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ON A NEW SUBCLASS OF ANALYTIC FUNCTIONS

INVOLVING KOMATU INTEGRAL OPERATOR

P. THIRUPATHI REDDY, B. VENKATESWARLU, RAJKUMAR N. INGLE,
S. SREELAKSHMI

Abstract. The object of the paper is to study some properties for Kδ
c f(z)

belonging to some class by applying Jack’s lemma.

1. Introduction

Let A be denote the class of all analytic functions f of the form

f(z) = z +
∞∑

n=2

anz
n, n ∈ N = {1, 2, 3, · · · } (1)

which are analytic in the punctured unit disc E = {z ∈ C : 0 < |z| < 1}. Let
S denote the subclass of A which consists of functions of the form (1) that are
univalent and normalized by conditions f(0) = 0 and f ′(0) = 1 in E.

Recently Komatu [6] introduced a certain integral operator Kδ
c f(z)

Kδ
c f(z) =

cδ

Γ(δ)

1∫
0

tc−2

(
log

1

t

)c−1

f(tz)dt, (2)

c > 0, δ ≥ 0 and z ∈ E.
Thus, if f ∈ A is of the form (1) then it is easily seen from (2) that

Kδ
c f(z) = z +

∞∑
n=2

(
c

c+ n− 1

)δ

anz
n, a > 0, δ ≥ 0. (3)

We note that

(i). for c = 1 and δ = k(k is any integer), the multiple transformationKδ
1f(z) =

Ikf(z) was studied by Flett [1].

(ii). for c = 1 and δ = −k(k ∈ N0) , the differential operator K
−k
1 f(z) = Dkf(z)

was studied by Salagean [7].
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(iii). for c = 2 and δ = k(k is any integer), the operators Kk
2 f(z) = Kkf(z) was

studied by Uralegaddi and Somanatha [9].
(iv). for c = 2, the multiple transformation Kδ

2f(z) = Kδf(z) was studied by
Jung et al. [3].

In the following definition, we introduce a new class of analytic functions con-
taining a integral operator of equation (3).

Definition 1.1. Let a function f ∈ A. Then f ∈ Kδ
c f(z) if and only if

Re

{
z
(
Kδ

c f(z)
)′

Kδ
c f(z)

}
> β, z ∈ E, 0 ≤ β ≤ 1. (4)

Let f and g be analytic in E. Then f is said to be subordinate to g if there
exists an analytic function ω satisfying ω(0) = 0 and ω(z) < 1, such that f(z) =
g(ωz), z ∈ E. We denote this subordination as f(z) ≺ g(z) or (f ≺ g), z ∈ E.

The basic idea in proving our result is the following lemma due to Jack [2] (also,
due to Miller and Mocannu [4])

Lemma 1.2. Let ω(z) be analytic in E with ω(0) = 0. Then if |ω(z)| attains its
maximum value on the circle |z| = r at a point z0]inE then we have z0ω

′(z) =
kω(z0), where k ≥ 1 is a real number.

2. Main Results

In the present paper, we follow similar works done by Shireishi and Owa [8] and
Ochiai et al. [5], we derive the following result.

Theorem 2.1. If f ∈ A satisfies

Re

{
z
(
Kδ

c f(z)
)′

Kδ
c f(z)

}
<

β − 3

2(β − 1)
, z ∈ E

for some β(−1 < β ≤ 0) then

Kδ
c f(z)

z
≺ 1 + βz

1− z
, z ∈ E.

This implies that

Re

{
Kδ

c f(z)

z

}
>

1− β

2

Proof. Let us define the function ω(z) by

Kδ
c f(z)

z
=

1− βω(z)

1− ω(z)
, (ω(z) ̸= 1).

Clearly, ω(z) is analytic in E and ω(0) = 0. We want to prove that |ω(z)| < 1 in
E. Since

z
(
Kδ

c f(z)
)′

Kδ
c f(z)

=
−βzω′(z)

1− βω(z)
+

zω′(z)

1− ω(z)
+ 1,

we see that

Re

{
z
(
Kδ

c f(z)
)′

Kδ
c f(z)

}
= Re

{
−βzω′(z)

1− βω(z)
+

zω′(z)

1− ω(z)
+ 1

}
<

β − 3

2(β − 1)
, (z ∈ E)
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for −1 < β ≤ 0. If there exists a point z0 ∈ E such that

max
|z|≤|z0|

|ω(z)| = |ω(z0)| = 1,

then Lemma 1.2, gives us that ω(z0) = eiθ and z0ω
′(z0) = kω(z0), k ≥ 1.

Thus we have

z0
(
Kδ

c f(z0)
)′

Kδ
c f(z0)

=
−βz0ω

′(z0)

1− βω(z0)
+

z0ω
′(z0)

1− ω(z0)
+ 1

= 1 +
k

1− eiθ
− k

1− βeiθ
.

It follows that

Re

{
1

1− ω(z0)

}
= Re

{
1

1− eiθ

}
=

1

2

and Re

{
1

1− βω(z0)

}
= Re

{
1

1− βeiθ

}
=

1

2
− 1− β2

2(1 + β2 − 2βcosθ)
.

Therefore, we have

Re

{
z0

(
Kδ

c f(z0)
)′

Kδ
c f(z0)

}
= 1− k(β2 − 1)

2(1 + β2 − 2βcosθ)
.

This implies that −1 < β ≤ 0,

Re

{
z0

(
Kδ

c f(z0)
)′

Kδ
c f(z0)

}
≥ 1 +

(1− β2)

2(β − 1)2
=

β − 3

2(β − 1)
.

This contradicts the condition in the theorem. Then there is no z0 ∈ E such that
|ω(z0)| = 1 for all z ∈ E, that is

Kδ
c f(z)

z
<

1 + βz

1− z
, z ∈ E.

Further more, since

ω(z) =
Kδ

c f(z)
z − 1

Kδ
c f(z)
z − β

, z ∈ E

and |ω(z)| < 1, (z ∈ E), we conclude that

Re

{
Kδ

c f(z)

z

}
>

1− β

2
.

�
Taking β = 0 in the Theorem 2.1, we have the following corollary.

Corollary 2.2. If f ∈ A satisfies

Re

{
z(Kδ

c f(z))
′

Kδ
c f(z)

}
>

3

2
, z ∈ E

then
Kδ

c f(z

z
≺ 1

1− z
, z ∈ E

and

Re

{
Kδ

c f(z)

z

}
>

1

2
, z ∈ E
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Theorem 2.3. If f ∈ A satisfies

Re

{
z(Kδ

c f(z))
′

Kδ
c f(z)

}
>

3β − 1

2(β − 1)
, z ∈ E

for some β(−1 < β ≤ 0) then

z

Kδ
c f(z)

≺ 1 + z

1− z
, z ∈ E

and ∣∣∣∣Kδ
c f(z)

z
− 1

1− β

∣∣∣∣ < 1

1− β
, z ∈ E.

This implies that Re
{

Kδ
c f(z)
z

}
> 0, z ∈ E.

Proof. Let us define the function ω(z) by

z

Kδ
c f(z)

=
1− βω(z)

1− ω(z)
, ω(z) ̸= 1. (5)

Then, we have ω(z) is analytic in E and ω(0) = 0. We want to prove that |ω(z)| < 1
in E. Differenting equation (5), we obtain

z(Kδ
c f(z))

′

Kδ
c f(z)

=
−zω′(z)

1− ω(z)
+

βzω′(z)

1− βω(z)
+ 1

⇒ Re

{
z(Kδ

c f(z))
′

Kδ
c f(z)

}
= Re

{
−zω′(z)

1− ω(z)
+

αzω′(z)

1− βω(z)
+ 1

}
>

3β − 1

2(β − 1)
, z ∈ E,

for (−1 < β ≤ 0). If there exists a point (z0 ∈ E) such that Lemma 1.2, gives us
that ω(z0) = eiθ and z0ω

′(z0) = kω(z0), k ≥ 1. Thus we have

z0(K
δ
c f(z0))

′

Kδ
c f(z0)

=
−z0ω

′(z0)

1− ω(z0)
+

βz0ω
′(z0)

1− βω(z0)
+ 1

= 1− k

1− eiθ
+

k

1− βeiθ
.

Therefore, we have

Re

{
z0(K

δ
c f(z0))

′

Kδ
c f(z0)

}
= 1 +

k(β2 − 1)

2(1 + β2 − 2βcosθ)
.

This implies that, for −1 < α ≤ 0,

Re

{
z0(K

δ
c f(z0))

′

Kδ
c f(z0)

}
= 1− k(1− α2)

2(1 + α2 − 2αcosθ)

≤ 3α− 1

2(α− 1)
.

This contradicts the condition in the theorem.
Hence, there is no z0 ∈ E such that |ω(z0)| = 1 for all z ∈ E, that is

z

Kδ
c f(z)

≺ 1 + z

1− z
, z ∈ E.
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Furthermore, since

ω(z) =
1− Kδ

c f(z)
z

1− βKδ
c f(z)
z

, z ∈ E

and |ω(z)| < 1, (z ∈ E) we conclude that∣∣∣∣Kδ
c f(z)

z
− 1

1− β

∣∣∣∣ < 1

1− β
, z ∈ E

which implies that

Re

{
Kδ

c f(z)

z

}
> 0, z ∈ E.

We complete the proof of the theorem. �

By setting β = 0 in Theorem 2.3, we readily obtain the following

Corollary 2.4. If f ∈ A satisfies

Re

{
z
(
Kδ

c f(z)
)′

Kδ
c f(z)

}
>

1

2
, z ∈ E

then
z

Kδ
c f(z)

≺ 1 + z

1− z
, z ∈ E

and ∣∣∣∣Kδ
c f(z)

z
− 1

∣∣∣∣ < 1, z ∈ E.

Theorem 2.5. If f ∈ A satisfies

Re

{
z
(
Kδ

c f(z)
)′

Kδ
c f(z)

}
<

β(2− γ)− (2 + γ)

2(β − 1)
, z ∈ E

for some β (−1 < β ≤ 0 and 0 < β ≤ 1 then(
Kδ

c f(z)

z

) 1
γ

≺ 1 + βz

1− z
, z ∈ E.

Then implies that (
Kδ

c f(z)

z

) 1
γ

>
1− β

2
, z ∈ E.

Proof. Let us define the function ω(z) by

Kδ
c f(z)

z
=

(
1− βω(z)

1− ω(z)

)γ

, ω(z) ̸= 1.

Clearly, ω(z) is analytic in E and ω(0) = 0. We want to prove that |ω(z)| < 1 in
E. Since

z
(
Kδ

c f(z)
)′

Kδ
c f(z)

= γ

(
zω′(z)

1− ω(z)
− βzω′(z)

1− βω(z)

)
+ 1.
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We see that

Re

{
z
(
Kδ

c f(z)
)′

Kδ
c f(z)

}
= Re

{
γ

(
zω′(z)

1− ω(z)
− βzω′(z)

1− βω(z)

)
+ 1

}
<

β(2− γ)− (2 + γ)

2(β − 1)
, z ∈ E,

for β(−1 < β ≤ 0) and 0 < γ ≤ 1. If there exists a point (z0 ∈ E) such that

max
|z|<|z0|

|ω(z)| = |ω(z0)| = 1

then by Lemma 1.2, gives us that ω(z0) = eiθ and z0ω
′(z0) = kω(z0), k ≥ 1.

Thus we have

z0
(
Kδ

c f(z0)
)′

Kδ
c f(z0)

= γ

(
z0ω

′(z0)

1− ω(z0)
− βz0ω

′(z0)

1− βω(z0)

)
+ 1

= 1 +
k

1− eiθ
− k

1− βeiθ
.

Therefore, we have

Re

{
z0

(
Kδ

c f(z0)
)′

Kδ
c f(z0)

}
= 1 +

γk(1− β2)

2(1 + β2 − 2βcosθ)
.

Thus implies that, for β(−1 < β ≤ 0) and 0 < γ ≤ 1

Re

{
z0

(
Kδ

c f(z0)
)′

Kδ
c f(z0)

}
≥ β(2− γ)− (2 + γ)

2(β − 1)
.

This contradicts the condition in the theorem.
Hence, there is no z0 ∈ E such that |ω(z0)| = 1 for all z ∈ E, that is(

Kδ
c f(z)

z

) 1
γ

≺ 1− βz

1− z
, z ∈ E.

Furthermore, since

ω(z) =

(
Kδ

c f(z)
z

) 1
γ − 1(

Kδ
c f(z)
z

) 1
γ − β

and |ω(z)| < 1, (z ∈ E), we conclude that(
Kδ

c f(z)

z

) 1
γ

>
1− β

2
, z ∈ E,

we complete the proof of the theorem. �
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