ≥ j, A(s, j) is the coefficient
of uj−1 in the approximation of 0D

α
tsu, and it is easy to show that A(s, j) =(

d
(4)
s,j−2 + d

(3)
s,j−1 + d

(2)
s,j + d

(1)
s,j+1

)
/Γ(1− α), where d

(k)
i,j for k = 1, 2, 3, 4 are defined

in (20). From the last equation of (20), we have

d
(4)
s,j−2 =

1

6τ3

∫ tj−2

tj−3

(ts − η)−α[3η2 − 6(tj−2 − τ)η + (3t2j−2 − 6tj−2τ + 2τ2)]dη

=
1

2τ3

∫ tj−2

tj−3

(ts − η)−αη2dη +
3− j
τ2

∫ tj−2

tj−3

(ts − η)−αηdη

+
3(j − 2)2 − 6(j − 2) + 2

6τ

∫ tj−2

tj−3

(ts − η)−αdη

≤
[

(j − 2)2

2τ
+

(3− j)(j − 3)

τ
+

3(j − 2)2 − 6(j − 2) + 2

6τ

]
×
∫ tj−2

tj−3

(ts − η)−αdη

=
1

τ

(
j − 8

3

)∫ tj−2

tj−3

(ts − η)−αdη

=

(
j − 8

3

)
τ−α

1− α
[
(s+ 3− j)1−α − (s+ 2− j)1−α] . (23)

Note that we have used the fact that 3−j
τ2 < 0 when j ≥ 4 in the first inequality

above. Also, from the second equality in (23), we have

d
(4)
s,j−2 ≥

[
(j − 3)2

2τ
+

(3− j)(j − 2)

τ
+

3(j − 2)2 − 6(j − 2) + 2

6τ

]
×
∫ tj−2

tj−3

(ts − η)−αdη

=

(
17

6
− j
)

τ−α

1− α
[
(s+ 3− j)1−α − (s+ 2− j)1−α] . (24)
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Combining (23) and (24), we have

|d(4)
s,j−2| ≤

(
j − 8

3

)
τ−α

1− α
[
(s+ 3− j)1−α − (s+ 2− j)1−α] , (25)

for j ≥ 4. Following the same procedures, we can obtain similar inequalities about

d
(3)
s,j−1, d

(2)
s,j and d

(1)
s,j+1:

|d(3)
s,j−1| ≤

(3j − 4)τ−α

1− α
[
(s+ 2− j)1−α − (s+ 1− j)1−α] ,

|d(2)
s,j | ≤

(3j − 1
2 )τ−α

1− α
[
(s+ 1− j)1−α − (s− j)1−α] ,

|d(1)
s,j+1| ≤

(j + 2
3 )τ−α

1− α
[
(s− j)1−α − (s− j − 1)1−α] . (26)

We can conclude the proof by summing up 25 and the inequalities in 26, and let
C7 = j − 8

3 , C8 = 3j − 4, C9 = 3j − 1
2 and C10 = j + 2

3 . �

Theorem 2.4 gives sharp estimates about lower-triangular part of matrix A.
Specifically, all the entries below the (1, 1) element in the first column are less than
C1τ

−α

Γ(2−α) [s1−α − (s − 2)1−α]. For fixed τ > 0 and α ∈ (0, 1), that upper bound is

monotonically decreasing as s ≥ 2 increases. Since [s1−α − (s− 2)1−α] approaches
zero as s goes to infinity, we can see that A(s, 1) is a very small number for large
enough s. This observation indicates that even though the time-fractional deriva-
tive has a long memory property, the early behavior of the function becomes less
important to the fractional derivative at a large later time. Similar conclusion can
be drawn from the other estimates in the theorem above.

2.4. A (4−α)-Order in Time Scheme for Time-Fractional Diffusion Equa-
tion. In this section, we present our numerical method for time-fractional diffusion
equation (1), with initial condition u(x, 0) = g(x) for 0 ≤ x ≤ 1, and homogeneous
boundary condition, i.e. u(0, t) = u(1, t) = 0 for 0 ≤ t ≤ T . Due to the homo-
geneous boundary condition, we can write our exact solution using Fourier sine
series:

u(x, t) =

∞∑
k=1

ûk(t) sin(kπx). (27)

It is important to mention that we can use Fourier series with basis ei2πxk if periodic
boundary conditions are given, and Fourier cosine series with basis cos(kπx) given
homogeneous Neumann boundary conditions. We plug the equation into (1) to
obtain

0D
α
t ûk(t) = −(kπ)2ûk(t) + f̂k(t), (28)

for k = 1, 2, . . .. So for each mode ûk, we solve the fractional ordinary differential
equation (28) using our fractional differentiation matrix constructed in Section 2.3.

That is, let tj = jτ for j = 0, 1, . . . , N with τ = T/N , and use Û0k, Ûk and F̂k to de-
note the column vectors [ûk(t0), ûk(t1), . . . , ûk(tN )]T , [ûk(t1), ûk(t2), . . . , ûk(tN )]T

and [f̂k(t1), f̂k(t2), . . . , f̂k(tN )]T , respectively. Then we have A Û0k = −(kπ)2Ûk +

F̂k for any positive integer k. Note that ûk(t0) can be obtained from the sine trans-

form of the initial condition, so we only need to solve Ûk. Let A = [l|R], where
l is the first column of the matrix A and R is an N -by-N matrix starting from
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the second column of A. Therefore, for any mode k, we solve the following linear
system

(R+ (kπ)2I)Ûk = F̂k − ûk(t0)l. (29)

Here I represents an N -by-N identity matrix. Since we need to solve (29) for many
Fourier modes, it is necessary to find a fast solver for each linear system. Although
the matrix (R+(kπ)2I) is neither a lower-triangular nor a lower-Hessenberg matrix,
it can be transformed to lower-Hessenberg matrix using simple row operations.
Recall when we construct A, each row of A represents the coefficients that come
from cubic interpolation. It is easy to show that A(1, j) = A(2, j) = 0 for j ≥ 5,
and A(i, j) = 0 when 3 ≤ i ≤ N − 2 and j ≥ i+ 3. Therefore, we know R(i, j) = 0
when j > i+1 and i ≥ 2, and R(1, j) = 0 when j ≥ 3. So we can use the (2, 3) entry
of matrix (R + (kπ)2I) to eliminate the (1, 3) entry to obtain a lower-Hessenberg
matrix. We then solve the linear system (29) using Hessenberg LU which requires
only O(N2) flops [5]. In practice, we choose a finite number of modes (denoted by
M) in the Fourier sine series. We will specify the choice of M for each numerical
example about the time-fractional diffusion equation.

3. Numerical Experiments

In this section, we provide several numerical examples to demonstrate the perfor-
mance of our proposed method. We implement all the simulations using MATLAB
R2019a.

3.1. Accuracy Test of the Discrete Operator δαN . Let u(t) = t4+α, α ∈ (0, 1).
The exact Caputo fractional derivative of order α is

0D
α
t t

4+α|t=1 =
Γ(5 + α)

24
. (30)

We compute the absolute error between the exact value and numerical approxima-
tion using equation (13). Our results are presented in Table 1, from which we can
observe the 3.5th and 3.1th convergence orders when α = 0.5 and 0.9, respectively.
Such observation is consistent with our theoretical results in Theorem 2.1: (4−α)th

order of convergence. For α = 0.1, our results indicate the convergence order of
around 4, which is a little better than the theoretical convergence order 4−α. The
computational time is around 0.02 seconds for all the tests in Table 1. We further
compare the performance of our proposed method with that of the classical L1 and
Grünwald-Letnikov (GL) method in Table 2. We observe that the convergence or-
der of the L1 method is about 1.5 and the GL method is of first order convergence.
In addition, our method leads to error with much smaller magnitude. As far as
the computational time is concerned, the L1 method takes less then 0.01 seconds,
followed by the GL method which takes about 0.01 seconds. Our method takes
slightly longer time, i.e., 0.02 seconds.

3.2. Fractional Ordinary Differential Equation. We now use our discrete op-
erator δαn to solve the following fractional ordinary differential equation:

0D
α
t u =

Γ(5 + α)

24
t4, u(0) = 0. (31)

The exact solution of the initial value problem above is t4+α. We compute the
numerical solutions up to T = 1 and estimate the convergence order (see Table 3).
Among the results with three choices of α, numerical solutions with α = 0.1 have
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α = 0.1 α = 0.5 α = 0.9
N Error Order Error Order Error Order
10 2.9048e-5 1.3085e-3 1.5340e-2
20 1.7380e-6 4.0629 1.1807e-4 3.4702 1.8979e-3 3.0148
40 1.0407e-7 4.0618 1.0503e-5 3.4908 2.2763e-4 3.0596
80 6.2136e-9 4.0660 9.2894e-7 3.4991 2.6912e-5 3.0804
160 3.9328e-10 3.9818 8.2182e-8 3.4987 3.1585e-6 3.0909

Table 1. Error and convergence order of 0D
α
t t

4+α at t = 1

Our method L1 method GL method
N Error Order Error Order Error Order
10 1.3085e-3 9.1701e-2 2.0487e-1
20 1.1807e-4 3.4702 3.5244e-2 1.3796 1.0569e-1 0.9549
40 1.0503e-5 3.4908 1.3131e-2 1.4244 5.3678e-2 0.9774
80 9.2894e-7 3.4991 4.8029e-3 1.4510 2.7050e-2 0.9887
160 8.2182e-8 3.4987 1.7368e-3 1.4675 1.3578e-2 0.9944

Table 2. Error and convergence order of 0D
α
t t

4+α at t = 1 using
different methods. (α = 0.5)

the smallest errors compared with other two cases, and numerical solutions with
α = 0.9 have the largest errors for any fixed N . For α = 0.5 or α = 0.9, the
convergence order approaches (4 − α) as we refine the mesh. When α = 0.1, the
convergence order is between 3.7 and 3.8, which is a little less than (4− α), which
might be caused by the round-off errors. The overall convergence order of our
proposed methods for solving fractional ordinary differential equation is consistent
with our theoretical results. The computational time for all the tests in Table 3 is
less than 0.1 seconds. In Table 4, we list the numerical results when we solve (31)
using our proposed method, the L1 and the GL method. We can see the first
order convergence for the GL method, the (2 − α)th convergence order for the L1
method, and the (4 − α)th order convergence for our method. Since we need to
solve a linear system for all of the three methods, it takes longer computational
time compared to the numerical tests in the previous section. In particular, the
computational time for the L1 method and the GL method is about 0.01 seconds,
and the computational time for our proposed method is around 0.08 seconds.

α = 0.1 α = 0.5 α = 0.9
N Error Order Error Order Error Order
10 2.6259e-5 5.1768e-4 2.6380e-3
20 2.0672e-6 3.6676 5.3197e-5 3.2826 3.7113e-4 2.8294
40 1.5415e-7 3.7453 5.0116e-6 3.4080 4.6212e-5 3.0056
80 1.1211e-8 3.7813 4.5688e-7 3.4554 5.5352e-6 3.0616
160 8.4387e-10 3.7318 4.1042e-8 3.4766 6.5320e-7 3.0830
Table 3. l∞ error and convergence order of numerical solution to
the initial value problem (31) for t ∈ [0, 1]
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Our method L1 method GL method
N Error Order Error Order Error Order
10 5.1768e-4 5.0941e-2 1.1404e-1
20 5.3197e-5 3.2826 1.9410e-2 1.3920 5.6647e-2 1.0095
40 5.0116e-6 3.4080 7.2249e-3 1.4258 2.8226e-2 1.0050
80 4.5688e-7 3.4554 2.6456e-3 1.4494 1.4088e-2 1.0026
160 4.1042e-8 3.4766 9.5804e-4 1.4654 7.0376e-3 1.0013

Table 4. l∞ error and convergence order to the initial value prob-
lem (31) for t ∈ [0, 1] using different methods. (α = 0.5)

3.3. Time-Fractional Diffusion Equation with a Source. In this section, we
test the performance of our scheme by solving the time-fractional diffusion equation
with a source.

Example 1. We first consider the fractional diffusion equation whose exact
solution is

u(x, t) = t2 sin(2πx). (32)

In this case, the force term is given by

f(x, t) =
2

Γ(3− α)
t2−α sin(2πx) + 4π2t2 sin(2πx). (33)

We compute the errors at T = 1 using time step size dt = 0.1 and M = 63 modes,
and observe from the top row of Figure 1 that the l∞ errors are both equal to
5.5511× 10−16 when α = 0.1 or 0.5, and the error is 2.2204× 10−15 when α = 0.9.
Such observation implies that our numerical solution is accurate to within machine
epsilon, and that is because we are using (4−α)th order method and the truncation
error corresponding to this exact solution is equal to zero. Even with only M = 7
modes, our scheme still can lead to numerical solutions with error being within
machine precision. In [16], the authors considered the same numerical example and
applied their (2− α)th order time discretization method (L1 method) and spectral
Galerkin/collocation method in space. Our high-order accurate numerical solutions
outperform their results for this example. The error of the L1 and the GL method
can be seen from the mid and bottom row of Figure 1. For both cases, our proposed
method leads to more accurate results. The computational time of our method, L1
and GL method are 0.09, 0.03 and 0.02 seconds, respectively. The time history of
the numerical solutions using our method is given in Figure 2. We can see that the
behavior of the numerical solutions is consistent with that of the exact solutions.
The computational time of our method at t = 1, 2 and 3 are about 0.09, 0.16 and
0.22 seconds, respectively.

Example 2. We then consider the example with exact solution being

u(x, t) = t4+α sin(3πx). (34)

In this case, the force term is defined as Γ(5+α)
24 t4 sin(3πx)+(3π)2t4+α sin(3πx). For

all of the simulations results in Table 5, we fix the number of modes to be M = 63.
We can see the convergence order to be around 4 when α = 0.1 or 0.9, which is
even better than our theoretical prediction (4 − α). When α = 0.5, the the order
approaches 3.6. The errors of three choices of α are plotted in Figure 3. We can
see that as we increase the value of α, the magnitude of the error increases. The
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Figure 1. The error of our proposed method, L1 method and the
GL method to the problem in example 1 at T = 1. The exact
solution is t2 sin(2πx). Here dt = 0.1 and M = 63 are used. Top
row: the error of our proposed method. Mid row: the error of
the L1 method. Bottom row: the error of the GL method. Left
column: α = 0.5. Right column: α = 0.9.

computational time for each of the three cases, i.e., α = 0.1, 0.5 and 0.9, is about
0.08 seconds.

As a comparison, we also use the L1 method, which has (2−α) convergence order,
for the time discretization (see equation (4)). We use spatial Fourier transform in
both cases for fair comparison. We compute the l∞ and l2 errors when α = 0.5,
and present the results in Table 6. When we use our proposed method and choose a
relatively coarse time step dt = 0.1, the l2 error is 7.7591×10−5, which is still more
accurate than the (2 − α)th order method with 16 times more refined mesh size,
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Figure 2. The numerical solution of the problem in example 1
using our proposed method at T = 1, 2 and 3. The exact solution
is t2 sin(2πx). Here dt = 0.1 and M = 63 are used.

α = 0.1 α = 0.5 α = 0.9
N Error Order Error Order Error Order
10 3.2084e-07 1.3716e-05 1.3980e-04
20 1.9127e-08 4.0692 1.1982e-06 3.5169 1.4455e-05 3.2737
40 1.1402e-09 4.0683 1.0181e-07 3.5569 1.2450e-06 3.5374
80 6.7697e-11 4.0741 8.4417e-09 3.5922 7.7913e-08 3.9981
160 4.2604e-12 3.9900 6.8220e-10 3.6293 1.4017e-09 5.7966

Table 5. l∞ error and convergence order of numerical solution to
time-fractional diffusion equation with exact solution given by (34)
at t = 1.
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Figure 3. The error of our proposed method to time-fractional
diffusion equation at T = 1. Exact solution: t4+α sin(3πx). Here
N = 20 and M = 63 are used. From left to right: α = 0.1, 0.5 and
0.9.

i.e. the l2 error of (2− α)th order method is 1.0856× 10−4 when dt = 6.25× 10−3.
This illustrates that it is more efficient to use high-order method for this case. The
computational time of our method when N = 10, 20 and 40 is about 0.1 seconds.
When N = 80 or 160, the computational time is about 0.2 seconds.

Example 3. For two examples above, we always assume that the exact solution
has sine function, one of the basis element in the Fourier sine series. Now let’s
consider the case when the exact solution does not has sine function. That is, we
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Our method L1 method
N l∞ error Order l2 error Order l∞ error Order l2 error Order
10 1.3716e-05 7.7591e-05 1.0132e-03 5.7312e-03
20 1.1982e-06 3.5169 6.7779e-06 3.5170 3.8939e-04 1.3796 2.2027e-03 1.3796
40 1.0181e-07 3.5569 5.7595e-07 3.5568 1.4508e-04 1.4244 8.2072e-04 1.4243
80 8.4417e-09 3.5922 4.7753e-08 3.5923 5.3070e-05 1.4509 3.0021e-04 1.4509
160 6.8220e-10 3.6293 3.8591e-09 3.6293 1.9192e-05 1.4674 1.0856e-04 1.4675

Table 6. l∞ errors and convergence order of numerical solution to
time-fractional diffusion equation with exact solution given by (34)
at t = 1. Our method vs the L1 method ((2−α)th order in time).
(α = 0.5)

assume the exact solution is given by

u(x, t) = t4+αx(1− x). (35)

The corresponding force term is given by f(x, t) = Γ(5+α)
24 t4x(1−x)+2t4+α. When

we run the simulations for α = 0.5, we can observe that the number of modes is very
crucial for this example. For fixed N = 10, when we use M = 63, the l∞ error is
equal to 4.3047×10−5 and the l2 error is 2.6864×10−4. When M = 127 is used, the
l∞ error decreases to 1.0817×10−05 and the l2 error goes down to 8.8610×10−5. If
we further double the number of modes to M = 255, both errors are 2.7050× 10−6

and 2.2830 × 10−5 for l∞ and l2 errors, respectively. When we take M = 1023,
these two errors further decrease to 8.2001 × 10−7 and 1.2188 × 10−5. However,
if we double the number of modes again, both errors increase due to round-off
error. Therefore, in our simulations, we choose the mode large enough such that
the error is minimized for each N . As a result, we take M = 210 − 1 for N = 20;
M = 211−1 for N = 40; M = 213−1 for N = 80 and M = 216−1 for N = 160. For
different values of α, the errors are plotted in Figure 4. The computational time
for the examples in this figure is about 0.1 seconds. The distribution of the errors
is symmetric around the midpoint of the spatial domain, and the largest error is
at x = 0.5 for all of the three cases. Similar behavior that the magnitude of the
largest error increases as α gets larger can be also observed. We then compute the
l2 and l∞ errors and convergence orders in Table 7, and in this case, we obtain
convergence order greater than (4 − α). Note that in this example, we increase
the number of modes as we choose larger N . The computational time is about 0.1
seconds when N = 20. It increases to 0.2 seconds when N = 40, and it becomes
1.4 seconds when N = 80. Finally, when we take N = 160 and M = 216 − 1, the
computational time is about 36.7 seconds. In practice, we do not have to choose the
number of modes as large as in this example, in order to get very accurate results.

4. Conclusion

In this paper, a high-order finite difference method is proposed to solve the time-
fractional diffusion equation with a source. Both theoretical analysis and numerical
results show that the convergence order of our finite difference method is (4 − α)
when it is used to approximate the Caputo fractional derivative of order α with
α ∈ (0, 1). When we solve the time-fractional diffusion equation with a source
using Fourier-type expansion in space and various method (including the L1 and
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Figure 4. The error of our proposed method to time-fractional
diffusion equation at T = 1. Exact solution: t4+αx(1 − x). From
left to right: α = 0.1, 0.5 and 0.9.

N l∞ error Order l2 error Order
10 1.8860e-05 4.2857e-04
20 1.1902e-06 3.9861 2.6295e-05 4.0267
40 4.7762e-08 4.6392 1.4321e-06 4.1986
80 2.6552e-09 4.1690 1.1323e-07 3.6608
160 4.1669e-11 5.9937 3.8377e-09 4.8829

Table 7. l∞ error and convergence order of numerical solution to
time-fractional diffusion equation with exact solution given by (35)
at t = 1. (α = 0.5)

Grünwald-Letnikov method) for the time discretization, we observe that our method
leads to more accurate numerical solutions.
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