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BOUNDS ASSOCIATED TO HADAMARD INEQUALITY VIA

GENERALIZED INTEGRAL OPERATORS AND APPLICATIONS

FOR CONFORMABLE AND FRACTIONAL INTEGRALS

GHULAM FARID, MUHAMMAD RAEES, MATLOOB ANWAR

Abstract. Error bounds of Hadamard type inequalities have been studied
extensively in the literature. This work is dedicated to a chain of Hadamard

inequalities for various kinds of integral operators. In this study error bound

for a version of the Hadamard inequality for a generalized integral operator is
established. Some particular cases are discussed which have connection with

already known results.

1. Fractional and Conformable Integrals

The study of fractional order derivatives and integrals received more attention
after the formulation of electrochemiclal problems. In recent years the subject is
studied extensively due to its applications in different areas of natural sciences such
as: quantum mechanical calculations, chemical analysis of aqueous solutions, de-
sign of heat flux meters, transmission line theory etc. see [19]. For the detailed
mathematical study of fractional integral and derivative operators, see [10, 11].
The classical fractional integral operator known as Riemann-Liouville fractional in-
tegral is defined as follows [10, 11]:
Definition 1. Let f ∈ L1[c, d]. Then Riemann-Liouville fractional integral opera-
tors of order β > 0 with c ≥ 0 are defined as follows:

βJc+f (x) =
1

Γ (β)

∫ x

c

(x− τ)β−1f(τ)dτ, x > c, (1)

βJd−f (x) =
1

Γ (β)

∫ d

x

(τ − x)
β−1

f(τ)dτ, x < d. (2)

Mubeen et al. [18] gave the k-analogue of Riemann-Liouville integrals.
Definition 2. Let f ∈ L1 [c, d]. Then the k-fractional integrals of order β, k > 0
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with c ≥ 0 are defined as follows:

βJkc+f (x) =
1

kΓk (β)

∫ x

c

(x− τ)
β
k−1

f(τ)dτ, x > c, (3)

βJkd−f(x) =
1

kΓk (β)

∫ d

x

(τ − x)
β
k−1

f(τ)dτ, x < d. (4)

Sarikaya et al. [22] introduced the notion of (k, s)-Riemann-Liouville fractional
integrals as follows:
Definition 3. Let f ∈ L1 [c, d]. Then (k, s)-Riemann-Liouville fractional integral
operators of order β > 0 with c ≥ 0 are defined by:

β
sJ

k
c+f (x) =

(s+ 1)1− βk

kΓk(β)

∫ x

c

(
xs+1 − τs+1

) β
k−1

τsf(τ)dτ, x > c, (5)

β
sJ

k
d−f (x) =

(s+ 1)1− βk

kΓk(β)

∫ d

x

(
τs+1 − xs+1

) β
k−1

τsf(τ)dτ, x < d, (6)

where k > 0, s ∈ R− {−1}.

Khalil et al. [14] gave conformable fractional integrals as follows:
Definition 4. Let β ∈ (0, 1). A function f : [c, d] → R is β-fractional integrable
on [c, d] if the integral

Iβc (f)(x) =

∫ x

c

f(τ)dβ(τ) =

∫ x

c

f(τ)τβ−1dτ, x > c, (7)

exists and is finite. L1
β([c, d]) is the class of β-fractional integrable functions on [c, d].

Recently Khan et al. [15] defined a generalized conformable integral operator as
follows:
Definition 5. Let f be a conformable integrable function on the interval [c, d] ⊆
[0,∞). The left and right-sided genersalized conformable fractional integrals of
order β > 0 with r ∈ R, γ ∈ (0, 1], r + γ 6= 0 are defined by

β
r J

γ
c+f (x) =

(r + γ)1−β

Γ(β)

∫ x

c

(
xr+γ − τ r+γ

)β−1
τ rf(τ)dγτ, x > c, (8)

β
r J

γ
d−f (x) =

(r + γ)1−β

Γ(β)

∫ d

x

(
τ r+γ − xr+γ

)β−1
τ rf(τ)dγτ, x < d. (9)

A compact form of aforementioned fractional integral operator is defined as fol-
lows [10, 11]:
Definition 6. Let f : [c, d] → R be an integrable function. Also let g be an
increasing and positive function on (c, d], having continuous derivative g′ on (c, d).
The left and right-sided fractional integrals of a function f with respect to another
function g on [c, d] of order β > 0 are defined as:

β
gJc+f (x) =

1

Γ (β)

∫ x

c

[g(x)− g(τ)]
β−1

g′(τ)f(τ)dτ, x > c, (10)

β
gJd−f (x) =

1

Γ (β)

∫ d

x

[g(τ)− g(x)]
β−1

g′(τ)f(τ)dτ, x < d. (11)

Kwun [13] et al. gave the k-fractional analogue of integrals (10) and (11) as
follows:
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Definition 7. Let g : [c, d]→ R be an increasing and positive monotone function on
[c, d], having a continuous derivative g′ on (c, d). The left and right-sided fractional
integrals of a function f with respect to another function g on [c, d] of order β, k > 0
are defined by:

β
gJ

k
c+f (x) =

1

kΓk (β)

∫ x

c

[g(x)− g(τ)]
β
k−1

g′(τ)f(τ)dτ, x > c, (12)

β
gJ

k
d−f (x) =

1

kΓk (β)

∫ d

x

[g(τ)− g(x)]
β
k−1

g′(τ)f(τ)dτ, x < d, (13)

where Γk(.) is the k-gamma function.
Raina [20], gave the following fractional integral operator by using special func-

tions as follows:
Definition 8. Let f ∈ L1 [c, d] . The left and right-sided integrals with special
functions are denoted and defined by

σ
ρζµ,c+f (x) =

∫ x

c

Fσρ.µ (w(x− τ)ρ)

(x− τ)1−µ f(τ)dτ, x > c, (14)

σ
ρζµ,d−f (x) =

∫ d

x

Fσρ.µ (w(τ − x)ρ)

(τ − x)1−µ f(τ)dτ, x < d, (15)

where ρ, µ > 0, coefficients σ(k) generate a bounded sequence of positive real
numbers and

Fσρ.µ (x) =

∞∑
m=0

σ(m)

Γ(ρm+ µ)
xm, |x| < R, with R > 0. (16)

Tunc et al. [25], generalize the operator of Raina as follows:
Definition 9. For k > 0, let g : [c, d] → R be an increaing and positive mono-
tone function having a continuous derivative g′ on (c, d). The left and right sided
generalized k-fractional integrals of f with respect to the function g on [c, d] are
respectively defined as follows:

σ
ρζ
k,g
µ,c+;wf (x) =

x∫
c

Fσ,kρ.µ (w (g(x)− g(τ))
ρ
)

(g(x)− g(τ))1−µk
g′(τ)f(τ)dτ, x > c, (17)

σ
ρζ
k,g
µ,d−;wf (x) =

d∫
x

Fσ,kρ.µ (w (g(τ)− g(x))
ρ
)

(g(τ)− g(x))1−µk
g′(τ)f(τ)dτ, x < d, (18)

with the coefficients σ(n) (n ∈ N ∪ {0}) form a bounded sequence of positive real
numbers and

Fσ,kρ.µ (x) :=

∞∑
n=0

σ(n)

kΓk(ρkn+ µ)
xn, (ρ, µ > 0; |x| < R) with R > 0. (19)

Recently Farid [3] introduced a generalized integral operator as follows:
Definition 10. Let f, g : [c, d] → R, 0 < c < d, be the functions such that
f ∈ L1[c, d] be positive and g be differentiable and increasing. Also let ϕ

x be
increasing function on [0,∞). Then for x ∈ [c, d], the left and right integral operators
are defined by

Fϕ,gc+ f(x) =

∫ x

c

ϕ (g(x)− g(τ))

g(x)− g(τ)
g′(τ)f(τ)dτ, x > c, (20)
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Fϕ,gd− f(x) =

∫ d

x

ϕ (g(τ)− g(x))

g(τ)− g(x)
g′(τ)f(τ)dτ, x < d. (21)

Following remark gives the summary of conformable and fractional integral op-
erators which can be deduced from the last definition by different settings of ϕ and
g.
Remark 1.

(i) If ϕ(x) = x
λ
kFσ,kρ,λ (w(x)ρ) in (20) and (21), then fractional integrals operators

(17) and (18) will be re-captured.
(ii) If g(x) = x in (17) and (18), then fractional integral operators (14) and (15)

will be obtained.
(iii) If ϕ(x) = xλFσρ,λ(w(x)ρ) in (20) and (21), then fractional integral operators

defined by Dragomir in [1] are obtained.

(iv) If ϕ(x) = x
λ
kFσ,kρ,λ (w(x)ρ) in (20) and (21) and g(x) = x, then k-analogue

of fractional integral operators (14) and (15) defined by Tunc et al in [25] will be
re-captured.

(v) If ϕ(x) = x
λ
kFσ,kρ,λ (w(x)ρ), then (20) and (21) will give the generalized

Hadamard k-fractional integral operators defined in [25], subject to the condition
that g(x) = lnx.

(vi) If ϕ(x) = x
λ
kFσ,kρ,λ (w(x)ρ) and g(x) = xs+1

(s+1) , s ∈ R−{−1}, then (20) and (21)

reduced to the (k, s)-fractional integral operators with special functions defined in
[25].

(vii) If ϕ(x) = 1
β exp(−Ax), A = 1−β

β , β > 0, then generalized fractional integral

operators with exponential kernel will obtained defined in [1] as follows:

β
gEc+f(x) =

1

β

x∫
c

exp

(
−1− β

β
(g(x)− g(τ))

)
f(τ)dτ, x > c, (22)

β
gEd−f(x) =

1

β

d∫
x

exp

(
−1− β

β
(g(τ)− g(x))

)
f(τ)dτ, x < d. (23)

(viii) If ϕ(x) = 1
Γ(β)x

β , and g(x) = −x−1, then Harmonic fractional integral

operators will be obtained defined in [1] as follows:

βRc+f(x) =
x1−β

Γ(β)

x∫
c

(x− τ)
β−1 f(τ)

τβ+1
dτ, x > c, (24)

βRd−f(x) =
x1−β

Γ(β)

d∫
x

(τ − x)
β−1 f(τ)

τβ+1
dτ, x < d. (25)

(ix) If ϕ(x) = 1
Γ(µ)x

µ, and g(x) = exp(βx),then β-Exponential fractional integral

operators with order µ > 0 will be obtained [1]:

β=c+f(x) =
β

Γ(µ)

x∫
c

(exp(βx)− exp(βτ))
µ−1

exp(βτ)f(τ)dτ, x > c, (26)
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β=d−f(x) =
β

Γ(µ)

d∫
x

(exp(βτ)− exp(βx))
µ−1

exp(βτ)f(τ)dτ, x < d. (27)

(x) If ϕ(x) = xβ lnx, then left and right-sided lograthmic fractional integrals
which were introduced in [1] will be obtained:

(xi) If ϕ(x) = 1
kΓk(β)x

β
k and g(x) = 1

1+sx
1+s, 1 + s 6= 0, then (5) and (5) will be

obtained.
(xii) If ϕ(x) = 1

Γ(β)x
β and g(x) = lnx, then Hadamard fractional integral op-

erators will be obtained [10]. In recent past the researchers have utilized various
kinds of integral operators espacially fractional and conformable integral operators
to establish the well known Hadamard inequality for example see [2],[4], [5], [6], [7],
[8], [16],[17], [23], [24], [25] and the references therein. Recently Hadamard inequal-
ity via generalized integral operators (20) and (21) is established in [21]. The aim
of this paper is to study the error bounds of the Hadamard inequality for integral
operators (20) and (21). These error bounds have interesting consequences for esti-
mation of Hadamard inequalities for conformable and fractional integral operators.

The paper is organized as follows. In Section 2 an identity is established by
using integral operators (20) and (21). By using this identity error bounds of
the Hadamard inequality for integral operators (20) and (21) are established. In
Section 3, by considering appropriate settings of functions several error bounds
for corresponding Hadamard inequalities for fractional and conformable integral
operators are obtained.

2. Main Results

In this paper ϕ and g are same as defined in Definition 1. Following notations
will be use frequently in this study:

ũ(x) := u(c+ d− x),

U(x) := u(x) + ũ(x),

∆t
0(ϕ, g) =

t∫
0

ϕ(g(sd+ (1− s)c)− g(c))

g(sd+ (1− s)c)− g(c)
g′(sd+ (1− s)c)ds,

and

∇t0(ϕ, g) =

t∫
0

ϕ(g(d)− g(sc+ (1− s)d))

(g(d)− g(sc+ (1− s)d))
g′(sc+ (1− s)d)ds.

The following lemma is useful to establish the bounds of the Hadamard inequality
for integral operators (20) and (21).
Lemma 1. Let u : [c, d] → R be a differentiable mapping on (c, d) with c < d. If
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u′ ∈ L1[c, d], then the following equalities for integral operators (20) and (21) hold:

u(c) + u(d)

2
− 1

2(d− c) (∆1
0(ϕ, g) +∇1

0(ϕ, g))

[
Fϕ,gc+ U(b) + Fϕ,gd− U(a)

]
=

d− c
2 (∆1

0(ϕ, g) +∇1
0(ϕ, g))

1∫
0

Ω1(t)u′(tc+ (1− t)d)]dt

=
d− c

2 (∆1
0(ϕ, g) +∇1

0(ϕ, g))

1∫
0

Ω2(t)U ′(td+ (1− t)c)dt,

where

Ω1(t) =
(
∆1−t

0 (ϕ, g)−∆t
0(ϕ, g)

)
+
(
∇1−t

0 (ϕ, g)−∇t0(ϕ, g)
)
,

Ω2(t) = ∆t
0(ϕ, g) +∇t0(ϕ, g).

Proof. It is easy to see that,

1∫
0

[
∆1−t

0 (ϕ, g)−∆t
0(ϕ, g)

]
u′(tc+ (1− t)d)dt

=

1∫
0

∆t
0(ϕ, g)[u′(td+ (1− t)c)− u′(tc+ (1− t)d)]dt (28)

and
1∫

0

[
∇1−t

0 (ϕ, g)−∇t0(ϕ, g)
]
u′(tc+ (1− t)d)dt

=

1∫
0

∇t0(ϕ, g)[u′(td+ (1− t)c)− u′(tc+ (1− t)d)]dt. (29)

Clearly,

1∫
0

Ω2(t)U ′(td+ (1− t)c)dt =

1∫
0

∆t
0(ϕ, g)U ′(td+ (1− t)c)dt

+

1∫
0

∇t0(ϕ, g)U ′(td+ (1− t)c)dt. (30)

Let

Ic =

1∫
0

∆t
0(ϕ, g)U ′(td+ (1− t)c)dt (31)

and

Id =

1∫
0

∇t0(ϕ, g)U ′(td+ (1− t)c)dt. (32)

Then one can have
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(d− c)Ic = ∆1
0(ϕ, g)U(d)

−
1∫

0

ϕ(g(td+ (1− t)c)− g(c))

(g(td+ (1− t)c)− g(c))
g′(td+ (1− t)c)U(td+ (1− t)c)dt.

By suitable change of variables and applying definition (20) and (21) of generalized
integral operators, we have

(d− c)Ic = ∆1
0(ϕ, g)[u(c) + u(d)]− 1

(d− c)
Fϕ,gd− U(c). (33)

Similarly,

(d− c)Id = ∇1
0(ϕ, g)[u(c) + u(d)]− 1

(d− c)
Fϕ,gc+ U(d), (34)

From (28), (29), (30), (33) and (34), the required equalities can be acheived.
Remark 2. The aforementioned lemma holds for all kinds of integral operators
comprises in Remark 1. In particular one can obtain [2, Lemma 2.1], [6, Lemma
2.4], [5, Lemma 2.3], [16, Theorem 4.1], [23, Lemma 5], [24, Lemma 2] and [25,
Lemma 1] etc. Furthermore, some new equalities can be obtain for operators (5),
(6), (8), (9),(12), (13), (22), (23), (24), (25), (26), (27) by using approperiate set-
tings of ϕ and g as given in Remark 1.
Theorem 1. Let g : [c, d] → R be a positive monotone increasing function on
(c, d], having continuous derivatives g′ on (c, d). Let u : [c, d] → R be a differen-
tiable mapping on (c, d). If |u′| is convex on [c, d], then the following inequality for
generalized fractional integrals (20) and (21) hold:

∣∣∣∣u(c) + u(d)

2
− 1

2(d− c) (∆1
0(ϕ, g) +∇1

0(ϕ, g))

[
Fϕ,gc+ U(d) + Fϕ,gd− U(c)

]∣∣∣∣
≤ d− c

(∆1
0(ϕ, g) +∇1

0(ϕ, g))

(
|u′(c)|+ |u′(d)|

2

) 1∫
0

t |Ω1(t)| dt, (35)

where Ω1(t) is same as defined in Lemma 2.
Proof. By Lemma 2, and property of modulus, we have

∣∣∣∣u(c) + u(d)

2
− 1

2(d− c) (∆1
0(ϕ, g) +∇1

0(ϕ, g))

[
Fϕ,gc+ U(d) + Fϕ,gd− U(c)

]∣∣∣∣
≤ d− c

2 (∆1
0(ϕ, g) +∇1

0(ϕ, g))

1∫
0

|Ω1(t)| |u′(tc+ (1− t)d)| dt.

By convexity of |u′|, we get
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∣∣∣∣u(c) + u(d)

2
− 1

2(d− c) (∆1
0(ϕ, g) +∇1

0(ϕ, g))

[
Fϕ,gc+ U(d) + Fϕ,gd− U(c)

]∣∣∣∣
≤ d− c

2 (∆1
0(ϕ, g) +∇1

0(ϕ, g))

|u′(c)| 1∫
0

t |Ω1(t)| dt+ |u′(d)|
1∫

0

(1− t) |Ω1(t)| dt


=

d− c
2 (∆1

0(ϕ, g) +∇1
0(ϕ, g))

|u′(c)| 1∫
0

t |Ω1(t)| dt+ |u′(d)|
1∫

0

t |Ω1(1− t)| dt

 .
Note that

Ω1(1− t) = ∆t
0(ϕ, g)−∆1−t

0 (ϕ, g) +∇t0(ϕ, g)−∇1−t
0 (ϕ, g)

= −Ω1(t).

Using value of Ω1(1− t) in above inequality, we get required inequality (35).
Remark 3. The aforementioned inequality gives error bounds of Hadamard in-
equalities of all kinds of integral operators comprises in Remark 1. In particular by
using suitable settings of ϕ and g as given in Remark 1, one can obtain [2, Theorem
2.2], [6, Theorem 2.5], [5, Theorem 2.4], [16, Theorem 4.1], [23, Theorem 6], [23,
Corollary 5], [24, Theorem 3] and [25, Theorem 2].

3. Error bounds associated to Hadamard inequalities via
conformable and fractional integrals

In this section we construct error bounds of the Hadamard inequalities for vari-
ous kinds of fractional and conformable integral operators.
Theorem 2. Let g : [c, d] → R be a positive monotone increasing function on
(c, d], having continuous derivatives g′ on (c, d). Let u : [c, d] → R be a differen-
tiable mapping on (c, d). If |u′| is convex on [c, d], then the following inequality for
operators (12) and (13) holds:

∣∣∣∣∣u(c) + u(d)

2
− Γk(β + k)

4 [g(d)− g(c)]
β
k

[
β
gJ

k
c+U(d) +β

g J
k
d−U(c)

]∣∣∣∣∣
≤

β
kA

g (c, d)

4 [g(d)− g(c)]
β
k (d− c)

(|u′(c)|+ |u′(d)|), (36)

where,

β
kA

g (c, d) =β
k χ

g(d, d) +β
k χ

g(c, d)−βk χ
g(d, c)−βk χ

g(c, c), (37)

and

β
kχ

g(x, y) :=

c+d
2∫
c

|x− t| |g(y)− g(t)|
β
k dt−

d∫
c+d
2

|x− t| |g(y)− g(t)|
β
k dt, (38)
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for all x, y ∈ [c, d].

Proof. Let us define the function ϕ by ϕ(t) = t
β
k

kΓk(β) . Then we have

Ω1(t) =
1

(d− c)Γk(β + k)
[(g(tc+ (1− t)d)− g(c))

β
k − (g(tc+ (1− t)d)− g(c))

β
k

+ (g(tc+ (1− t)d)− g(c))
β
k − (g(tc+ (1− t)d)− g(c))

β
k ]

and

∆1
0(ϕ, g) +∇1

0(ϕ, g) =
2

(d− c)Γk(β + k)
[(g(d)− g(c))

β
k ]. (39)

Also by change of variables we have

1∫
0

t |Ω1(t)| dt =
1

(d− c)3Γk(β + k)

d∫
c

(d− x) |ψ(x)| dt, (40)

where

ψ(x) = (g(x)− g(c))
β
k − (g(c+ d− x)− g(c))

β
k − (g(d)− g(c+ d− x))

β
k

− (g(d)− g(x))
β
k .

Observe that ψ is a non-decreasing function on [c, d]. We have indeed,

ψ(c) = 2 (g(c))
β − 2 (g(d))

β
< 0,

ψ(
c+ d

2
) = 0

and

ψ(d) = 2 (g(d))
β − 2 (g(c))

β
> 0.

Hence we have,
d∫
c

(d− x) |ψ(x)| dx = I1 + I2 + I3 + I4, (41)

where

I1 =

c+d
2∫
c

(d− x)[g(c+ d− x)− g(c)]
β
k dx−

d∫
c+d
2

(d− x)[g(c+ d− x)− g(c)]
β
k dx,

I2 =

c+d
2∫
c

(d− x)[g(d)− g(x)]
β
k dx−

d∫
c+d
2

(d− x)[g(d)− g(x)]
β
k dx,

I3 = −

c+d
2∫
c

(d− x)[g(d)− g(c+ d− x)]
β
k dx+

d∫
c+d
2

(d− x)[g(d)− g(c+ d− x)]
β
k dx,

I4 = −

c+d
2∫
c

(d− x)[g(x)− g(c)]
β
k dx+

d∫
c+d
2

(d− x)[g(x)− g(c)]
β
k .
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By (38),

I2 =β
k χ

g(b, b), I4 = −βkχ
g(b, a), (42)

and by suitable change of variables,

I1 = −βkχ
g(c, c), I3 =β

k χ
g(c, d), (43)

Using (37), (41), (42) and (43) in (40), one have∫ 1

0

t |Ω1(t)| dt =
β
kA

g(a, b)

(b− a)3Γk(β + k)
(44)

Thus inequality (35) along with (39) and (44) reduced to the required inequality
(36).
Corollary 1. Let u : [c, d] → R be a differentiable mapping on (c, d). If |u′| is
convex on [c, d], then the following inequality for operators (8) and (9) hold:∣∣∣∣∣u(c) + u(d)

2
− (r + α)βΓ(β + 1)

4 [dr+α − cr+α]
β

[
β
r J

α
c+U(d) +β

r J
α
d−U(c)

]∣∣∣∣∣
≤

β
rB

α (c, d)

4 [dr+α − cr+α]
β

(d− c)
(|u′(c)|+ |u′(d)|), (45)

where,
β
rB

α(c, d) =β
r %

α(d, d) +β
r %

α(c, d)−βr %α(d, c)−βr %α(c, c),

and

β
r %
α(x, y) :=

c+d
2∫
c

|x− t|
∣∣yr+α − tr+α∣∣β dt− d∫

c+d
2

|x− t|
∣∣yr+α − tr+α∣∣β dt,

for all x, y ∈ [c, d].

Proof. Considering g(t) = tr+α

r+α , r + α 6= 0, α ∈ (0, 1) and k = 1, in inequality

(36), one gets the required result.
Corollary 2. Let u : [c, d] → R be a differentiable mapping on (c, d). If |u′| is
convex on [c, d], then the following inequality for operators (5) and (6) hold:∣∣∣∣∣u(c) + u(d)

2
− (1 + s)

β
k Γ(β + 1)

4 [d1+s − c1+s]
β

[
β
sJ

k
c+U(d) +β

s J
k
d−U(c)

]∣∣∣∣∣
≤

β
sC

k (c, d)

4 [d1+s − c1+s]
β
k (d− c)

(|u′(c)|+ |u′(d)|), (46)

where,

β
sC

k(c, d) =β
s ω

k(d, d) +β
s ω

k(c, d)−βs ωk(d, c)−βs ωk(c, c),

and

β
sω

k(x, y) :=

c+d
2∫
c

|x− t|
∣∣y1+s − t1+s

∣∣ βk dt− d∫
c+d
2

|x− t|
∣∣y1+s − t1+s

∣∣ βk dt,
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for all x, y ∈ [c, d].

Proof. By using g(t) = t1+s

1+s , s ∈ R − {−1}, in inequality (36), one gets the
required inequality.
Corollary 3. Let u : [c, d] → R be a differentiable mapping on (c, d). If |u′| is
convex on [c, d], then the following inequality for β-exponential fractional integrals
(26) and (27) of order µ hold:∣∣∣∣u(c) + u(d)

2
− Γ(µ+ 1)

4 [exp(βd)− exp(βc)]
µ [µ=c+U(d) +µ =d−U(c)]

∣∣∣∣
≤

β
µN (c, d)

4 [exp(βd)− exp(βc)]
µ

(d− c)
(|u′(c)|+ |u′(d)|), (47)

where,

β
µN(c, d) =β

µ Λ(d, d) +β
µ Λ(c, d)−βµ Λ(d, c)−βµ Λ(c, c),

and

β
µΛ(x, y) :=

c+d
2∫
c

|x− t| |exp(βy)− exp(βt)|µ dt−
d∫

c+d
2

|x− t| |exp(βy)− exp(βt)|µ dt,

for all x, y ∈ [c, d].
Proof. Replacing β by µ and using g(t) = exp(βt), β > 0, k = 1, in inequality
(36), one gets the required inequality.
Corollary 4. Let u : [c, d] → R be a differentiable mapping on (c, d). If |u′| is
convex on [c, d], then the following inequality for operators (24) and (25) holds:∣∣∣∣u(c) + u(d)

2
− (cd)βΓ(β + 1)

4(d− c)β
[
βRc+U(d) +β Rd−U(c)

]∣∣∣∣
≤

βL (c, d)

4(d− c)β+1
(|u′(c)|+ |u′(d)|), (48)

where,

β
νL(c, d) = cβ

[
βΦ(d, d) +β Φ(c, d)

]
− dβ

[
βΦ(c, c)−β Φ(d, c)

]
,

and

βΦ(x, y) :=

c+d
2∫
c

|x− t| |y − t|
β

tβ
dt−

d∫
c+d
2

|x− t| |y − t|
β

tβ
dt,

for all x, y ∈ [c, d].
Proof. Inequality (36), reduced to the required inequality subject to the condition
that g(t) = −t−1, t > 0, k = 1.
Corollary 5. Let u : [c, d] → R be a differentiable mapping on (c, d). If |u′| is
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convex on [c, d], then the following inequality for Riemann integrals hold:∣∣∣∣∣∣u(c) + u(d)

2
− 1

2(g(d)− g(c))

d∫
c

g′(t)U(t)dt

∣∣∣∣∣∣
≤ 1

(d− c) (g(d)− g(c))

(
|u′(c)|+ |u′(d)|

2

)[
Θc,g(x)−Θd,g(x)

]
, (49)

where

Θy,g(x) =

c+d
2∫
c

|y − x| g(x)dx−
d∫

c+d
2

|y − x| g(x)dx.

Proof. By taking ϕ as identity function in inequality (35) and using the same
lines as adopted in Theorem (3), we come to the desired inequality.
Theorem 3. Let g : [c, d] → R be a positive monotone increasing function on
(c, d], having continuous derivatives g′ on (c, d). Let u : [c, d] → R be a differen-
tiable mapping on (c, d). If |u′| is convex on [c, d], then the following inequality for
operators (22) and (23) holds:∣∣∣∣u(c) + u(d)

2
− 1− α

4 (1− exp(−B))

[
β
gEc+U(d) +β

g Ed−U(c)
]∣∣∣∣

≤ 1

4 (1− exp(−B))

N (c, d)

(d− c)
, (50)

where
N (c, d) = ξ(d, c)− ξ(c, d) + ξ(c, c)− ξ(d, d),

ξ(x, y) : =

c+d
2∫
c

|x− u| exp (−A (|g(u)− g(y)|)) du

−
d∫

c+d
2

|x− u| exp (−A (|g(u)− g(y)|)) du,

A = 1−β
β and B = A(g(d) − g(c)). bf ProofIf we use ϕ(u) = u

β exp(−Au), where

A = 1−β
β , β ∈ (0, 1), then by same lines as followed in the proof of Theorem 3,

required inequality (50) is obtained.

4. Concluding remarks

This study establishes a very general version of an inequality associated to
bounds of Hadamard inequalities. The inequality (35) provides bounds of almost
all the Hadamard inequalities via conformable and fractional integral operators
available in the literature. Inequalities (36), (45), (46), (47), (48) and (50) gives
error bounds of generalized fractional and conformable integral operators. More
results can be deduce from inequality (35) by different settings of ϕ and g. We feel
that some generalize inequalities may be obatin by using different kinds of convex
functions via integral operators (20) and (21). We hope that this work will attract
the attention of researchers working in fractional calculus, mathematical analysis
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and other related fields.
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