INITIAL BOUNDS FOR A CLASS OF bi-UNIVALENT FUNCTIONS OF COMPLEX ORDER ASSOCIATED WITH CHEBYSHEV POLYNOMIALS

M. K. AOUF, A. O. MOSTAFA, F. Y. AL-QUHALI

Abstract

In this paper, we obtain initial coefficient bounds for functions belong to a subclass of $b i$-univalent functions by using the Salagean differential operator and Chebyshev polynomials and also we find Fekete-Szego inequalities for functions in this class.

1. Introduction

Let S be the class of analytic and univalent functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}, z \in \mathbb{U}=\{z: z \in \mathbb{C}:|z|<1\} \tag{1}
\end{equation*}
$$

For f and g analytic in \mathbb{U}, we say that the function f is subordinate to g in \mathbb{U} $(f(z) \prec g(z))$ if there exists an analytic Schwarz function $w(z)$ in \mathbb{U}, with $w(0)=0$ and $|w(z)|<1 \quad(z \in \mathbb{U})$, such that $f(z)=g(w(z))$ (see [19]).

Indeed, it is known that

$$
f(z) \prec g(z) \quad(z \in \mathbb{U}) \Rightarrow f(0)=g(0) \text { and } f(\mathbb{U}) \subset g(\mathbb{U})
$$

and if g is univalent in \mathbb{U}, then

$$
f(z) \prec g(z) \quad(z \in \mathbb{U}) \Leftrightarrow f(0)=g(0) \text { and } f(\mathbb{U}) \subset g(\mathbb{U})
$$

It is well known (see Duren [13]) that every function $f \in S$ has an inverse map f^{-1}, defined by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{o}(f) ; r_{o}(f) \geq \frac{1}{4}\right)
$$

In fact, the inverse function $g=f^{-1}$ is given by

$$
\begin{equation*}
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots \tag{2}
\end{equation*}
$$

2010 Mathematics Subject Classification. 30C45.
Key words and phrases. Analytic functions, subordination, bi-univalent functions, coefficient bounds, Chebyshev polynomial, Fekete-Szego problem.

Submitted Oct. 29, 2019.

A function $f \in S$ is said to be $b i$-univalent function in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U}. Denote by Δ the class of $b i$-univalent functions in \mathbb{U}. For a history and examples of functions which are (or which are not) in the class Δ, together with various other properties one can refer to $[1,9,11,15,17,21,22,24,27]$.

The Chebyshev polynomials of the first and second kinds are well known and defined by (see $[2,10,12,14,16,18]$)

$$
T_{k}(t)=\cos k \theta \quad \text { and } \quad U_{k}(t)=\frac{\sin (k+1) \theta}{\sin \theta} \quad(-1<t<1)
$$

where the degree of the polynomial is k and $t=\cos \theta$.
Consider the function

$$
H(z, t)=\frac{1}{1-2 t z+z^{2}}
$$

Note that if $t=\cos \alpha, \alpha \in\left(\frac{-\pi}{3}, \frac{\pi}{3}\right)$, then for all $z \in \mathbb{U}$

$$
\begin{align*}
H(z, t) & =1+\sum_{k=1}^{\infty} \frac{\sin (k+1) \alpha}{\sin \alpha} z^{k} \\
& =1+2 \cos \alpha z+\left(3 \cos ^{2} \alpha-\sin ^{2} \alpha\right) z^{2}+\ldots \tag{3}
\end{align*}
$$

Thus, we have [26]

$$
\begin{equation*}
H(z, t)=1+U_{1}(t) z+U_{2}(t) z^{2}+\ldots \quad(z \in \mathbb{U}, t \in(-1,1)) \tag{4}
\end{equation*}
$$

where $U_{k-1}=\frac{\sin (k \arccos t)}{\sqrt{1-t^{2}}}$, for $k \in \mathbb{N}=\{1,2, \ldots\}$, are the second kind of the Chebyshev polynomials. Also, it is known that

$$
\begin{equation*}
U_{k}(t)=2 t U_{k-1}(t)-U_{k-2}(t), \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{1}(t)=2 t, \quad U_{2}(t)=4 t^{2}-1, \quad U_{3}(t)=8 t^{3}-4 t, \quad U_{4}(t)=16 t^{4}-12 t^{2}+1, \ldots \tag{6}
\end{equation*}
$$

The Chebyshev polynomials $T_{k}(t), t \in[-1,1]$, of the first kind have the generating function of the form

$$
\begin{equation*}
\sum_{k=0}^{\infty} T_{k}(t) z^{k}=\frac{1-t z}{1-2 t z+z^{2}} \quad(z \in \mathbb{U}) \tag{7}
\end{equation*}
$$

The first kind of Chebyshev polynomial $T_{k}(t)$ and second kind of Chebyshev polynomial $U_{k}(t)$ are connected by:

$$
\begin{equation*}
\frac{d T_{k}(t)}{d t}=k U_{k-1}(t) ; \quad T_{k}(t)=U_{k}(t)-t U_{k-1}(t) ; \quad 2 T_{k}(t)=U_{k}(t)-U_{k-2}(t) \tag{8}
\end{equation*}
$$

For $f(z) \in S$, the Salagean operator is defined by (see [23] and $[3,4,5,6,7,8]$)

$$
D^{1} f(z)=D f(z)=z f^{\prime}(z)
$$

$$
\begin{align*}
D^{n} f(z) & =D\left(D^{n-1} f(z)\right)=z\left(D^{n-1} f(z)\right)^{\prime} \\
& =z+\sum_{k=2}^{\infty} k^{n} a_{k} z^{k} \quad\left(n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}, \mathbb{N}=\{1,2, \ldots\}\right) \tag{9}
\end{align*}
$$

By using the Salagean differential operator for g of the form (2), Vijaya et al. [25] (also see [20]) defined $D^{n} g(w)$ as follows:

$$
\begin{equation*}
D^{n} g(w)=w-a_{2} 2^{n} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) 3^{n} w^{3}+\ldots . \tag{10}
\end{equation*}
$$

Definition 1. For $\alpha \geq 0, b \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ and $t \in(-1,1)$, a function $f \in \Delta$ of form (1) is said to be in the class $R_{\Delta}^{n}(b, \alpha, t)$ if the following subordinations hold:

$$
\begin{equation*}
1+\frac{1}{b}\left[\frac{z\left(D^{n} f(z)\right)^{\prime}+\alpha z^{2}\left(D^{n} f(z)\right)^{\prime \prime}}{(1-\alpha) D^{n} f(z)+\alpha z\left(D^{n} f(z)\right)^{\prime}}-1\right] \prec H(z, t)=\frac{1}{1-2 t z+z^{2}}, \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{b}\left[\frac{z\left(D^{n} g(w)\right)^{\prime}+\alpha z^{2}\left(D^{n} g(w)\right)^{\prime \prime}}{(1-\alpha) D^{n} g(w)+\alpha z\left(D^{n} g(w)\right)^{\prime}}-1\right] \prec H(w, t)=\frac{1}{1-2 t w+w^{2}}, \tag{12}
\end{equation*}
$$

where $z, w \in \mathbb{U}$ and g is given by (2).
For suitable choices of n, α and b, we obtain:
(i) $R_{\Delta}^{0}(b, \alpha, t)=R_{\Delta}(b, \alpha, t)$, where

$$
1+\frac{1}{b}\left[\frac{z f^{\prime}(z)+\alpha z^{2} f^{\prime \prime}(z)}{(1-\alpha) f(z)+\alpha z f^{\prime}(z)}-1\right] \prec H(z, t)=\frac{1}{1-2 t z+z^{2}}
$$

and

$$
1+\frac{1}{b}\left[\frac{z g^{\prime}(w)+\alpha z^{2} g^{\prime \prime}(w)}{(1-\alpha) g(w)+\alpha z g^{\prime}(w)}-1\right] \prec H(w, t)=\frac{1}{1-2 t w+w^{2}}
$$

$(i i) R_{\Delta}^{n}(b, 0, t)=R_{\Delta}^{n *}(b, t)$, if

$$
1+\frac{1}{b}\left[\frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}-1\right] \prec H(z, t)=\frac{1}{1-2 t z+z^{2}}
$$

and

$$
1+\frac{1}{b}\left[\frac{z\left(D^{n} g(w)\right)^{\prime}}{D^{n} g(w)}-1\right] \prec H(w, t)=\frac{1}{1-2 t w+w^{2}}
$$

(iii) $R_{\Delta}^{n}(b, 1, t)=R_{\Delta}^{n}(b, t)$, if

$$
1+\frac{1}{b} \frac{z\left(D^{n} f(z)\right)^{\prime \prime}}{\left(D^{n} f(z)\right)^{\prime}} \prec H(z, t)=\frac{1}{1-2 t z+z^{2}}
$$

and

$$
1+\frac{1}{b} \frac{z\left(D^{n} g(w)\right)^{\prime \prime}}{\left(D^{n} g(w)\right)^{\prime}} \prec H(w, t)=\frac{1}{1-2 t w+w^{2}}
$$

(iv) $R_{\Delta}^{0}(1, \alpha, t)=R_{\Delta}(\alpha, t)$, if

$$
\frac{z f^{\prime}(z)+\alpha z^{2} f^{\prime \prime}(z)}{(1-\alpha) f(z)+\alpha z f^{\prime}(z)} \prec H(z, t)=\frac{1}{1-2 t z+z^{2}},
$$

and

$$
\frac{z g^{\prime}(w)+\alpha z^{2} g^{\prime \prime}(w)}{(1-\alpha) g(w)+\alpha z g^{\prime}(w)} \prec H(w, t)=\frac{1}{1-2 t w+w^{2}},
$$

(v) $R_{\Delta}^{n}(1,0, t)=R_{\Delta}^{n *}(t)$, if

$$
\frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)} \prec H(z, t)=\frac{1}{1-2 t z+z^{2}}, \prec H(z, t)=\frac{1}{1-2 t z+z^{2}}
$$

and

$$
\frac{z\left(D^{n} g(w)\right)^{\prime}}{D^{n} g(w)} \prec H(w, t)=\frac{1}{1-2 t w+w^{2}},
$$

(vi) $R_{\Delta}^{n}(1,1, t)=R_{\Delta}^{n}(t)$, if

$$
\frac{z\left(D^{n} f(z)\right)^{\prime \prime}}{\left(D^{n} f(z)\right)^{\prime}} \prec H(z, t)=\frac{1}{1-2 t z+z^{2}}
$$

and

$$
\frac{z\left(D^{n} g(w)\right)^{\prime \prime}}{\left(D^{n} g(w)\right)^{\prime}} \prec H(w, t)=\frac{1}{1-2 t w+w^{2}}
$$

(vii) $R_{\Delta}^{n}\left((1-\lambda) e^{-i \theta} \cos \theta, \alpha, t\right)=R_{\Delta}^{n}(\lambda, \theta, \alpha, t)\left(0 \leq \lambda<1,|\theta|<\frac{\pi}{2}\right)$, if

$$
e^{i \theta}\left[\frac{z\left(D^{n} f(z)\right)^{\prime}+\alpha z^{2}\left(D^{n} f(z)\right)^{\prime \prime}}{(1-\alpha) D^{n} f(z)+\alpha z\left(D^{n} f(z)\right)^{\prime}}\right] \prec H(z, t)(1-\lambda) \cos \theta+\lambda \cos \theta+i \sin \theta,
$$

and

$$
e^{i \theta}\left[\frac{z\left(D^{n} g(w)\right)^{\prime}+\alpha z^{2}\left(D^{n} g(w)\right)^{\prime \prime}}{(1-\alpha) D^{n} g(w)+\alpha z\left(D^{n} g(w)\right)^{\prime}}\right] \prec H(w, t)(1-\lambda) \cos \theta+\lambda \cos \theta+i \sin \theta
$$

In this paper, we obtain the initial coefficients bounds and Fekete-Szego problem for functions in the class $R_{\Delta}^{n}(b, \alpha, t)$.

2. COEFFICIENT BOUNDS FOR THE FUNCTION CLASS $R_{\Delta}^{n}(b, \alpha, t)$

Unless indicated, we assume that $\alpha \geq 0, t \in(-1,1), f$ given by (1.1) and $b \in \mathbb{C}^{*}$.
Theorem 1. Let $f \in R_{\Delta}^{n}(b, \alpha, t)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{|b| 2 t \sqrt{2 t}}{\sqrt{\left|\left\{4 t^{2}\left\{b\left[(2+4 \alpha) 3^{n}-(1+\alpha)^{2} 2^{2 n}\right]-(1+\alpha)^{2} 2^{2 n}\right\}+(1+\alpha)^{2} 2^{2 n}\right\}\right|}} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{4 t^{2}|b|^{2}}{(1+\alpha)^{2} 2^{2 n}}+\frac{2 t|b|}{(2+4 \alpha) 3^{n}} \tag{14}
\end{equation*}
$$

Proof. Let $f \in R_{\Delta}^{n}(b, \alpha, t)$ and $g=f^{-1}$. From (11) and (12), we have

$$
\begin{equation*}
1+\frac{1}{b}\left[\frac{z\left(D^{n} f(z)\right)^{\prime}+\alpha z^{2}\left(D^{n} f(z)\right)^{\prime \prime}}{(1-\alpha) D^{n} f(z)+\alpha z\left(D^{n} f(z)\right)^{\prime}}-1\right]=1+U_{1}(t) p(z)+U_{2}(t) p^{2}(z)+\ldots \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{b}\left[\frac{z\left(D^{n} g(w)\right)^{\prime}+\alpha z^{2}\left(D^{n} g(w)\right)^{\prime \prime}}{(1-\alpha) D^{n} g(w)+\alpha z\left(D^{n} g(w)\right)^{\prime}}-1\right]=1+U_{1}(t) q(w)+U_{2}(t) q^{2}(w)+\ldots \tag{16}
\end{equation*}
$$

for some analytic functions

$$
\begin{gather*}
p(z)=c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots \quad(z \in \mathbb{U}), \tag{17}\\
q(w)=d_{1} w+d_{2} w^{2}+d_{3} w^{3}+\ldots \quad(w \in \mathbb{U}) \tag{18}
\end{gather*}
$$

such that $p(0)=q(0)=0,|p(z)|<1 \quad(z \in \mathbb{U})$ and $|q(w)|<1 \quad(w \in \mathbb{U})$. It is well known that if $|p(z)|<1$ and $|q(w)|<1$, then

$$
\begin{equation*}
\left|c_{j}\right| \leq 1 \text { and }\left|d_{j}\right| \leq 1 \text { for all } j \in \mathbb{N} \tag{19}
\end{equation*}
$$

From (15) - (18), we have

$$
\begin{align*}
& \frac{1}{b}\left[\frac{z\left(D^{n} f(z)\right)^{\prime}+\alpha z^{2}\left(D^{n} f(z)\right)^{\prime \prime}}{(1-\alpha) D^{n} f(z)+\alpha z\left(D^{n} f(z)\right)^{\prime}}-1\right] \\
= & \frac{1}{b}\left\{(1+\alpha) 2^{n} a_{2} z+\left[(2+4 \alpha) 3^{n} a_{3}-(1+\alpha)^{2} 2^{2 n} a_{2}^{2}\right] z^{2}+\ldots\right\} \\
= & U_{1}(t) c_{1} z+\left[U_{1}(t) c_{2}+U_{2}(t) c_{1}^{2}\right] z^{2}+\ldots \tag{20}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{1}{b}\left[\frac{z\left(D^{n} g(w)\right)^{\prime}+\alpha z^{2}\left(D^{n} g(w)\right)^{\prime \prime}}{(1-\alpha) D^{n} g(w)+\alpha z\left(D^{n} g(w)\right)^{\prime}}-1\right] \\
= & \frac{1}{b}\left\{-(1+\alpha) 2^{n} a_{2} w+\right. \\
& \left.\left\{\left[(4+8 \alpha) 3^{n}-(1+\alpha)^{2} 2^{2 n}\right] a_{2}^{2}-(2+4 \alpha) 3^{n} a_{3}\right\} w^{2}+\ldots\right\} \\
= & U_{1}(t) d_{1} w+\left[U_{1}(t) d_{2}+U_{2}(t) d_{1}^{2}\right] w^{2}+\ldots . \tag{21}
\end{align*}
$$

Equating the coefficients in (20) and (21) we get

$$
\begin{gather*}
\frac{1}{b}(1+\alpha) 2^{n} a_{2}=U_{1}(t) c_{1} \tag{22}\\
\frac{1}{b}\left[(2+4 \alpha) 3^{n} a_{3}-(1+\alpha)^{2} 2^{2 n} a_{2}^{2}\right]=U_{1}(t) c_{2}+U_{2}(t) c_{1}^{2} \tag{23}\\
-\frac{1}{b}(1+\alpha) 2^{n} a_{2}=U_{1}(t) d_{1} \tag{24}
\end{gather*}
$$

and
$\frac{1}{b}\left\{\left[(4+8 \alpha) 3^{n}-(1+\alpha)^{2} 2^{2 n}\right] a_{2}^{2}-(2+4 \alpha) 3^{n} a_{3}\right\}=U_{1}(t) d_{2}+U_{2}(t) d_{1}^{2}$.
From (22) and (24) we obtain

$$
\begin{equation*}
c_{1}=-d_{1} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{b^{2}}(1+\alpha)^{2} 2^{2 n+1} a_{2}^{2}=U_{1}^{2}(t)\left(c_{1}^{2}+d_{1}^{2}\right) \tag{27}
\end{equation*}
$$

Also, (23) and (25) yield

$$
\begin{equation*}
\frac{1}{b}\left[(4+8 \alpha) 3^{n}-(1+\alpha)^{2} 2^{2 n+1}\right] a_{2}^{2}=U_{1}(t)\left(c_{2}+d_{2}\right)+U_{2}(t)\left(c_{1}^{2}+d_{1}^{2}\right) \tag{28}
\end{equation*}
$$

which by (??), leads to

$$
\begin{equation*}
\left[(4+8 \alpha) 3^{n}-(1+\alpha)^{2} 2^{2 n+1}-\frac{U_{2}(t) 2^{2 n+1}}{b U_{1}^{2}(t)}(1+\alpha)^{2}\right] a_{2}^{2}=b U_{1}(t)\left(c_{2}+d_{2}\right) . \tag{29}
\end{equation*}
$$

From (6), (19) and (29), we have (13).
Next, by subtracting (??) from (23), we have

$$
\frac{2}{b}(2+4 \alpha) 3^{n}\left(a_{3}-a_{2}^{2}\right)=U_{1}(t)\left(c_{2}-d_{2}\right)+U_{2}(t)\left(c_{1}^{2}-d_{1}^{2}\right)
$$

Further, in view of (26), we obtain

$$
\begin{equation*}
a_{3}=a_{2}^{2}+\frac{b U_{1}(t)}{2(2+4 \alpha) 3^{n}}\left(c_{2}-d_{2}\right) . \tag{30}
\end{equation*}
$$

Hence using (27) and applying (6), we get (14).

This completes the proof of Theorem 1.
Taking $n=0$ in Theorem 1, we get the following consequence.
Corollary 1. Let $f \in \Delta$ be in the class $R_{\Delta}(b, \alpha, t)$. Then

$$
\left|a_{2}\right| \leq \frac{|b| 2 t \sqrt{2 t}}{\sqrt{\left|\left\{4 t^{2}\left\{b\left[(2+4 \alpha)-(1+\alpha)^{2}\right]-(1+\alpha)^{2}\right\}+(1+\alpha)^{2}\right\}\right|}}
$$

and

$$
\left|a_{3}\right| \leq \frac{4 t^{2}|b|^{2}}{(1+\alpha)^{2}}+\frac{2 t|b|}{(2+4 \alpha)}
$$

Taking $\alpha=1$ in Corollary 1 , we get the following consequence.
Corollary 2. Let $f \in \Delta$ be in the class $R_{\Delta}(b, t)$. Then

$$
\left|a_{2}\right| \leq \frac{|b| t \sqrt{2 t}}{\sqrt{\left|t^{2}[2 b-4]+1\right|}}
$$

and

$$
\left|a_{3}\right| \leq t^{2}|b|^{2}+\frac{t|b|}{3}
$$

Taking $b=e^{-i \theta}(1-\lambda) \cos \theta\left(0 \leq \lambda<1,|\theta|<\frac{\pi}{2}\right)$ in Corollary 2, we get the following consequence.

Corollary 3. Let $f \in \Delta$ be in the class $R_{\Delta}(\lambda, \theta, t)$. Then

$$
\left|a_{2}\right| \leq \frac{t \sqrt{2 t}(1-\lambda) \cos \theta}{\sqrt{\left|t^{2}[2(1-\lambda) \cos \theta-4]+1\right|}},
$$

and

$$
\left|a_{3}\right| \leq t^{2}(1-\lambda)^{2} \cos ^{2} \theta+\frac{t(1-\lambda) \cos \theta}{3}
$$

Taking $\lambda=0$ in Corollary 3, we get the following consequence.
Corollary 4. Let $f \in \Delta$ be in the class $R_{\Delta}(\theta, t)$. Then

$$
\left|a_{2}\right| \leq \frac{t \sqrt{2 t} \cos \theta}{\sqrt{\left|t^{2}[2 \cos \theta-4]+1\right|}},
$$

and

$$
\left|a_{3}\right| \leq t^{2} \cos ^{2} \theta+\frac{t \cos \theta}{3}
$$

3. FEKETE- SZEGO INEQUALITIES FOR THE CLASS $R_{\Delta}^{n}(b, \alpha, t)$

Theorem 2. If $f \in R_{\Delta}^{n}(b, \alpha, t)$ and $\xi \in \mathbb{R}$, then

$$
\left|a_{3}-\xi a_{2}^{2}\right| \leq\left\{\begin{array}{c}
\frac{2|b| t}{(2+4 \alpha) 3^{n}}, \tag{31}\\
8|b|^{2}|\xi-1| t^{3} \\
\frac{|\xi-1| \leq k}{\left|\left\{4 t^{2}\left\{b\left[(2+4 \alpha) 3^{n}-(1+\alpha)^{2} 2^{2 n}\right]-(1+\alpha)^{2} 2^{2 n}\right\}+(1+\alpha)^{2} 2^{2 n}\right\}\right|}, \quad|\xi-1| \geq k
\end{array}\right.
$$

where $k=\frac{\left|\left\{4 t^{2}\left\{b\left[(2+4 \alpha) 3^{n}-(1+\alpha)^{2} 2^{2 n}\right]-(1+\alpha)^{2} 2^{2 n}\right\}+(1+\alpha)^{2} 2^{2 n}\right\}\right|}{4 t^{2}|b|(2+4 \alpha) 3^{n}}$.
Proof. From (29) and (30)

$$
\begin{align*}
\left(a_{3}-\xi a_{2}^{2}\right) & =(1-\xi)\left[\frac{b^{2} U_{1}^{3}(t)\left(c_{2}+d_{2}\right)}{b U_{1}^{2}(t)\left[(4+8 \alpha) 3^{n}-(1+\alpha)^{2} 2^{2 n+1}\right]-U_{2}(t)(1+\alpha)^{2} 2^{2 n+1}}\right]+\frac{b U_{1}(t)}{2(2+4 \alpha) 3^{n}}\left(c_{2}-d_{2}\right) \\
& =b U_{1}(t)\left[\left(h(\xi)+\frac{1}{2(2+4 \alpha) 3^{n}}\right) c_{2}+\left(h(\xi)-\frac{1}{2(2+4 \alpha) 3^{n}}\right) d_{2}\right] \tag{32}
\end{align*}
$$

where

$$
h(\xi)=\frac{b(1-\xi) U_{1}^{2}(t)}{b U_{1}^{2}(t)\left[(4+8 \alpha) 3^{n}-(1+\alpha)^{2} 2^{2 n+1}\right]-U_{2}(t)(1+\alpha)^{2} 2^{2 n+1}} .
$$

Then, by taking the modulus of (32) and considering (6), we have

$$
\left|a_{3}-\xi a_{2}^{2}\right| \leq\left\{\begin{array}{cc}
\frac{2|b| t}{(2+4 \alpha) 3^{n}}, & 0 \leq|h(\xi)| \leq \frac{1}{2(2+4 \alpha) 3^{n}} \\
4|b||h(\xi)| t, & |h(\xi)| \geq \frac{1}{2(2+4 \alpha) 3^{n}}
\end{array}\right.
$$

This completes the proof of Theorem 2.
Taking $\xi=1$ in Theorem 2, we get the following consequence.
Corollary 5. Let the function $f \in \Delta$ given by (1) be in the class $R_{\Delta}^{n}(b, \alpha, t)$. Then

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{2|b| t}{(2+4 \alpha) 3^{n}}
$$

Taking $\alpha=1$ and $n=0$ in Corollary 5, we get the following consequence.
Corollary 6. For $t \in(-1,1)$, let the function $f \in \Delta$ given by (1) be in the class $R_{\Delta}(b, t)$. Then

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{t|b|}{3}
$$

Taking $b=e^{-i \theta}(1-\lambda) \cos \theta\left(0 \leq \lambda<1,|\theta|<\frac{\pi}{2}\right)$ in Corollary 6 , we get the following consequence.

Corollary 7. For $t \in(-1,1)$, let the function $f \in \Delta$ given by (1) be in the class $R_{\Delta}(\lambda, \theta, t)$. Then

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{t(1-\lambda) \cos \theta}{3}
$$

Taking $\lambda=0$ in Corollary 7, we get the following consequence.
Corollary 8. For $t \in(-1,1)$, let the function $f \in \Delta$ given by (1) be in the class $R_{\Delta}(\theta, t)$. Then

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{t \cos \theta}{3}
$$

Acknowledgments

The authors express their sincere thanks to the referee for his valuable comments and suggestions.

References

[1] R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramanian, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25(3), 344-351, 2012.
[2] S. Altinkaya and S. Yalcin, Chebyshev polynomial coefficient bounds for a subclass of $b i-$ univalent functions, arXiv:1605.08224v1 [math. CV], 1-8, 2016.
[3] M. K. Aouf, Neighborhoods of certain classes of analytic functions with negative coefficients, Internat. J. Math. Math. Sci., 2006, Article ID38258, 1-6, 2006.
[4] M. K. Aouf, Subordination properties for a certain class of analytic functions defined by Salagean operator, Appl. Math. Letters, 22, 1581-1585, 2009.
[5] M. K. Aouf, A subclass of uniformly convex functions with negative coefficients, Math., Tome 52(75)(2), 99-111, 2010.
[6] M. K. Aouf, H. E. Darwish and A. A. Attiya, On a class of certain analytic functions of complex order, Indian J. Pure Appl. Math., 33(10), 1443-1452, 2001.
[7] M. K. Aouf, H. M. Hossen and Y. Lashin, On certain families of analytic functions with negative coefficients, Indian J. Pure Appl. Math., 31(8), 999-1015, 2000.
[8] M. K. Aouf and H. M. Srivastava, Some families of starlike functions with negative coefficients, J. Math. Anal. Appl., 203, 762-790, 1996.
[9] S. Bulut, Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math., 43(2), 59-65, 2013.
[10] S. Bulut, Coefficient estimates for a class of analytic and $b i-$ univalent functions related to pseudo-starlike functions, Miskole Math. Notes, 19(1), 149-156, 2018.
[11] M. Caglar, H. Orhan and N. Yagmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat, 27(7), 1165-1171, 2013.
[12] E. H. Doha, The first and second kind Chebyshev coefficients of the moments of the general order derivative of an infinitely differentiable function, Int. J. Comput. Math., 51, 21-35, 1994.
[13] P. L. Duren, Univalent Functions, Grundlhren der Mathematischen Wissenschaften 259, Springer, New York, 1983.
[14] J. Dziok, R. K. Raina and J. Sokol, Application of Chebyshev polynomials to classes of analytic functions, C. R. Math. Sci. Paris 353, (5), 433-438, 2015.
[15] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24(9), 1569-1573, 2011.
[16] N. Magesh and S. Bulut, Chebyshev polynomial Coefficient estimate for a class of analytic $b i-$ univalent functions related to pseudo-starlike functions, Afr. Mat., (29), 203-209, 2018.
[17] N. Magesh and V. Prameela, Coefficient estimate problems for certain subclasses of analytic and $b i$-univalent functions, Afr. Mat., 26(3), 465-470, 2013.
[18] J. C. Mason, Chebyshev polynomial approximations for the L-membrane eigenvalue problem, SIAM J. Appl. Math., 15, 172-186, 1967.
[19] S. S. Miller and P. T. Mocanu, Differential Subordination: Theory and Applications, CRC Press, New York, 2000.
[20] G. Murugusundaramoorthy, C. Selvaraj and O. S. Babu, Coefficient estimates for Pascu-type subclasses of $b i$-univalent functions based on subordination, Int. J. of Nonlinear Science, 19(1), 47-52, 2015.
[21] S. O. Olatunji, A. Abidemi and O. E. Opaleye, On coefficient bounds for m-fold symmetric $b i-u n i v a l e n t ~ f u n c t i o n s ~ d e f i n e d ~ b y ~ s u b o r d i n a t i o n s ~ i n ~ t e r m ~ o f ~ m o d i f i e d ~ s i g m o i d ~ f u n c t i o n, ~ J . ~$ F.Cal. Appl., 10(2), 167-175, 2019.
[22] H. Orhan, N. Magesh and V. K. Balaji, Initial coefficient bounds for a general class of bi-univalent functions, Filomat, 29(6), 1259-1267, 2015.
[23] G. Salagean, Subclasses of univalent functions, Lecture note in Math., Springer-Verlag, 1013, $362-372,1983$.
[24] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and $b i-u n i v a l e n t$ functions, Appl. Math. Lett., 23(10), 1188-1192, 2010.
[25] K. Vijaya, M. Kasthuri and G. Murugusundaramoorthy, Coefficient bounds for subclasses of $b i-$ univalent functions defined by the Salagean derivative operator, Boletin de la Asociaciton, Matematica Venezolana, 21(2)), 1-9, 2014.
[26] T. Whittaker and G. N. Watson, A Course of Modern Analysis, reprint of the fourth (1927) edition, Cambridge Mathematical Library, Cambridge Univ. Press, Cambridge, 1996.
[27] P. Zaprawa, Estimates of initial coefficient for bi-univalent functions, Abstract and Appl. Anal. 2014, Art. ID 357480, 1-6.
M. K. Aouf, Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.

E-mail address: mkaouf127@yahoo.com
A. O. Mostafa, Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.

E-mail address: adelaeg254@yahoo.com
F. Y. Al-Quhali, Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.

E-mail address: fyalquhali89@gmail.com

