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OSCILLATION CRITERIA FOR A HALF LINEAR NEUTRAL

TYPE FRACTIONAL DIFFERENCE EQUATION WITH DELAY

YAŞAR BOLAT, MURAT GEVGEŞOĞLU

Abstract. In this paper, sufficient conditions are established for the oscilla-
tory and asymptotic behavior of the neutral type half linear fractional differ-

ence equation with delay of the form

∆(p(t)(∆ν
R(x(t) + q(t)x(t− τ))α) + r(t)xβ(t− σ) = 0, t ∈ Nt0+1−ν ,

based on the assumption
∑∞

s=t0
p−

1
α (s) < ∞, where ∆α

R denotes the Riemann-

Liouville difference operator of order 0 < υ ≤ 1 and α, β > 0 are quotient
of odd positive integers, and obtained some oscillation criteria for the above
equation by using Riccati transformation technique and some Hardy type in-
equalities. Some examples are provided to demonstrate the effectiveness of the

main results.

1. Introduction

Qualitative analysis of the solutions of fractional difference equations has received
great interest during the recent years. Fractional calculus finds significant appli-
cation in the fields of viscoelasticity, capacitor theory, electrical circuits, electro-
analytical chemistry, tumor growth models, neurology, control theory, statistics
and a review on this direction, see [17, 18, 22− 24, 26, 31, 32, 34, 36− 38]. Despite
the qualitative analysis of solutions of many fractional differential equations, see
[4, 8− 16, 19− 21, 25, 28, 29, 33, 35, 42− 48] the qualitative study of the solutions of
fractional difference equations is very scarce, see [1− 3, 5, 6, 27, 30, 39− 41] . In the
qualitative study of the solutions of these scarce fractional difference equations, the
various forms of the equation

∆(p(t)∆νx(t)) + r(t)f(x(t)) = 0, t ∈ Nν

play a major role. All of these qualitative studies are based under the assumptions∑∞
s=t0

1
p(s) = ∞ and ∆p(s) ≥ 0. The purpose of this paper is to relax these condi-

tions and derive some oscillation and asymptotic criteria for half–linear fractional
difference equation with delay of the form

∆(p(t)(∆ν [x(t) + q(t)x(t− τ)])α) + r(t)xβ(t− σ) = 0, t ∈ Nt0+1−ν , (1)
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with initial condition ∆ν−1x(t) |t=0= x0, under the assumptions
∞∑

s=t0

1

p
1
α (s)

< ∞ (2)

and without using that ∆p(t) ≥ 0. Also we don’t restrict to take α = β. Here
0 < ν ≤ 1 and ∆ν denotes the Riemann left fractional difference operator of order
ν and Nt = {t, t + 1, t + 2, ...}. Throughout the paper, we assume that α, β are
the ratio of odd positive integers, β ≤ α, p(t) > 0 for t ≥ t0, q(t) is an oscillating
sequence satisfying lim

t→∞
q(t) = 0, r(t) > 0 for t ≥ t0, σ and τ are positive integers

with lim
t→∞

(t− σ) = lim
t→∞

(t− τ) = ∞.

The sets of integer number and real numbers are denoted with Z and R re-
spectively. By a solution of equation (1), we mean a nontrivial sequence x(t) :
Z → R which is defined for all t ≥ min{−τ,−σ} and satisfies equation (1) for
sufficiently large t. We restrict our attention to those solutions of (1) which satisfy
sup{|x(t)| : t ≥ T} for all T ≥ Tx. For our purpose, we assume that equation (1)
possesses such a solution. As it is customary, a solution x(t) of the equation (1)
is said to be oscillatory if it is neither eventually positive nor eventually negative;
otherwise, it is called non-oscillatory.

2. Preliminaries

In this section, we present some preliminary definitions from discrete fractional
calculus. We will make use of these results, throughout the paper.
Definition 1 [40] Let ν > 0. The ν-th fractional sum f is defined by

∆−νf(t) =
1

Γ(ν)

t−ν∑
s=a

(t− s− 1)ν−1f(s),

where f is defined for s ≡ a mod(1), ∆−νf(t) is defined for t ≡ (a+ ν) mod(1)

and t(ν) = Γ(t+1)
Γ(t−ν+1) . The fractional sum ∆−νf(t) maps functions defined in Na to

functions defined in Na+ν .
Definition 2 [40] Let µ > 0 and m − 1 < µ < m, where m is a positive integer,
m = ⌈µ⌉. Set ν = m − µ. The µ-th order Riemann left fractional difference is
defined as

∆µf(t) = ∆m−νf(t) = ∆m∆−νf(t),

where ∆−νf(t) is ν-th fractional sum.
Theorem 1 (see[7]). Let f be a real-value function defined on Na and µ, ν > 0,
then the following equalities hold:

(i) ∆−ν [∆−µf(t)] = ∆−(µ+ν)f(t) = ∆−µ[∆−νf(t)];

(ii) ∆−ν∆f(t) = ∆∆−νf(t)− (t−a)(ν−1)

Γ(ν) f(a).

3. Main results

To obtain our main results, we need following lemmas. For the sake of conve-
nience, the function y is defined as

y(t) = x(t) + q(t)x(t− τ) and ξ(t) =:
1

Γ(ν)

∞∑
s=t

(t− s− 1)(ν−1) 1

p
1
α (s)

. (3)
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H1)
t−ν∑
s=t0

1

p
1
α (s)

< ∞ as t → ∞.

H2)
∑∞

s=t0
[kβ1 r(s)s

2 − c(2s+ 1)] = ∞, c > 0.

H3)
yβ(t−σ)
yα(t+1) ≥ A > 0 and ∆yα(t)

∆νy(t+1)yα−1(t+1) ≥ B > 0, for y(t) ̸= 0 and ∆αy(t+

1) ̸= 0 respectively.
Theorem 2 Assume that H1 and H2 are satisfied. Then every bounded solution
of Eq.(1) either oscillates or tends to zero.
Proof. Suppose to the contrary that x(t) is a nonoscillatory bounded solution of
Eq.(1). Without loss of generality, we can assume that x(t) is an eventually positive
bounded solution of Eq.(1) (the proof is similar when x(t) is eventually negative).
Then there exists t1 > t0 such that x(t) > 0, x(t− τ) > 0 and x(t− σ) > 0 for all
t ≥ t1 ≥ t0. Further, suppose that x(t) does not tend to zero as n → ∞. Therefore
by Eq.(1) and (3), we have

∆(p(t)(∆νy(t))α) = −r(t)xβ(t− σ) ≤ 0, t ≥ t1 (4)

Thus p(t)(∆νy(t))α is an eventually nonincreasing sequence. Since x(t) is bounded
and does not tend to zero as n → ∞, we have lim

t→∞
q(t)x(t − τ) = 0. Then,

there exists an integer t2 ≥ t1 such that y(t) = x(t) + q(t)x(t − τ) > 0 and is
bounded eventually for sufficiently large t ≥ t2 . Next we show that p(t)(∆νy(t))α

is eventually positive. Suppose that there exists an integer t3 ≥ t2 and a constant
c1 > 0 such that p(t3)(∆

νy(t3))
α = −c1 < 0. Then we have

p(t)(∆νy(t))α ≤ p(t3)(∆
νy(t3))

α = −c1 < 0 for t ≥ t3.

That is

∆νy(t) < −
(

c1
p(t)

) 1
α

, for t ≥ t3. (5)

From (5) we can write

∆(∆−(1−ν)y(t)) < −
(

c1
p(t)

) 1
α

, for t ≥ t3. (6)

Summing (6) from t3 to t− 1, we have

∆−(1−ν)y(t) < ∆−(1−ν)y(t3)− c
1
α

1

t−ν∑
s=t3

1

p
1
α (s)

(7)

Applying ∆(1−ν) to the both side of (7), we obtain

y(t) < −c
1
α

1 ∆(1−ν)

(
t−ν∑
s=t3

1

p
1
α (s)

)
.

Applying fractional sum ∆−ν to (5), by definition 1 and theorem 1 we obtain

y(t) <
t(ν−1)

Γ(ν)
c2 −

c
1
α

1

Γ(ν)

t−ν∑
s=t3

(t− s− 1)(ν−1) 1

p
1
α (s)

≤ 1

Γ(ν)

(
t(ν−1)c2 − c

1
α

1 (t− t3 − 1)(ν−1)
t−ν∑
s=t3

1

p
1
α (s)

)
= −∞

as t → ∞ by (H2), where c2 = ∆−νy(0), which contradicts to the fact that y(t) > 0.
Hence p(t)(∆νy(t))α is eventually positive. Now, since y(t) is bounded, we can write
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limt→∞ y(t) = L (−∞ < L < ∞). Assume that 0 ≤ L < +∞. Let L > 0. Then,
there exists a constant k > 0 and a t4 with t4 ≥ t3 such that y(t) > k > 0 for
t ≥ t4. Therefore, there exists a constant k1 > 0 and a t5 with t5 ≥ t4 such that
x(t) = y(t)− q(t)x(t− τ) > k1 > 0 for sufficiently large t ≥ t5. So, we can find a t6
with t6 ≥ t5 such that x(t− σ) > k1 > 0 for t ≥ t6. Thus from (1) we have

∆(p(t)(∆νy(t))α) ≤ −kβ1 r(t), t ≥ t6. (8)

If we multiply (8) by t2 , and summing it from t6 to t− 1, we obtain

t2p(t)(∆νy(t))α ≤ c3 +
t−1∑
s=t6

[p(s+ 1)(∆νy(s+ 1))α(2s+ 1)− kβ1 r(s)s
2]

≤ c3 +
t−1∑
s=t6

[p(s)(∆νy(s))α(2s+ 1)− kβ1 r(s)s
2]. (9)

where c3 = t26p(t6)(∆
νy(t6))

α. Since p(t)(∆νy(t))α > 0 and is nonincreasing, from
(9) we have

t2p(t)(∆νy(t))α ≤ c3 −
t−1∑
s=t6

[kβ1 r(s)s
2 − c3(2s+ 1)].

as t → ∞, virtue of by (H2) this is a contradiction. So, L > 0 is impossible.
Therefore, L = 0 is the only possible case. That is, limt→∞ y(t) = 0. Now, let us
consider the case of x(t) < 0 for t ≥ t1. If we write x(t) = −x(t), as in the proof
of x(t) > 0, we can prove that L = 0. As for the rest, it is similar to the case of
x(t) > 0. That is, limt→∞ y(t) = 0. This contradicts our assumption. Hence, the
proof is completed.
Theorem 3. Assume that H3 holds. Further, we suppose that the following
condition holds.

C) There is a sequence φ(t) > 0 which is defined on N(to), such that

lim
t→∞

sup
t−1∑
s=t3

φ(s)r(s) = ∞

and

lim
t→∞

sup
t−1∑
s=t3

[(
α

∆φ(s)

)α(
B

α+ 1

φ(s)

p(s+ 1)

)α+1
]
< ∞.

Then every bounded solution of Eq.(1) is oscillatory.
Proof. Suppose to the contrary that x(t) is a nonoscillatory solution of Eq.(1).
Without loss of generality, we can assume that x(t) is an eventually positive solution
of (1) (the proof is similar when x(t) is eventually negative). Then there exists
t1 > t0 such that x(t) > 0, x(t− τ) > 0 and x(t− σ) > 0 for all t ≥ t1 ≥ t0. Since
x(t) is bounded, we have lim

t→∞
q(t)x(t−τ) = 0. Then, there exists an integer t2 ≥ t1

such that y(t) is also bounded for sufficiently large t ≥ t2 . Then, there exists an
integer t3 ≥ t2 such that x(t) = y(t) − q(t)x(t − τ) ≥ 1

2y(t) > 0 for t ≥ t3 . Hence
we can find a t4 ≥ t3 such that

x(t− σ) ≥ 1

2
y(t− σ) for t ≥ t4.
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Therefore by Eq.(1) and (3), we have

∆(p(t)(∆νy(t))α) ≤ − 1

2β
r(t)yβ(t− σ), t ≥ t4. (10)

Define the function w(t) by the Riccati substitution

w(t) =
p(t)(∆νy(t))α

yα(t)
. (11)

Since p(t)(∆νy(t))α and y(t) are positive, w(t) > 0. If we apply the forward differ-
ence operator ∆ to (11) we obtain

∆w(t) = ∆

(
p(t)(∆νy(t))α

yα(t)

)
=

yα(t)∆(p(t)(∆νy(t))α)− p(t)(∆νy(t))α∆yα(t)

yα(t)yα(t+ 1)

=
∆(p(t)(∆νy(t))α)

yα(t+ 1)
− p(t)(∆νy(t))α

yα(t)

∆yα(t)

yα(t+ 1)
(12)

By (H1) and (10) from (12) we have

∆w(t) =
∆(p(t)(∆νy(t))α)

yα(t+ 1)
− p(t)(∆νy(t))α

yα(t)

∆yα(t)

yα(t+ 1)

≤ − 1

2β
r(t)

yβ(t− σ)

yα(t+ 1)
− p(t)(∆νy(t))α

yα(t+ 1)

∆yα(t)

yα(t)

≤ − 1

2β
r(t)

yβ(t− σ)

yα(t+ 1)
− w(t)

∆yα(t)

yα(t+ 1)

= − 1

2β
r(t)

yβ(t− σ)

yα(t+ 1)
− w(t)

p
1
α (t+ 1)∆νy(t+ 1)

y(t+ 1)

∆yα(t)

p
1
α (t+ 1)∆νy(t+ 1)yα−1(t+ 1)

= − 1

2β
r(t)A− w(t)w

1
α (t+ 1)

B

p
1
α (t+ 1)

≤ 0. (13)

Since w(t)is nonincreasing, w(t+ 1) ≤ w(t).From (13) we have

∆w(t) ≤ − 1

2β
r(t)A− B

p
1
α (t+ 1)

w1+ 1
α (t+ 1). (14)

Multiplying the inequality (14) by a sequence φ(t) > 0 and summing up it from t3
to t− 1, we obtain

φ(t)w(t) ≤ φ(t3)w(t3)+
t−1∑
s=t3

w(s+1)∆φ(s)−
t−1∑
s=t3

[
A

2β
φ(s)r(s)− B

p
1
α (s+ 1)

w1+ 1
α (s+1)φ(s)]

or

φ(t)w(t+1) ≤ φ(t3)w(t3)−
t−1∑
s=t3

A

2β
φ(s)r(s)+

t−1∑
s=t3

[∆φ(s)w(s+1)− Bφ(s)

p
1
α (s+ 1)

w1+ 1
α (s+1)].

(15)
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Get F (w) = Mw −Nw1+ 1
α in (15) where M = ∆φ(s) > 0 and N = Bφ(s)

p
1
α (s+1)

> 0.

The function F has the maximum value at w =
(

αM
(α+1)N

)α
such that Fmax(w) =(

α
N

)α ( M
α+1

)α+1

. Therefore from (15) we can write

−φ(t3)w(t3) ≤ −
t−1∑
s=t3

A

2β
φ(s)r(s) +

t−1∑
s=t3

[(
α

∆φ(s)

)α(
B

α+ 1

φ(s)

p
1
α (s+ 1)

)α+1
]

which contradicts with the condition (C), when t → ∞. Therefore x(t) can not be
positive. Hence the proof is completed.
Example 1 Consider the equation

∆(t3(∆ν(x(t) +

(
−1

2

)t

x(t− 1)))α) + r(t)xβ(s− 2) = 0, t ∈ Nt0+1−ν , (16)

where p(t) = t3, q(t) =
(
−1

2

)t
, α = 1

3 , β = 1
5 , τ = 1, r(t) = t − 2 and σ = 2.

Choosing φ(t) = t2 we have

lim
t→∞

sup
t−1∑
s=t3

φ(s)r(s) = lim
t→∞

sup
t−1∑
s=t3

s2(s− 2) = ∞

and

lim
t→∞

sup
t−1∑
s=t3

[(
α

∆φ(s)

)α(
B

α+ 1

φ(s)

p
1
α (s+ 1)

)α+1
]
= B

4
3 lim
t→∞

sup
t−1∑
s=t3

3(s− 1)
4
3

8s3
= B

4
3 (0.289 47) < ∞.

Hence all the conditions of Theorem 3 are provided. Therefore every bounded so-
lution of the equation (16) is oscillatory.
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