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STABILITY ANALYSIS OF THE FRACTIONAL DIFFERENTIAL

EQUATIONS WITH THE CAPUTO-FABRIZIO FRACTIONAL

DERIVATIVE

N. SENE

Abstract. This paper aims to study the stability of the fractional differential
equations without inputs. The fractional differential equations without inputs
considered in this paper are defined with the Caputo-Fabrizio fractional de-
rivative operator. We will investigate to find the stability conditions related

to the fractional differential equations. We will address how to characterize
the stability of fractional differential equations using the Lyapunov candidates’
functions. The stability conditions of the perturbed fractional differential equa-
tions will be discussed. The Lyapunov characterization of the stability will be

proposed to avoid the difficulty existing when we analyze stability using the
Gronwall lemma and the trajectories analysis. Several examples to illustrate
the mains results will be provided.

1. Introduction

In the last decade the fractional calculus received main attention due to its
important role in modeling the anomalous dynamics of various processes related
to complex systems in the most areas of science and engineering as provided by
Baleanu et al. in [6], Caputo and Fabrizio in [7], Atangana et al. in [4], Podlubny
in [24], Torres and Malinowska in [19], Kilbas et al. in [16], Petras in [23], Sene
et al. in [32, 36, 37, 38, 39]. Many papers appeared and gave some results and
role of the fractional calculus in physics, control engineering, and signal processing
[8, 10, 20, 22].

In fractional calculus, there exist various types of the fractional derivatives op-
erators as: the Riemann-Liouville fractional derivative [27, 28, 25], the generalized
fractional derivative [1, 14, 15], the conformable fractional derivative [21, 29, 31],
the Hadamard and Hilfer fractional derivative [14], the Caputo fractional deriva-
tive [27], the Caputo-Fabrizio fractional derivative [18], the Atangana-Baleanu frac-
tional derivative [3] and others. The Riemann-Liouville and the Caputo-Fabrizio
fractional derivatives are fractional derivatives with the singular kernel. There ex-
ist some disadvantage related to the existence of the singularity in the fractional
derivatives operators, it for this reason Caputo and Fabrizio proposed in 2015 [7]
a new fractional derivative without singular kernel. Another fractional derivative

2010 Mathematics Subject Classification. 26A33, 34D20, 93D05.
Key words and phrases. Caputo-Fabrizio fractional derivative, exponential stability, fractional

differential equations.
Submitted Nov. 14, 2018.

160



JFCA-2020/11(2) STABILITY ANALYSIS OF THE FRACTIONAL DIFFERENTIAL... 161

without a singular kernel exists in the literature and appeared in 2016, which was
the Atangana-Baleanu fractional derivative. The Caputo-Fabrizio fractional de-
rivative and the Atantana fractional derivative are known to be very useful and
helpful to study real-world problems. Many physical applications with the Caputo-
Fabrizio fractional derivative and the Atantaga fractional derivative exist, see in for
examples in [3, 4].

The stability problem is one of the fundamental subjects existing in the frac-
tional calculus. Many stability analysis of the fractional differential equations using
Caputo-Liouville fractional derivative, and Riemann-Liouville fractional derivative
exist in the literature, see in [2, 25, 26, 27, 28]. With a new fractional derivative as
the Caputo-Fabrizio fractional derivative, we will analyze the stability of a partic-
ular class of the fractional differential equations. Two methods will be used: the
first will use the trajectories, and the second will use the Lyapunov direct method.

The paper is organized as follows. In Section 2, we introduce the basic definitions
and provide some lemmas. In Section 3, we give the mains results of this paper.
In Section 4, we present several examples and illustrate our main results. The
conclusions and remarks are summarized in Section 5.

Notation. PD denotes the set of all continuous functions χ : R≥0 → R≥0

satisfying χ(0) = 0 and χ(s) > 0 for all s > 0. A class K function is an increasing
PD function. The class K∞ denotes the set of all unbounded K function. A
continuous function β : R≥0×R≥0 → R≥0 is said to be class KL if β(., t) ∈ K for any
t ≥ 0 and β(s, .) is non increasing and tends to zero as its arguments tends to infinity.

Given x ∈ Rn, ∥x∥ stands for its Euclidean norm: ∥x∥ :=
√
x2
1 + . . .+ x2

n. For a
matrix A, λmax(A) and λmin(A) denote the maximal and the minimal eigenvalue of
A, respectively. If the condition Re (λi) < 0,∀i = 1, 2, ..., n, holds then the matrix
A is said Hurwitz.

2. Background on fractional derivatives operators

In this section, we recall some preliminary definitions and fundamental lemmas.
There exist in the literature various types of fractional derivatives operators with
multiple types of kernels. We summarize the different kernels as follows, see in [3]:

• • • Riemann-Liouville and Caputo kernel with α ∈ (0, 1)

KRL (t− τ) =
(t− τ)

−α

Γ (1− α)
(1)

• • • Caputo-Fabrizio kernel with α ∈ (0, 1)

KCF (t− τ) =
M(α)

1− α
exp

(
− α

1− α
(t− τ)

)
(2)

• • • Atangana-Baleanu kernel with α ∈ (0, 1)

KAB (t− τ) =
AB(α)

1− α
Eα

(
− α

1− α
(t− τ)

α

)
(3)

M(α) and AB(α) have the same properties as in Caputo-Fabrizio fractional de-
rivative, see in [18]. The Riemann-Liouville and Caputo Kernel is a singular kernel
because we can observe the function KRL is not well defined when t = τ . In other
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words, the functionKRL admit singularity at the point t = τ . The fractional deriva-
tives operators associated to the function KRL kernel are the Riemann-Liouville
fractional derivative and the Caputo-Liouville fractional derivative.

Definition 1. [25, 27] Let’s a function f : [a,+∞[−→ R. Then the Riemann-
Liouville fractional derivative of f of order α is defined as

DRL
α f(t) =

1

Γ(1− α)

d

dt

∫ t

a

(t− s)−αf(s)ds (4)

for all t > a, α ∈ (0, 1) , where Γ(...) is the Gamma function.

Definition 2. [25, 27] Let’s a function f : [a,+∞[−→ R. Then the Caputo-
Liouville fractional derivative of f of order α is defined by

Dc
αf(t) =

1

Γ(1− α)

∫ t

a

f ′(s)

(t− s)α
ds (5)

for all t > a, α ∈ (0, 1) , where Γ(...) is Gamma function.

Definition 3. [25, 27] Let’s a function f : [a,+∞[−→ R. Then the Riemann-
Liouville integral of f of order α is defined by

IRL
α f(t) =

1

Γ(α)

∫ t

a

(t− s)α−1f(s)ds (6)

all t > a, α ∈ (0, 1) , where Γ(...) is Gamma function.

In some cases, using the fractional derivative with a singular kernel has many
inconveniences. In 2015, Caputo and Fabrizio proposed a new fractional derivative
without a singular kernel. The new definition of the fractional derivative introduced
by Caputo and Fabrizio consists of replacing the singular kernel KRL (t− τ) by the
non-singular kernel

KCF =
M(α)

1− α
exp

(
− α

1− α
(t− τ)

)
. (7)

The associated fractional derivative is called the Caputo-Fabrizio fractional de-
rivative. It was provided in the literature the Caputo-Fabrizio fractional deriva-
tive operator is very useful to describe real-world problems. It is applied to the
Cattaneo-Hristov diffusion model in [12, 13], see also Koca and Atangana investi-
gations in [17]. Escamilla et al. in [9] investigate to find analytic solutions of some
electrical circuits as RL, LC and RLC described by Caputo- Fabrizio fractional
derivative, and others. Let’s recall the definition of the Caputo-Fabrizio fractional
derivative.

Definition 4. [18] Let’s a > 0, f ∈ C (0, a) and α ∈ (0, 1), the Caputo-Fabrizio
fractional derivative of the function f of order α is given by

DCF
α f(t) =

(2− α)M(α)

2(1− α)

∫ t

0

exp

(
− α

1− α
(t− s)

)
f ′(s)ds (8)

for all t > 0, and where M(α) is a normalization constant depending on α.

It is provided by the Caputo and Fabrizio in [7], if α → 1, we recover the classical
derivative. The normalization constant has the following property M(0) = M(1) =
1 and is given by [18]

M(α) =
2

2− α
,
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for all α ∈ (0, 1). And the associated integral is given in the following definition.

Definition 5. [18] Let’s a > 0, f ∈ C (0, a) and α ∈ (0, 1), the Caputo-Fabrizio
fractional integral of order α of the function f is given by

ICF
α f(t) =

2(1− α)

(2− α)M(α)
f(t) +

2α

(2− α)M(α)

∫ t

0

f(s)ds, (9)

for all t > 0, and where M(α) is the normalization constant depending on α.

In 2016, Atangana and Baleanu proposed another type of fractional derivative
because Caputo-Fabrizio fractional derivative is the average of a function and its
integral. Furthermore, the solution of the Cauchy problem is an exponential form,
not a non-local function, see in [5]. They propose a new kernel called Atangana-
Baleanu kernel defined as

KAB (t− τ) =
AB(α)

1− α
Eα

(
− α

1− α
(t− τ)

α

)
. (10)

The fractional derivative associated with Atangana-Baluanu fractional derivative
kernel is defined in the following definition.

Definition 6. [4] Let’s the function f ∈ H1 (a, b), b > a and α ∈ [0, 1], then the
Atangana-Baleanu fractional derivative in Caputo sense is given as:

DABC
α f(t) =

AB(α)

1− α

∫ t

a

f ′(s)Eα

(
− α

1− α
(t− s)

α

)
ds (11)

It is now provided in the literature the Caputo-Fabrizio and the Atangana-
Baleanu fractional derivative are useful and helpful to study the real-world prob-
lems. The Caputo-Fabrizio and the Atangana-Baleanu, fractional derivatives op-
erators, can be applied and used in many fields in science and engineering: as
linear viscoelasticity, as in diffusion [32, 33, 34, 35], as Navier Stokes problems [30],
as Rayleigh-Stokes problems [30, 41], and many others. In this paper, we work
with Caputo-Fabrizio fractional derivative. Let us recall the Laplace transform of
Caputo-Fabrizio fractional derivative [18], defined as:

L
{
CF
0 Dα

t f(t)
}
=

sL{f(t)} (s)− f(0)

s+ α (1− s)
. (12)

The Laplace transform will be used to solve the Cauchy problem described by the
Caputo-Fabrizio fractional derivative. There exist some modifications in the struc-
ture of the solution of the Cauchy problem when the Caputo-Fabrizio derivative is
used. Let’s recall the first fundamental lemma of this paper.

Lemma 1. Let x(.) ∈ Rn, the solution of the Cauchy problem DCF
α x(t) = λx(t)

with initial boundary condition defined by x(t0) = η, is given by

x(t) =
η

1 + λ (α− 1)
exp

(
λα

1 + λ (α− 1)
t

)
. (13)

Proof : We first apply the Laplace transform, thus it follows that

L
(
DCF

c x(t)
)

= λL (x(t))

sL{x(t)} (s)− η

s+ α (1− s)
= λL (x(t))

Lρ (x(t)) =
η

1 + λ (α− 1)

η

s− λα
1+λ(α−1)

(14)
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Applying the inverse of Laplace transform to both sides of Eq. (14), we obtain that

x(t) =
η

1 + λ (α− 1)
exp

(
λα

1 + λ (α− 1)
t

)

We can observe if the constant λα
1+λ(α−1) is negative then all the solution converge

to zero. The classical solution of the equation x′(t) = λx(t) with boundary condition
defined by x(t0) = η can be obtained with Eq. (13), when the order of the fractional
derivative converge to 1, and we have x(t) = η exp (t). We finish this section by
providing a fundamental lemma, which we will use in the Lyapunov direct method.
This lemma will simplify the calculation when we use the quadratic Lyapunov
function. We have the following lemma.

Lemma 2. Let x(.) ∈ Rn be a vector of differentiable functions and there exists a
positive definite, symmetric and constant matrix P ∈ Rn×n. Then, the following
relationship is hold

DCF
α

(
x(t)TPx(t)

)
≤ 2x(t)TPDCF

α x(t) α ∈ [0, 1) for all t ≥ 0.

Proof : We define an intermediary function

f(t) = DCF
α

(
x(t)TPx(t)

)
− 2x(t)TPDCF

α x(t), (15)

which we will study. The objective of the proof is to prove the function f is negative
definite. Using the Caputo- Fabrizio fractional derivative, the function f can be
expressed as follows:

f(t) =
M(α)

Γ(1− α)

∫ t

t0

(
ẋT (s)Px(s)− xT (s)Pẋ(s)

)
exp

(
− α

1− α
(t− s)

)
ds

−2M(α)xT (t)P

Γ(1− α)

∫ t

t0

ẋ(s) exp

(
− α

1− α
(t− s)

)
ds

=
M(α)

Γ(1− α)

∫ t

t0

(
ẋT (s)Px(s)− xT (s)Pẋ(s)− 2xT (t)Pẋ(s)

)
exp

(
− α

1− α
(t− s)

)
ds

=
M(α)

Γ(1− α)

∫ t

t0

(
2xT (s)Pẋ(s)− 2xT (t)Pẋ(s)

)
exp

(
− α

1− α
(t− s)

)
ds

when we change the variable in the integration by letting that y(s) = xT (s)−xT (t),
then the function f can be rewritten as follows

f(t) =
M(α)

Γ(1− α)

∫ t

t0

2yT (s)P ẏ(s) exp

(
− α

1− α
(t− s)

)
ds

=
M(α)

Γ(1− α)

∫ t

t0

d
(
yT (s)Py(s)

)
exp

(
− α

1− α
(t− s)

)
ds
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After integration by parts, we obtain the following expression

f(t) =

[
yT (s)Py(s) exp

(
− α

1− α
(t− s)

)]t
t0

− α

1− α

∫ t

t0

yT (s)Py(s) exp

(
− α

1− α
(t− s)

)
ds

= lim
s→t

yT (s)Py(s) exp

(
− α

1− α
(t− s)

)
−yT (t0)Py(t0) exp

(
− α

1− α
(t− t0)

)
− α

1− α

∫ t

t0

yT (s)Py(s) exp

(
− α

1− α
(t− s)

)
ds

The value of the limit is straightforward to get, by calculation we find that

lim
s→t

yT (s)Py(s) exp

(
− α

1− α
(t− s)

)
= 0× 1 = 0

Finally, the function f is given by

f(t) = −yT (t0)Py(t0) exp

(
− α

1− α
(t− t0)

)
− α

1− α

∫ t

t0

yT (s)Py(s) exp

(
− α

1− α
(t− s)

)
ds

We observe that the function f ≤ 0 from which it holds that

DCF
α

(
xTPx

)
≤ 2xTPDCF

α x

for all α ∈ [0, 1) .

3. Stability Analysis of the Fractional Differential Equation in
Caputo-Fabrizio Sense

In this section, we investigate to find some conditions of the stability of the
fractional differential equations defined with Caputo-Fabrizio fractional derivative.
The fractional differential equation treated in this section is in general expressed as

DCF
α x = f(t, x) (16)

where x ∈ Rn is the state variable, and the function f : R+ × Rn → Rn is a
continuous locally Lipschitz function and satisfies the condition f(t, 0) = 0. Given
the initial condition x0 ∈ Rn, the solution of Eq. (16) starting initially at x0 at
time t = t0 is denoted by x(.) = x(., x0). We recall some stability notions used in
fractional calculus.

Definition 7. [27, 40] The trivial solution x = 0 of the fractional differential
equation in Caputo-Fabrizio sense defined by Eq. (16) is said to be stable if, for
every ϵ > 0, there exists a δ = δ (ϵ) such that for any initial condition satisfying
∥x0∥ < δ, the solution x(t) of Eq. (16) satisfies the inequality ∥x(t)∥ < ϵ for all
t > t0.

The trivial solution x = 0 of the fractional differential equation (20) is said to
be asymptotically stable if it is stable and furthermore limt→+∞ x(t) = 0.
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In terms of comparison function, we have the following definition of global as-
ymptotic stability.

Definition 8. [27, 40] The origin x = 0 of the fractional differential equation in
Caputo-Fabrizio sense defined by Eq. (16) is said to be globally uniformly asymptot-
ically stable if there exists a class KL function β such that, for any bounded initial
condition x0, its solution satisfies

∥x(t, x0)∥ ≤ β(∥x0∥ , t− t0). (17)

There exist two methods to analyze the stability analysis of the fractional dif-
ferential equations: by trajectory method and the Lyapunov direct method.

3.1. Stability Analysis linear fractional differential equation. In this sec-
tion, we consider the linear fractional differential equations defined by the following
relation

DCF
α x = Ax (18)

where x ∈ Rn is the state variable and A ∈ Rn×n. The equation (18) can be ex-
pressed using the Caputo fractional derivative or the Riemann-Liouville fractional
derivative. The study related to these categories of fractional differential equa-
tions is already discussed in the literature, see in [26]. It was provided if the frac-
tional linear differential equation described by Caputo fractional derivative and the
Riemann-Liouville fractional derivative satisfies the condition that |arg(λ(A)| > απ

2
then its origin is asymptotically stable. The main interest in this section is to see
what is the modification obtained when we study the fractional linear differential
equation with Caputo-Fabrizio fractional derivative Eq. (18), using the trajectory
method. Does this above condition change? We will investigate to bring some pre-
cision to this question. Let’s give the first main result of this paper. We establish
the asymptotic stability of the fractional linear differential equation (18) using the
trajectory method. Note that the trajectory method means that we get the solution
of the fractional differential equation; we analyze it respecting the stability notions.

Theorem 1. Let x = 0 be an equiolibrium point for the fractional differential
equation (18). If the matrix In + (α− 1)A is invertible and the condition∣∣∣arg(λ(αA (In + (α− 1)A)

−1
)
∣∣∣ > απ

2
(19)

is hold, then the trivial solution of the fractional linear differential equation defined
by Eq. (18) is asymptotically stable.

Proof : We first apply the Laplace transform, it follows that

L
(
DCF

c x(t)
)

= AL (x(t))

sL{x(t)} (s)− η

s+ α (1− s)
= AL (x(t))

sL{x(t)} (s)− η = sAL (x(t)) + α (1− s)AL (x(t))

[s (In + (α− 1)A)− αA]L{x(t)} (s) = η[
sIn − αA (In + (α− 1)A)

−1
]
L{x(t)} (s) = η (In + (α− 1)A)

−1

Lρ (x(t)) =
η (In + (α− 1)A)

−1

sIn − αA (In + (α− 1)A)
−1
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Applying the inverse of Laplace transform on previous equation, we obtain that

x(t) = η (In + (α− 1)A)
−1

exp
(
αA (In + (α− 1)A)

−1
t
)

= η̃ exp
(
αA (In + (α− 1)A)

−1
t
)

where η̃ = η (In + (α− 1)A)
−1

is a vector. Doing same reasoning as in [26], we
obtain that

lim
t→+∞

x(t) = 0

when the condition
∣∣∣arg(λ(αA (In + (α− 1)A)

−1
)
∣∣∣ > απ

2 is hold.

The condition in Theorems 1 can become more simple by using the Lyapunov
direct method, as we will see in the next section. Note that using trajectories, it
is not trivial to notice the condition |arg(λ(A)| > απ

2 is necessary and sufficient for
the asymptotic stability of the fractional linear differential equations described by
the Caputo-Fabrizio fractional derivative.

3.2. Stability Analysis with Lyapunov direct method. The use of the trajec-
tories to prove the asymptotic stability is not all time possible due to the complexity
of some fractional differential equations. It is for that in this section; we investigate
to find the Lyapunov characterization of the asymptotic stability of the fractional
differential equations defined by the Caputo-Fabrizio fractional derivative. We first
begin to characterize the exponential stability.

Theorem 2. Let x = 0 be an equilibrium point for the fractional differential
equation (16) in the Caputo-Fabrizio sense. Let’s there exists a positive function
V : R+ × Rn −→ R be continuous and differentiable, and satisfies the conditions
enumerated as follows

(1) ∥x(t)∥a ≤ V (t, x)
(2) DCF

α V (t, x) ≤ −kV (t, x)

where k is non-negative constant, then the origin of the fractional differential equa-
tion (16) is exponential stable.

Note that in the previous theorem, we suppose the Caputo-Fabrizio fractional
derivative of the function V exists.

Proof : It follows from assumption (2) the following relationship

DCF
α V (t, x) ≤ −kV (t, x)

To saturate the above constraint, we have known that, there exist a continuous
positive function m such that the following equation is hold

DCF
α V (t, x) = −kV (t, x)−m(t)

From which there exist κ such that we obtain the following relationship

V (t) ≤ V (t0)

1 + k (1− α)
exp

(
− kα

1 + k (1− α)
t

)
−κ

∫ t

0

exp

(
− kα

1 + k (1− α)
(t− s)

)
m(s)ds.

Due to the negativity of the second term, we have the following relation

V (t) ≤ V (t0)

1 + k (1− α)
exp

(
− kα

1 + k (1− α)
t

)
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From the first assumption (1), we have the following relationship

∥x(t)∥a ≤ V (t) ≤ V (t0)

1 + k (1− α)
exp

(
− kα

1 + k (1− α)
t

)
Which in turn implies that

∥x(t)∥ ≤
{

V (t0)

1 + k (1− α)

}1/a

exp

(
− kα

a+ ka (1− α)
t

)
(20)

From which it follows that the origin of the fractional differential equation in
Caputo-Fabrizio sense (16) is exponentially stable.

We note with Theorem 2 that we haven’t obtained the Mittag-Leffler stability
or the fractional exponential stability; we recover the exponential stability. This
conclusion can surprise well, but that is because the used fractional derivative has
an exponential kernel.

Theorem 3. Let’s x = 0 be an equilibrium point for the fractional differential
equation (16) in the Caputo-Fabrizio sense. Let’s there exists a positive Lyapunov
candidate function V : R+ × Rn −→ R satisfying the conditions enumerated as
follows

(1) V (t, x) has Caputo-Fabrizio fractional derivative of order α for all t > t0 ≥
0

(2) DCF
α V (t, x) ≤ −χ (∥x∥)

Then the origin of the fractional differential equation (16) is globally uniformly
asymptotically stable.

Proof : From the fact that V is a Lyapunov candidate function, then there exists
a class K∞ functions χ1, χ2 such that the following relation is holds χ1 (∥x∥) ≤
V (t, x) ≤ χ2 (∥x∥) . Combining it with assumption (2), we get that

DCF
α V (t, x) ≤ −χ

(
χ−1
2 (V (t, x)

)
.

There exist a class KL function µ [27] such that we have the following relation

V (t, x) ≤ µ (χ2(∥x0∥), t− t0) .

Using the fact that V is a Lyapunov candidate function, we obtain the following
relationship

χ1 (∥x∥) ≤ µ (χ3(∥x0∥), t− t0) .

Which in turn under assumption that χ−1
1 (a+ b) ≤ χ−1

1 (2a)+χ−1
1 (2b) as χ1 ∈ K∞

and a, b ∈ R, implies the following relation

∥x(t)∥ ≤ χ−1
1 (2µ (χ3(∥x0∥), t− t0))

We suppose that the function β(∥x0∥ , t − t0)) = χ−1
1 (2µ (χ2(∥x0∥), t− t0)), which

is clearly a class KL function. We finally obtain that

∥x(t)∥ ≤ β(∥x0∥ , t− t0))

That corresponds to the global uniform asymptotic stability of the origin of the
fractional differential equation in Caputo-Fabrizio sense defined by Eq. (16).

We finish this section by a particular Lyapunov characterization of the exponen-
tial stability of the fractional differential equation in Caputo-Fabrizio sense.
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Theorem 4. Let’s x = 0 be an equilibrium point for the fractional differen-
tial equation (16) in Caputo-Fabrizio sense. Let’s there exists a positive function
V : R+ × Rn −→ R be continuous and differentiable, and satisfies the conditions
enumerated as follows

(1) a ∥x∥2 ≤ V (t, x) ≤ b ∥x∥2

(2) DCF
α V (t, x) ≤ −c ∥x∥2

Then the origin of the fractional differential equation (16) is exponentially stable.

Note that in the previous theorem, we suppose the Caputo-Fabrizio fractional
derivative of the function V exists.

Proof : It comes from the assumption (2) the following relation

DCF
α V (t, x) ≤ −c ∥x∥2 ≤ −c

b
V (t, x)

Using the same procedure as in Theorem 2, we get that

V (t) ≤ V (t0)

1 + c
b (1− α)

exp

(
−

c
bα

1 + c
b (1− α)

t

)
Under first assumption, we have the following relationship

a ∥x(t)∥2 ≤ V (t0)

1 + c
b (1− α)

exp

(
−

c
bα

1 + c
b (1− α)

t

)
From which we obtain that

∥x(t)∥ ≤
{

V (t0)

a+ ca
b (1− α)

}1/2

exp

(
−

c
bα

2 + 2c
b (1− α)

t

)
That corresponds to the exponential stability of the origin of the fractional differ-
ential equation in Caputo-Fabrizio sense defined by equation (16).

4. Illustrative examples of the mains results

In this section, we give some examples to illustrate the main results of this
paper. The examples given in this section show the Lyapunov characterization
of the stability of the fractional differential equations in Caputo-Fabrizio sense,
particularly. We first consider the fractional differential equation defined by

DCF
α x = Ax (21)

where x ∈ Rn is a state variable and A ∈ Rn×n. The objective with this class
of fractional differential equation is to prove that the condition |arg(λ(A)| > απ

2
is necessary and sufficient for the asymptotic stability. To this end, we use the
Lyapunov direct method to illustrate it. Let’s the Lyapunov function defined by
V (t, x) = xTPx where the matrix P = In is a square, constant, positive, and
symmetric matrix. Calculating the α-derivative of the Lyapunov function V along
the trajectories of the fractional linear differential equation (21), we get under
Lemma 2, that

DCF
α V (t, x) ≤ 2xTPDCF

α x = [Ax]
T
Px+ xTP [Ax]

= xTATPx+ xTPAx

= xT
(
ATP + PA

)
x

≤ −λmin(Q) ∥x∥2
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We known that it derives from the condition |arg(λ(A)| > απ
2 the existence of a

positive definite matrix Q satisfying the following condition ATP +PA = −Q, thus
we have

DCF
α V (t, x) ≤ 2xTPDCF

α x = xT
(
ATP + PA

)
x

= −xTQx

≤ −λmin(Q) ∥x∥2

where λmin(Q) is the minimum eigenvalue of the matrix Q. It follows from Theorem
4 that the fractional linear differential equation in Caputo-Fabrizio sense (21) is
exponentially stable, when the condition |arg(λ(A)| > απ

2 is held.
For the second example let’s analyze the stability of the fractional differential

equation defined by

DCF
α x = Ax+Bx (22)

where x ∈ Rn is the state variable, A is an Hurwitz matrix in Rn×n, B is an matrix
in Rn×n. We choose the same Lyapunov function as in the previous section defined
by V (t, x) = xTPx where the matrix P satisfies the condition that ATP+PA = −Q
and P = In. The α-derivative of V along the trajectories of the perturbed fractional
linear differential equation in Caputo-Fabrizio sense (22) give the following relation

DCF
α V (t, x) ≤ 2xTPDCF

α x = [Ax+Bx]
T
Px+ xTP [Ax+Bx]

= xTATPx+ (Bx)TPx+ xTPAx+ xTP (Bx)

= xT
(
ATP + PA

)
x+ (Bx)TPx+ xTP (Bx)

≤ −λmin(Q) ∥x∥2 + 2λmax(P ) ∥B∥ ∥x∥2

= − [λmin(Q)− 2λmax(P ) ∥B∥] ∥x∥2

where λmin(Q) is the minimum eigenvalue of the matrix Q and λmax(P ) the maxi-
mum eigenvalue of the matrix P. It follows from Theorem 4, the exponential stabil-
ity of the perturbed fractional linear differential equation in Caputo-Fabrizio sense
(22), when the condition λmin(Q)− 2λmax(P ) ∥B∥ > 0 is held.

5. Conclusion

We have discussed in this paper the stability of the fractional differential equa-
tion defined with the Caputo-Fabrizio fractional derivative. We have noticed with
Caputo-Fabrizio fractional derivative, we obtain exponential stability. We also see
the solution to the Cauchy problem is also exponential. Lyapunov characterization
of the asymptotic stability and exponential stability were proposed, and examples
to illustrate theses characterizations were given.
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