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UNIQUENESS OF CERTAIN POWER OF A MEROMORPHIC

FUNCTION SHARING A SET WITH ITS DIFFERENTIAL

POLYNOMIAL

HARINA P. WAGHAMORE AND RAMYA MALIGI

Abstract. In this paper we deal with the uniqueness problem of meromorphic
function that share a set of small functions with its differential polynomial and

obtain some results which improve and generalize the recent results due to [4].

1. Introduction

In this paper, by meromorphic functions we will always mean meromorphic func-
tions in the complex plane C. We adopt the standard notations of the Nevanlinna
theory of meromorphic functions as explained in [9, 18, 19]. In particular, for a
meromorphic function f, S(f) denotes the family of all meromorphic functions w
such that T (r, w) = S(r, f) = o(T (r, f)), where r → ∞ outside of a possible ex-
ceptional set of finite logarithmic measure. For convenience, we agree that S(f)

includes all constant functions and S̃(f) := S(f) ∪ {∞}.

For a meromorphic function f and a set S ⊂ C, we define

E(S, f) =
∪
a∈S

{z | f(z)− a = 0, counting multiplicities},

E(S, f) =
∪
a∈S

{z | f(z)− a = 0, ignoring multiplicities}.

We say that f and g share a set S CM, resp. IM, provided that E(S, f) = E(S, g),

resp. E(S, f) = E(S, g). As a special case, let S = {a}, where a ∈ C̃. If E(S, f) =
E(S, g), resp. E(S, f) = E(S, g), we say that f and g share the value a CM, resp.
IM.

Many research works on entire and meromorphic function f and its derivative
f (k) have been done by many mathematicians in the world (see [2], [7], [10], [17],
[21], [24], [26]). Recently, there have been an increasing interest in studying entire
and meromorphic functions sharing a set of small functions with their derivative.
In this direction we need the following definitions.
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Definition 1.1 (see [11, 12]). Let p be a non-negative integer or infinity. For
c ∈ C ∪ {∞}, we denote by Ef (a, p) the set of all a-points of f where an a-point
of multiplicity m is counted m times if m ≤ p and p + 1 times if m > p. If
Ef (a, p) = Eg(a, p), we say that f, g share the value a with weight p.

We write f, g share (a, p) to mean that f, g share the value a with weight p.
Clearly if f, g share (a, p), then f, g share (a, q) for all integer q (0 ≤ q < p). Also,
we note that f, g share a value a IM or CM if and only if share (a, 0) or (a,∞)
respectively.

Let S be a subset of S(f) ∪ {∞}, we can get the definition of Ef (S, p) as

Ef (S, p) =
∪
a∈S

Ef (a, p).

Definition 1.2 (see [2, 23]). When f and g share 1 IM, we denote by NL(r, 1; f) the
counting function of the 1-points of f whose multiplicities are greater than 1-points
of g; Similarly, we have NL(r, 1; g). Let z0 be a zero of f − 1 of multiplicity p and a
zero of g − 1 of multiplicity q, we also denote by N11(r, 1; f) the counting function

of those 1-points of f where p = q = 1; N
(2

E (r, 1; f) denotes the counting function
of those 1-points of f where p = q ≥ 2, each point in these counting functions is

counted only once. In the same way, one can define N11(r, 1; g), N
(2

E (r, 1; g).

In 1996, the following conjecture was proposed by R. Brück [5].

Conjecture 1.1. Let f be non-constant entire function and ρ1(f) is not a positive

integer or infinite. If f and f
′
share one finite value a CM, then

f
′ − a

f − a
= c,

for some non-zero constant c, where ρ1(f) is the first iterated order of f defined by

ρ1(f) = lim
r→∞

log log T (r, f)

log r
.

In 1996, R. Brück [5] proved that the conjecture is true if a = 0 or N(r, 0; f
′
) =

S(r, f). In 1998, G. G. Gundersen and L. Z. Yang [8] proved that the conjecture is
true if f is of finite order and fails, in general, for meromorphic functions. In 2004,
Z. X. Chen and K. H. Shon [6] proved that the conjecture is true for entire function
of order ρ1(f) <

1
2 . In 2005, A. Al-khaladi [1] proved that the conjecture is true for

meromorphic function f when N(r, 0; f
′
) = S(r, f).

In 2008, L. Z. Yang and J. L. Zhang [20] obtained the following results.

Theorem A. Let f be a non-constant entire function, n ≥ 7 be an integer. Denote
F = fn. If F and F ′

share 1 CM, then F ≡ F ′
and f assumes the form

f(z) = ce
z
n ,

where c is a nonzero constant.

Theorem B. Let f be a non-constant meromorphic function and n ≥ 12 be an
integer. Denote F = fn. If F and F ′

share 1 CM, then F ≡ F ′
and f assumes the

form

f(z) = ce
z
n ,
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where c is a nonzero constant.

In 2009, J. L. Zhang and L. Z. Yang [25] improved Theorems A and B to a large
extent and obtained the following results.

Theorem C. Let f be a non-constant entire function, n, k be positive integers and
a(z) be a small meromorphic function of f such that a(z) ̸≡ 0,∞. If fn − a and
(fn)(k) − a share the value 0 CM and n > k + 1, then fn ≡ (fn)(k) and f assumes
the form

f(z) = ce
λ
n z,

where c is a non-zero constant and λk = 1.

Theorem D. Let f be a non-constant meromorphic function, n, k be positive
integers and a(z) be a small meromorphic function of f such that a(z) ̸≡ 0,∞.
If fn − a and (fn)(k) − a share the value 0 CM and n > k + 1 +

√
k + 1, then

fn ≡ (fn)(k) and f assumes the form

f(z) = ce
λ
n z,

where c is a non-zero constant and λk = 1.

Regarding Theorems A-D, one may ask the following questions.

Question 1.1. Can the nature of sharing 1 or a(z) CM be further relaxed in
Theorems A and C?

Question 1.2. What will happen when 1 or a(z) are replaced by a set Sm =
{a(z), a(z)ω, ..., a(z)ωm−1} in Theorems A-D, where ω = cos2π

m + isin2π
m and m is

a positive integer?

In 2016, H. Y. Xu, C. F. Yi and H. Wang [16] with the idea of weighted sharing
of values, the solution of the above questions was investigated and obtained the
following results.

Theorem E. Let f be a non-constant entire function, n, k, p, m be positive in-
tegers and a(z) be a small meromorphic function of f such that a(z) ̸≡ 0,∞. If
Efn(Sm, p) = E(fn)(k)(Sm, p) and

n > max

{
k + 1, k +

η

pm

}
,

where η = k + p+ 2, then fn ≡ t(fn)(k) with tm = 1 and f assumes the form

f(z) = ce
λ
n z,

where c is a nonzero constant and λkm = 1.

Theorem F. Let f be a non-constant meromorphic function, n, k, p, m be positive
integers and a(z) be a small meromorphic function of f such that a(z) ̸≡ 0,∞. If
Efn(Sm, p) = E(fn)(k)(Sm, p) and

n > max

{
k + 1,

p(m+ 1)k + 2η

2pm
+

√
4η(η + pk) + (m− 1)2p2k2

2pm

}
,

where η = k + p+ 2, then fn ≡ t(fn)(k) with tm = 1 and f assumes the form

f(z) = ce
λ
n z,
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where c is a nonzero constant and λkm = 1.

Next we recall the following definition.

Definition 1.3 (see [9]) Let n0j , n1j , ..., nkj be nonnegative integers and g = fn.

The expression Mj [g] = (g)n0j(g(1))n1j ...(g(k))nkj is called a differential mono-

mial generated by g of degree dMj = d(Mj) =
∑k

i=0 nij and weight ΓMj =∑k
i=0(i+ 1)nij .

The sum P[g] =
∑s

j=1 bjMj [g] is called a differential polynomial generated by g of

degree d̄(P) = max{d(Mj) : 1 ≤ j ≤ s} and weight ΓP = max{ΓMj : 1 ≤ j ≤ s},
where T (r, bj) = S(r, g) for j = 1, 2, ..., s.

The numbers d(P) = min{d(Mj) : 1 ≤ j ≤ s} and k (the highest order of the
derivative of g in P[g]) are called respectively the lower degree and order of P(g).

P[g] is said to be homogeneous if d̄(P) = d(P). P(g) is called a linear differential
polynomial generated by g if d̄(P) = 1. Otherwise P[g] is called a non-linear differ-
ential polynomial.

We denote by Q = max{ΓMj − d(Mj) : 1 ≤ j ≤ s} = max{n1j + 2n2j + ...+ knkj :
1 ≤ j ≤ s}.

Also for the sake of convenience for a differential monomial M [g] we denote by
dM = d(M) andQM = ΓM − dM .

Since derivative’s natural extension is a differential monomial, it will be interest-
ing to see whether Theorems E and F can remain true when (fn)(k) is replaced
by M [fn]. In this direction, very recently Banerjee-Majumader [4] have improved
Theorems E and F in the following way which in turn improve a recent result of
Zhang and Yang [20, 25] as well.

Theorem G. Let f be a non-constant meromorphic function, n, k, p, m be positive
integers and a(z) be a small function of f such that a(z) ̸≡ 0,∞. If EfndM (Sm, p) =
EM [fn](Sm, p) and if

1. p ≥ 2 and n >
γp
m+γp

1+
√

(γp
m−γp

1 )
2+4C

2mdM
, or if

2. p = 0 and n >
α+β+

√
(α−β)2+4D

2mdM
,

where C = (p+1)(p(k+1)dM+1)
p2 and D = (QM + 3)(2(k + 1)dM + 1),

then fndM ≡ tM [fn] with tm = 1 and f assumes the form

f(z) = ce
λ
n z,

where c is a non-zero constant with λmQM = 1.

Theorem H. Let f be a non-constant entire function, n, k, p, m be positive inte-
gers and a(z) be a small function of f such that a(z) ̸≡ 0,∞. If EfndM (Sm, p) =
EM [fn](Sm, p) and if

1. p ≥ 2 and n > pmQM+p+1
pmdM

, or if

2. p = 0 and n > mQM+(k+1)dM+2
mdM

,
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then fndM ≡ tM [fn] with tm = 1 and f assumes the form

f(z) = ce
λ
n z,

where c is a non-zero constant with λmQM = 1.

In the same paper the following questions was asked:

Question 1.3. Can we replace fn by a general linear expression P (f) in anyway
in Theorem G and Theorem H to get the same specific form of the function?

Question 1.4. Can we replace the differential monomial M [fn] by a differential
polynomial P[fn] in anyway in Theorem G and Theorem H to get the same specific
form of the function?

Question 1.5. Can the lower bound of n be further reduced in Theorem G and
Theorem H to get the same conclusions?

Our main intension of writing this paper is to find out the possible affirmative
answer of all the above questions such that Theorems A - H can be accommodated
under a single theorem which extends and improves all of them. Henceforth we
need the following notations throughout the paper for the sake of convenience.

Let

α = 2Q+ 3, β = mQ+ (k + 1)d̄(P) + 2, γp
m = mQ+ 1 + 1

p and γp
1 = Q+ 1 + 1

p ,

where p, m and k are three positive integers.

The following two theorems are the main results of this paper which gives an af-
firmative answer of the questions of Banerjee-Majumder [4] in a more convenient
way.

Theorem 1.1. Let f be a non-constant meromorphic function, n, k, p, m be
positive integers and a(z) be a small function of f such that a(z) ̸≡ 0,∞. If
E

f
ndM1 +f

ndM2+...+fndMs
(Sm, p) = EP[fn](Sm, p) and if

1. p ≥ 2 and n >
γp
m+γp

1+
√

(γp
m−γp

1 )
2+4C

2md̄(P)
, or if

2. p = 0 and n >
α+β+

√
(α−β)2+4D

2md̄(P)
,

where C = (p+1)(p(k+1)d̄(P)+1)
p2 and D = (Q+ 3)(2(k + 1)d̄(P) + 1), then

fndM1 + fndM2 + ...+ fndMs ≡ tP[fn] with tm = 1 and f assumes the form

f(z) = ce
λ
n z,

where c is a non-zero constant with λm(Γj−dMj
) = 1.

Theorem 1.2. Let f be a non-constant entire function, n, k, p, m be positive
integers and a(z) be a small function of f such that a(z) ̸≡ 0,∞. If
E

f
ndM1 +f

ndM2+...+fndMs
(Sm, p) = EP[fn](Sm, p) and if

1. p ≥ 2 and n > pmQ+p+1
pmd̄(P)

, or if

2. p = 0 and n > mQ+(k+1)d̄(P)+2

md̄(P)
,
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then fndM1 + fndM2 + ...+ fndMs ≡ tP[fn] with tm = 1 and f assumes the form

f(z) = ce
λ
n z,

where c is a non-zero constant with λm(Γj−dMj
) = 1.

2. Some Corollaries

In Theorem 1.1 and Theorem 1.2, if we take P[fn] = (fn)(k), where n > k, then
it is clear that d̄(P) = 1, Q = k. Let s = 1 then we get fndM1 and we take dM1 = 1.
The following are some corollaries of the main results of this paper. What worth
noticing here is that the lower bound of n is reduced as compare to Theorem E and
Theorem F.

Corollary 1. Let f be a non-constant meromorphic function and n, m, p, k be
positive integers and a(z) be a small meromorphic function of f such that a(z) ̸≡
0,∞. If Efn(Sm, p) = E(fn)(k)(Sm, p) and if

1. p ≥ 2 and n > 2p+p(m+1)k+2
2pm +

√
4(p+1)(pk+p+1)+(m−1)2p2k2

2pm ,

2. p = 0 and n > (m+3)k+6
2m +

√
4(k+3)(2k+3)+(m−1)2k2

2m ,

then fn ≡ t(fn)(k) where tm = 1 and f assumes the form

f(z) = ce
λ
n z,

where c is a non-zero constant and λmk = 1.

Corollary 2. Let f be a non-constant entire function and n, m, p, k be positive
integers and a(z) be a small meromorphic function of f such that a(z) ̸≡ 0,∞. If
Efn(Sm, p) = E(fn)(k)(Sm, p) and if

1. p ≥ 2 and n > k + p+1
pm , or if

2. p = 0 and n > k + k+3
m ,

then fn ≡ t(fn)(k) where tm = 1 and f assumes the form

f(z) = ce
λ
n z,

where c is a non-zero constant and λmk = 1.

3. Examples

The following example shows that conditions 1. and 2. in Corollary 1 and
Corollary 2 are essential in order to get the conclusions.

Example 3.1. For n ≥ 2, let the principal branch of f be given by f(z) =(
eθz + 2a

) 1
n , where a ̸= 0 is a constant and θ is a root of the equation zn + 1 = 0.

Let Sm = {a} and P[fn] = (fn)(n). Clearly fn = eθz + 2a and P[fn] = −eθz

and let s = 1 then we get fndM1 . Here we take dM1 = 1. Therefore we see that
E

f
ndM1 +f

ndM2+...+fndMs
(Sm,∞) = EP[fn](Sm,∞) and

n ≤ min

{
k +

p+ 1

pm
, k +

k + 3

m

}
= min{n+ 1, 2n+ 3} = n+ 1.

Here it is clear that

fn ̸≡ tP[fn]
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with tm = 1. Also we see that f does not assume the form

f(z) = ce
λ
n z

with λm(ΓMj
−dMj

) = 1.

The following example shows that conditions 1. and 2. used in Corollary 1 and
Corollary 2 are not necessary but sufficient.

Example 3.2. Let Sm = {−1, 1,−i, i} and f be given by f(z) = e
λ
4 z, where λ is

a root of the equation z4 + 1 = 0. Let P[f4] = (f4)(4). It is clear that f4(z) = eλz

and P[f4] = −eλ(z). Also E
f
ndM1+f

ndM2+...+fndMs
(Sm,∞) = EP[fn](Sm,∞) and

n ≤ min

{
k +

p+ 1

pm
, k +

k + 3

m

}
= min{17

4
,
23

4
} =

17

4
.

But we see that f4 ≡ tP[f4] with tm = (−1)4 = 1. Also here f assumes the form

f(z) = ce
λ
n z,

where c = 1 and λm(ΓMj
−dMj

) = λ16 = 1.

The following examples show that if the conditions of Theorem 1.1 and Theorem
1.2 are satisfied, then the conclusions hold.

Example 3.3. Let Sm = {−1, 1,−i, i} and f be given by f(z) = 2
1
5 e

λ
5 z, where λ is

a root of the equation z3+1 = 0. Let P[fn] = 2(fn)(k). It is clear that fn(z) = 2eλz

and P[fn] = −2eλ(z) with n = 5, k = 3, m = 4 and let s = 1 then we get fndM1 .
Here we take dM1 = 1. Also E

f
ndM1 +f

ndM2+...+fndMs
(Sm,∞) = EP[fn](Sm,∞) and

n > max

{
k +

p+ 1

pm
, k +

k + 3

m

}
= max{13

4
,
9

2
} =

9

2
.

Here we see that fndM1 + fndM2 + ...+ fndMs ≡ tP[fn] with tm = (−1)4 = 1. Also
here f assumes the form

f(z) = ce
λ
n z,

where c = 1 and λm(ΓMj
−dMj

) = λ16 = 1.

Example 3.4. For a non-zero complex number a, let Sm = {a, aw, aw2}, where
w is the non-real cube root of unity and f is given by f(z) = 2

1
n ew

1
nk z. It is

clear that fn(z) = 2ew
1
k z and P[fn] = 2wew

1
k (z), where P[fn] = 2(fn)(k) with

n = 8, k = 6, m = 3 and let s = 1 then we get fndM1 . Here we take dM1 = 1. Also
E

f
ndM1 +f

ndM2+...+fndMs
(Sm,∞) = EP[fn](Sm,∞) and

n > max

{
k +

p+ 1

pm
, k +

k + 3

m

}
= max{19

3
, 9} = 9.

Here we see that fndM1 + fndM2 + ...+ fndMs ≡ tP[fn] with tm = ( 1
w )3 = 1. Also

here f assumes the form

f(z) = ce
λ
n z,

where c = 1 and λm(ΓMj
−dMj

) = λ18 = 1.
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4. Preliminary Lemmas

In this section we present some lemmas which will be needed in the sequel. Let
F , G be two non-constant meromorphic functions. Henceforth we shall denote by
H the following function

H =

(
F ′′

F ′ − 2F ′

F − 1

)
−

(
G′′

G′ − 2G′

G − 1

)
, (1)

V =

(
F ′

F − 1
− F ′

F

)
−

(
G′

G − 1
− G′

G

)
, (2)

and

U =
F ′

F − 1
− G′

G − 1
. (3)

Lemma 1 ([16]). Let f be a non-constant meromorphic function and k, p are
positive integers. Then

Np(r, 0; f
(k)) ≤ T (r, f (k))− T (r, f) +Np+k(r, 0; f) + S(r, f).

Np(r, 0; f
(k)) ≤ kN(r,∞; f) +Np+k(r, 0; f) + S(r, f).

Lemma 2 ([22]). Let f be a non-constant meromorphic function and P (f) =
anf

n + an−1f
n−1 + ...+ a0, where a0, a1, ..., an are constants with an ̸= 0. Then

T (r, P (f)) = nT (r, f) + S(r, f).

Lemma 3 ([3]). For any two non-constant meromorphic functions f1 and f2,

Np(r, f1f2) ≤ Np(r, f1) +Np(r, f2).

Lemma 4 ([22]). LetH be given by (1), F and G be two non-constant meromorphic
functions. If H ̸≡ 0, then

N11(r, 1;F ) ≤ N(r,H) + S(r,F) + S(r,G).

Lemma 5. For the differential polynomial P[fn],

Np(r, 0;P[fn]) ≤ d̄(P)Np+k

(
r,

1

fn

)
+QN(r, f) + S(r, f).

Proof. Clearly for any non-constant meromorphic function f, Np(r, f) ≤ Nq(r, f)
if p ≤ q and b1 = b2 = ... = bs = 1. Now by using the above fact and Lemma 1,
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Lemma 3, we get

Np(r, 0;P[fn]) ≤
s∑

j=1

Np

(
r,

1

Mj [fn]

)
+ S(r, f)

= Np

(
r,

1

M1[fn]

)
+Np

(
r,

1

M2[fn]

)
+ ...+Np

(
r,

1

Mj [fn]

)
+ S(r, f)

= Np

(
r,

1

(fn)n01 + (fn(1))n11 ...(fn(k))nk1

)
+Np

(
r,

1

(fn)n02 + (fn(1))n12 ...(fn(k))nk2

)
+ ...

+Np

(
r,

1

(fn)n0s + (fn(1))n1s ...(fn(k))nks

)
+ S(r, f)

= Np

(
r,

1∏k
i=0(f

n(i))ni1

)
+Np

(
r,

1∏k
i=0(f

n(i))ni2

)
+ ...

+Np

(
r,

1∏k
i=0(f

n(i))nis

)
+ S(r, f)

=
k∑

i=0

ni1Np

(
r,

1

(fn)(i)

)
+

k∑
i=0

ni2Np

(
r,

1

(fn)(i)

)
+ ...

+
k∑

i=0

nisNp

(
r,

1

(fn)(i)

)
+ S(r, f)

=
k∑

i=0

[
(ni1 + ni2 + ...+ nis)Np

(
r,

1

(fn)(i)

)]
+ S(r, f)

≤
k∑

i=0

[
(ni1 + ni2 + ...+ nis)

{
Np+i

(
r,

1

fn

)
+ iN(r, f)

}]
+ S(r, f)

≤ max
1≤j≤s

{
k∑

i=0

nijNp+k

(
r,

1

fn

)}
+ max

1≤j≤s
{

k∑
i=0

inijN(r, f)}+ S(r, f)

≤ nd̄(P)Np+k

(
r,

1

f

)
+QN(r, f) + S(r, f).

Lemma 6. Let f be a non-constant meromorphic function and a ≡ a(z) be a small

meromorphic functions of f such that a(z) ̸≡ 0,∞ and let F1 = f
ndM1+f

ndM2 +...+fndMs

a

and G1 = P[fn]
a . Let V be given by (2) and F = Fm

1 and G = Gm
1 . If n, m, and k are

positive integers such that n > k and V ≡ 0, then fndM1 + fndM2 + ... + fndMs ≡
tP[fn], where tm = 1 and f assumes the form

f(z) = ce
λ
n z,

where c is a non-zero constant and λm(ΓMj
−dMj

) = 1.
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Proof. From V ≡ 0 and the definitions of F, G, we get

1− 1

Fm
1

≡ A− A
Gm
1

, (4)

where A is a non-zero constant. We now consider the following cases.

Case 1. Let N(r,∞; f) = S(r, f). If A ̸= 1, then from (4) we have

N

(
r,

1

1−A
;Fm

1

)
= N(r,∞;Gm

1 ) = S(r, f).

By the Second Fundamental Theorem and definitions of F1, G1, we have

T (r,Fm
1 ) ≤ N(r,∞;Fm

1 ) +N(r, 0;Fm
1 ) +N

(
r,

1

1−A
;Fm

1

)
+ S(r, f).

i.e.,

mn[dM1 + dM2 + ...+ dMs ]T (r, f) ≤ N(r, 0; f) + S(r, f),

which is not possible.

Case 2. Let N(r,∞; f) ̸= S(r, f). Then there exists a z0 which is not a zero or
pole of a(z) such that 1

f(z0)
= 0, so 1

F1(z0)
= 1

G1(z0)
= 0. Therefore, from (4) we get

A = 1.

Thus, by (4) and A = 1, then Fm
1 = Gm

1 , i.e.,

fndM1 + fndM2 + ...+ fndMs ≡ tP[fn], (5)

where tm = 1and b1 = b2 = ... = bs = 1. Now if z0 be a zero of f with multiplicity
p, then z0 is a zero of fndM1 + fndM2 + ...+ fndMs with multiplicity npd̄(P) and a
zero of P[fn] with multiplicity npd̄(P)−Q. Therefore,

npd̄(P) = npd̄(P)−Q,

which is not possible. Thus it is obvious that 0 is a Picard exceptional value of f.
Similarly we can get that ∞ is also a Picard exceptional value of f. Then from (5)
we have

f(z) = ce
λ
n z,

where c is a non-zero constant and λm(ΓMj
−dMj

) = 1.

Lemma 7. Let V be given by (2), and F , G,F1 andG1 be given by Lemma 6 and
n, m be positive integers. If V ̸≡ 0, then

(mnd̄(P)− 1)N(r,∞; f) ≤ N(r,∞;V) + S(r, f).

Proof. Using the same arguments as in Lemma 8 [4], we can easily obtain Lemma
7.

Lemma 8. Let U be given by (3) and F , G,F1 andG1 be given by Lemma 6. If
n, m are positive integers such that n > k and U ≡ 0, then

fndM1 + fndM2 + ...+ fndMs ≡ tP[fn],

where tm = 1, and f assumes the form

f(z) = ce
λ
n z,

where c is a non-zero constant and λm(Γj−dMj
) = 1.

Proof. Using the same arguments as in Lemma 9 [4], we can easily obtain Lemma
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8.

Lemma 9. Let U be given by (3) and F , G,F1 andG1 be given by Lemma 6. If
n, m, k are positive integers such that n > k and U ̸≡ 0, then

[(nd̄(P)−Q)m− 1]N(r, 0; f) ≤ N(r,∞;U) + S(r, f).

Proof. Using the same arguments as in Lemma 10 [4], we can easily obtain Lemma
9.

Lemma 10. Let F , G,F1 andG1 be as in Lemma 6 and V as in (2). Now if n > k
and Ep(1,F) = Ep(1,G) and V ̸≡ 0, then the following holds:

1. When p ≥ 2, then{
mnd̄(P)− 1−Q− 1

p

}
N(r,∞; f) ≤

{
(k + 1)d̄(P) +

1

p

}
N(r, 0; f) + S(r, f).

(6)

2. When p = 0, then{
mnd̄(P)− 1− 2(Q+ 1)

}
N(r,∞; f) ≤

{
2(k + 1)d̄(P) + 1

}
N(r, 0; f) + S(r, f).

(7)

Proof. Using the same arguments as in Lemma 11 [4], we can easily obtain Lemma
10.

Lemma 11. Let F , G,F1, G1 be as in Lemma 6 and U as in (3). Now if n > k
and Ep(1,F) = Ep(1,G) and U ̸≡ 0, then the following holds:

1. When p ≥ 2, then{
(nd̄(P)−Q)m− 1− 1

p

}
N(r, 0; f) ≤

{
1 +

1

p

}
N(r,∞; f) + S(r, f). (8)

2. When p = 0, then{
(nd̄(P)−Q)m− (k + 1)d̄(P)− 2

}
N(r, 0; f) ≤ {Q+ 3}N(r,∞; f) + S(r, f).

(9)

Proof. Using the same arguments as in Lemma 12 [4], we can easily obtain Lemma
10.

Lemma 12 ([4]). Let F and G be two non-constant meromorphic functions such
that Ep(1,F) = Ep(1,G) and H ̸≡ 0 and p = 0, then

T (r,F) + T (r,G) ≤ 2N2(r, 0;F) + 2N2(r, 0;G) + 6N(r,∞;F) + 3NL(r, 1;F)

+ 3NL(r, 1;G) + S(r,F).

Lemma 13 ([4]). Let F and G be two non-constant meromorphic functions such
that Ep(1,F) = Ep(1,G) and H ̸≡ 0 and p ≥ 2, then

T (r,F) + T (r,G) ≤ 2N2(r, 0;F) + 2N2(r, 0;G) + 6N(r,∞;F) + S(r,F).

Lemma 14. Let H be given by (1) and F, G, F1 andG1 be given by Lemma 6.
If n, m and k are positive integers such that n > k and N(r,∞; f) = N(r, 0; f) =
S(r, f) and H ≡ 0, then

fndM1 + fndM2 + ...+ fndMs ≡ tP[fn],
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where tm = 1, and f assumes the form

f(z) = ce
λ
n z,

where c is a non-zero constant and λm(ΓMj
−dMj

) = 1.

Proof. Using the same arguments as in Lemma 15 [4], we can easily obtain Lemma
9.

5. Proofs of the Theorems

Proof of Theorem 1.1. Let F1 = f
ndM1+f

ndM2 +...+fndMs

a and G1 = P[fn]
a

and F = Fm
1 , G = Gm

1 , where f is a non-constant meromorphic function. Now we
discuss the following cases.

Case 1. If UV ≡ 0, then by using Lemma 6 and Lemma 8, we get the conclusions
of the Theorem 1.1.

Case 2. If UV ̸≡ 0, then from the assumption of Theorem 1.1, we see that
Ep(1,F) = Ep(1,G).

Subcase 2.1. When p ≥ 2, then by using Lemma 10 and Lemma 11, we get{
mnd̄(P)− 1−Q− 1

p

}{
(nd̄(P)−Q)m− 1− 1

p

}
N(r,∞; f)

≤
{
(k + 1)d̄(P) +

1

p

}{
1 +

1

p

}
N(r,∞; f) + S(r, f). (10)

and {
mnd̄(P)− 1−Q− 1

p

}{
(nd̄(P)−Q)m− 1− 1

p

}
N(r, 0; f)

≤
{
(k + 1)d̄(P) +

1

p

}{
1 +

1

p

}
N(r, 0; f) + S(r, f). (11)

Now from the equations (10) and (11), we get{
(mnd̄(P)− γp

1 )(mnd̄(P)− γp
m)− C

}
N(r,∞; f) ≤ S(r, f) (12)

and {
(mnd̄(P)− γp

1 )(mnd̄(P)− γp
m)− C

}
N(r, 0; f) ≤ S(r, f), (13)

where γp
1 = Q+ 1 + 1

p , γ
p
m = mQ+ 1 + 1

p andC =
{
(k + 1)d̄(P) + 1

p

}{
1 + 1

p

}
.

Since{
mnd̄(P)− γp

1

}{
mnd̄(P)− γp

m

}
− C

= m2(d̄(P))2n2 −mnd̄(P){γp
1 + γp

m}+ {γp
1γ

p
m − C}

= m2(d̄(P))2

{
n−

γp
m + γp

1 +
√
(γp

m − γp
1 )

2 + 4C

2md̄(P)

}{
n−

γp
m + γp

1 −
√
(γp

m − γp
1 )

2 + 4C

2md̄(P)

}
,

in view of the assumptions of Theorem 1.1, we get a contradiction from (12) and
(13).

Thus we obtained from above

N(r, 0; f) = S(r, f) = N(r,∞; f). (14)
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We now consider the following two cases:

Case 2.1.1. Let H ̸≡ 0. Using Lemma 12 and Lemma 13 and (14), we get T (r, f) =
S(r, f), which is a contradiction.

Case 2.1.2. Let H ≡ 0. Then from Lemma 14, we get the conclusion of Theorem
1.1.

Subcase 2.2. When p = 0, using Lemma 10 and Lemma 11, we get{
mnd̄(P)− 1− 2(Q+ 1)

}{
(nd̄(P)−Q)m− (k + 1)d̄(P)− 2

}
N(r,∞; f)

≤
{
2(k + 1)d̄(P) + 1

}
{Q+ 3}N(r,∞; f) + S(r, f) (15)

and {
mnd̄(P)− 1− 2(Q+ 1)

}{
(nd̄(P)−Q)m− (k + 1)d̄(P)− 2

}
N(r, 0; f)

≤
{
2(k + 1)d̄(P) + 1

}
{Q+ 3}N(r, 0; f) + S(r, f). (16)

Now using equations (15) and (16) and proceeding the same way as done in Subcase
2.1, the rest of the proof can be carried out. So we omit the detail.

Proof of Theorem 1.2. Since f is an entire function, we have N(r,∞; f) =
S(r, f). Now if U ≡ 0, then using Lemma 8, we get the conclusion of Theorem 1.2.

If U ̸≡ 0, then using Lemma 9 for p ≥ 2 we get from (11) that

(mnd̄(P)− γp
1 )(mnd̄(P)− γp

m)N(r, 0; f) ≤ S(r, f).

Since n > pmQ+p+1
pmd̄(P)

, we get a contradiction.

Again when p = 0, using Lemma 9 we get from (16){
mnd̄(P)− [2Q+ 3]

}{
(mnd̄(P)− [mQ+ (k + 1)d̄(P) + 2]

}
N(r, 0; f) ≤ S(r, f),

which is a contradiction since n > mQ+(k+1)d̄(P)+2

md̄(P)
.

Therefore N(r, 0; f) = S(r, f). Now the rest of the proof follows Case 1 and Case
2 of the proof of Theorem 1.2.
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