Journal of Fractional Calculus and Applications Vol. 12(1) Jan. 2021, pp. 69-75. ISSN: 2090-5858. http://math-frac.oreg/Journals/JFCA/

ON A NEW SUBCLASS OF ANALYTIC FUNCTIONS INVOLVING KOMATU INTEGRAL OPERATOR

P. THIRUPATHI REDDY, B. VENKATESWARLU, RAJKUMAR N. INGLE, S. SREELAKSHMI

ABSTRACT. The object of the paper is to study some properties for $K_c^{\delta}f(z)$ belonging to some class by applying Jack's lemma.

1. INTRODUCTION

Let A be denote the class of all analytic functions f of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \ n \in N = \{1, 2, 3, \cdots\}$$
(1)

which are analytic in the punctured unit disc $E = \{z \in \mathbb{C} : 0 < |z| < 1\}$. Let S denote the subclass of A which consists of functions of the form (1) that are univalent and normalized by conditions f(0) = 0 and f'(0) = 1 in E.

Recently Komatu [6] introduced a certain integral operator $K_c^\delta f(z)$

$$K_c^{\delta} f(z) = \frac{c^{\delta}}{\Gamma(\delta)} \int_0^1 t^{c-2} \left(\log \frac{1}{t} \right)^{c-1} f(tz) dt,$$
(2)

 $c > 0, \delta \ge 0$ and $z \in E$.

Thus, if $f \in A$ is of the form (1) then it is easily seen from (2) that

$$K_c^{\delta}f(z) = z + \sum_{n=2}^{\infty} \left(\frac{c}{c+n-1}\right)^{\delta} a_n z^n, a > 0, \delta \ge 0.$$
(3)

We note that

- (i). for c = 1 and $\delta = k(k \text{ is any integer})$, the multiple transformation $K_1^{\delta}f(z) = I^k f(z)$ was studied by Flett [1].
- (ii). for c = 1 and $\delta = -k(k \in \mathbb{N}_0)$, the differential operator $K_1^{-k} f(z) = D^k f(z)$ was studied by Salagean [7].

²⁰¹⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. analytic function, starlike, integral operator, Jack's lemma. Submitted Seb. 19, 2019.

- (iii). for c = 2 and $\delta = k(k \text{ is any integer})$, the operators $K_2^k f(z) = K^k f(z)$ was
- studied by Uralegaddi and Somanatha [9]. (iv). for c = 2, the multiple transformation $K_2^{\delta}f(z) = K^{\delta}f(z)$ was studied by Jung et al. [3].

In the following definition, we introduce a new class of analytic functions containing a integral operator of equation (3).

Definition 1.1. Let a function $f \in A$. Then $f \in K_c^{\delta} f(z)$ if and only if

$$Re\left\{\frac{z\left(K_{c}^{\delta}f(z)\right)'}{K_{c}^{\delta}f(z)}\right\} > \beta, z \in E, 0 \le \beta \le 1.$$

$$\tag{4}$$

Let f and g be analytic in E. Then f is said to be subordinate to g if there exists an analytic function ω satisfying $\omega(0) = 0$ and $\omega(z) < 1$, such that f(z) = $g(\omega z), z \in E$. We denote this subordination as $f(z) \prec g(z)$ or $(f \prec g), z \in E$.

The basic idea in proving our result is the following lemma due to Jack [2] (also, due to Miller and Mocannu [4])

Lemma 1.2. Let $\omega(z)$ be analytic in E with $\omega(0) = 0$. Then if $|\omega(z)|$ attains its maximum value on the circle |z| = r at a point z_0 in E then we have $z_0 \omega'(z) = c_0 \omega'(z)$ $k\omega(z_0)$, where $k \geq 1$ is a real number.

2. Main Results

In the present paper, we follow similar works done by Shireishi and Owa [8] and Ochiai et al. [5], we derive the following result.

Theorem 2.1. If $f \in A$ satisfies

$$Re\left\{\frac{z\left(K_{c}^{\delta}f(z)\right)'}{K_{c}^{\delta}f(z)}\right\} < \frac{\beta - 3}{2(\beta - 1)}, \ z \in E$$

for some $\beta(-1 < \beta \leq 0)$ then

$$\frac{K_c^{\delta}f(z)}{z} \prec \frac{1+\beta z}{1-z}, \ z \in E.$$

This implies that

$$Re\left\{\frac{K_c^{\delta}f(z)}{z}\right\} > \frac{1-\beta}{2}$$

Proof. Let us define the function $\omega(z)$ by

$$\frac{K_c^{\delta}f(z)}{z} = \frac{1 - \beta\omega(z)}{1 - \omega(z)}, \ (\omega(z) \neq 1).$$

Clearly, $\omega(z)$ is analytic in E and $\omega(0) = 0$. We want to prove that $|\omega(z)| < 1$ in E. Since

$$\frac{z\left(K_c^{\delta}f(z)\right)'}{K_c^{\delta}f(z)} = \frac{-\beta z \omega'(z)}{1 - \beta \omega(z)} + \frac{z \omega'(z)}{1 - \omega(z)} + 1,$$

we see that

$$Re\left\{\frac{z\left(K_{c}^{\delta}f(z)\right)'}{K_{c}^{\delta}f(z)}\right\} = Re\left\{\frac{-\beta z\omega'(z)}{1-\beta\omega(z)} + \frac{z\omega'(z)}{1-\omega(z)} + 1\right\}$$
$$< \frac{\beta-3}{2(\beta-1)}, \ (z \in E)$$

70

JFCA-2020/12(1)

for $-1 < \beta \leq 0$. If there exists a point $z_0 \in E$ such that

$$\max_{|z| \le |z_0|} |\omega(z)| = |\omega(z_0)| = 1$$

then Lemma 1.2, gives us that $\omega(z_0) = e^{i\theta}$ and $z_0\omega'(z_0) = k\omega(z_0), k \ge 1$. Thus we have

$$\frac{z_0 \left(K_c^{\delta} f(z_0)\right)'}{K_c^{\delta} f(z_0)} = \frac{-\beta z_0 \omega'(z_0)}{1 - \beta \omega(z_0)} + \frac{z_0 \omega'(z_0)}{1 - \omega(z_0)} + 1$$
$$= 1 + \frac{k}{1 - e^{i\theta}} - \frac{k}{1 - \beta e^{i\theta}}.$$

It follows that

$$Re\left\{\frac{1}{1-\omega(z_0)}\right\} = Re\left\{\frac{1}{1-e^{i\theta}}\right\} = \frac{1}{2}$$

and
$$Re\left\{\frac{1}{1-\beta\omega(z_0)}\right\} = Re\left\{\frac{1}{1-\beta e^{i\theta}}\right\} = \frac{1}{2} - \frac{1-\beta^2}{2(1+\beta^2-2\beta cos\theta)}.$$

Therefore, we have

$$Re\left\{\frac{z_0\left(K_c^{\delta}f(z_0)\right)'}{K_c^{\delta}f(z_0)}\right\} = 1 - \frac{k(\beta^2 - 1)}{2(1 + \beta^2 - 2\beta \cos\theta)}$$

This implies that $-1 < \beta \leq 0$,

$$Re\left\{\frac{z_0\left(K_c^{\delta}f(z_0)\right)'}{K_c^{\delta}f(z_0)}\right\} \ge 1 + \frac{(1-\beta^2)}{2(\beta-1)^2} = \frac{\beta-3}{2(\beta-1)}.$$

This contradicts the condition in the theorem. Then there is no $z_0 \in E$ such that $|\omega(z_0)| = 1$ for all $z \in E$, that is

$$\frac{K_c^{\delta}f(z)}{z} < \frac{1+\beta z}{1-z}, \ z \in E.$$

Further more, since

$$\omega(z) = \frac{\frac{K_c^{\delta}f(z)}{z} - 1}{\frac{K_c^{\delta}f(z)}{z} - \beta}, z \in E$$

and $|\omega(z)| < 1$, $(z \in E)$, we conclude that

$$Re\left\{\frac{K_c^{\delta}f(z)}{z}\right\} > \frac{1-\beta}{2}.$$

Taking $\beta = 0$ in the Theorem 2.1, we have the following corollary.

Corollary 2.2. If $f \in A$ satisfies

$$Re\left\{\frac{z(K_c^{\delta}f(z))'}{K_c^{\delta}f(z)}\right\} > \frac{3}{2}, \ z \in E$$

then

$$\begin{split} \frac{K_c^\delta f(z}{z} \prec \frac{1}{1-z}, \ z \in E \\ Re\left\{\frac{K_c^\delta f(z)}{z}\right\} > \frac{1}{2}, \ z \in E \end{split}$$

and

Theorem 2.3. If $f \in A$ satisfies

$$Re\left\{\frac{z(K_c^{\delta}f(z))'}{K_c^{\delta}f(z)}\right\} > \frac{3\beta - 1}{2(\beta - 1)}, \ z \in E$$

for some $\beta(-1 < \beta \leq 0)$ then

$$\frac{z}{K_c^\delta f(z)}\prec \frac{1+z}{1-z},\ z\in E$$

and

$$\left|\frac{K_c^{\delta}f(z)}{z} - \frac{1}{1-\beta}\right| < \frac{1}{1-\beta}, \ z \in E.$$

This implies that $Re\left\{\frac{K_c^{\delta}f(z)}{z}\right\} > 0, \ z \in E.$

Proof. Let us define the function $\omega(z)$ by

$$\frac{z}{K_c^{\delta}f(z)} = \frac{1 - \beta\omega(z)}{1 - \omega(z)}, \ \omega(z) \neq 1.$$
(5)

Then, we have $\omega(z)$ is analytic in E and $\omega(0) = 0$. We want to prove that $|\omega(z)| < 1$ in E. Differenting equation (5), we obtain

$$\begin{aligned} \frac{z(K_c^{\delta}f(z))'}{K_c^{\delta}f(z)} &= \frac{-z\omega'(z)}{1-\omega(z)} + \frac{\beta z\omega'(z)}{1-\beta\omega(z)} + 1\\ \Rightarrow Re\left\{\frac{z(K_c^{\delta}f(z))'}{K_c^{\delta}f(z)}\right\} &= Re\left\{\frac{-z\omega'(z)}{1-\omega(z)} + \frac{\alpha z\omega'(z)}{1-\beta\omega(z)} + 1\right\}\\ &> \frac{3\beta - 1}{2(\beta - 1)}, \ z \in E, \end{aligned}$$

for $(-1 < \beta \leq 0)$. If there exists a point $(z_0 \in E)$ such that Lemma 1.2, gives us that $\omega(z_0) = e^{i\theta}$ and $z_0\omega'(z_0) = k\omega(z_0), k \geq 1$. Thus we have

$$\frac{z_0(K_c^{\delta}f(z_0))'}{K_c^{\delta}f(z_0)} = \frac{-z_0\omega'(z_0)}{1-\omega(z_0)} + \frac{\beta z_0\omega'(z_0)}{1-\beta\omega(z_0)} + 1$$
$$= 1 - \frac{k}{1-e^{i\theta}} + \frac{k}{1-\beta e^{i\theta}}.$$

Therefore, we have

$$Re\left\{\frac{z_0(K_c^{\delta}f(z_0))'}{K_c^{\delta}f(z_0)}\right\} = 1 + \frac{k(\beta^2 - 1)}{2(1 + \beta^2 - 2\beta \cos\theta)}.$$

This implies that, for $-1 < \alpha \leq 0$,

$$Re\left\{\frac{z_0(K_c^{\delta}f(z_0))'}{K_c^{\delta}f(z_0)}\right\} = 1 - \frac{k(1-\alpha^2)}{2(1+\alpha^2 - 2\alpha \cos\theta)} \le \frac{3\alpha - 1}{2(\alpha - 1)}.$$

This contradicts the condition in the theorem.

Hence, there is no $z_0 \in E$ such that $|\omega(z_0)| = 1$ for all $z \in E$, that is

$$\frac{z}{K_c^\delta f(z)}\prec \frac{1+z}{1-z},\ z\in E.$$

JFCA-2020/12(1)

Furthermore, since

$$\omega(z) = \frac{1 - \frac{K_c^{\delta} f(z)}{z}}{1 - \frac{\beta K_c^{\delta} f(z)}{z}}, \ z \in E$$

and $|\omega(z)|<1, (z\in E)$ we conclude that

$$\left|\frac{K_c^\delta f(z)}{z} - \frac{1}{1-\beta}\right| < \frac{1}{1-\beta}, \ z \in E$$

which implies that

$$Re\left\{\frac{K_c^{\delta}f(z)}{z}\right\} > 0, \ z \in E.$$

We complete the proof of the theorem.

By setting $\beta = 0$ in Theorem 2.3, we readily obtain the following Corollary 2.4. If $f \in A$ satisfies

$$Re\left\{\frac{z\left(K_{c}^{\delta}f(z)\right)'}{K_{c}^{\delta}f(z)}\right\} > \frac{1}{2}, z \in E$$

then

$$\frac{z}{K_c^{\delta}f(z)} \prec \frac{1+z}{1-z}, \ z \in E$$

and

$$\left|\frac{K_c^{\delta}f(z)}{z} - 1\right| < 1, \ z \in E.$$

Theorem 2.5. If $f \in A$ satisfies

$$Re\left\{\frac{z\left(K_{c}^{\delta}f(z)\right)'}{K_{c}^{\delta}f(z)}\right\} < \frac{\beta(2-\gamma) - (2+\gamma)}{2(\beta-1)}, z \in E$$

for some β $(-1 < \beta \le 0 \text{ and } 0 < \beta \le 1 \text{ then}$

$$\left(\frac{K_c^{\delta}f(z)}{z}\right)^{\frac{1}{\gamma}} \prec \frac{1+\beta z}{1-z}, \ z \in E.$$

Then implies that

$$\left(\frac{K_c^\delta f(z)}{z}\right)^{\frac{1}{\gamma}} > \frac{1-\beta}{2}, \ z \in E.$$

Proof. Let us define the function $\omega(z)$ by

$$\frac{K_c^{\delta}f(z)}{z} = \left(\frac{1-\beta\omega(z)}{1-\omega(z)}\right)^{\gamma}, \ \omega(z) \neq 1.$$

Clearly, $\omega(z)$ is analytic in E and $\omega(0) = 0$. We want to prove that $|\omega(z)| < 1$ in E. Since

$$\frac{z\left(K_c^{\delta}f(z)\right)'}{K_c^{\delta}f(z)} = \gamma\left(\frac{z\omega'(z)}{1-\omega(z)} - \frac{\beta z\omega'(z)}{1-\beta\omega(z)}\right) + 1.$$

73

We see that

$$Re\left\{\frac{z\left(K_{c}^{\delta}f(z)\right)'}{K_{c}^{\delta}f(z)}\right\} = Re\left\{\gamma\left(\frac{z\omega'(z)}{1-\omega(z)} - \frac{\beta z\omega'(z)}{1-\beta\omega(z)}\right) + 1\right\}$$
$$< \frac{\beta(2-\gamma) - (2+\gamma)}{2(\beta-1)}, \ z \in E,$$

for $\beta(-1 < \beta \le 0)$ and $0 < \gamma \le 1$. If there exists a point $(z_0 \in E)$ such that

$$\max_{|z|<|z_0|} |\omega(z)| = |\omega(z_0)| = 1$$

then by Lemma 1.2, gives us that $\omega(z_0) = e^{i\theta}$ and $z_0\omega'(z_0) = k\omega(z_0), \ k \ge 1$. Thus we have

$$\frac{z_0 \left(K_c^{\delta} f(z_0)\right)'}{K_c^{\delta} f(z_0)} = \gamma \left(\frac{z_0 \omega'(z_0)}{1 - \omega(z_0)} - \frac{\beta z_0 \omega'(z_0)}{1 - \beta \omega(z_0)}\right) + 1$$
$$= 1 + \frac{k}{1 - e^{i\theta}} - \frac{k}{1 - \beta e^{i\theta}}.$$

Therefore, we have

$$Re\left\{\frac{z_0\left(K_c^{\delta}f(z_0)\right)'}{K_c^{\delta}f(z_0)}\right\} = 1 + \frac{\gamma k(1-\beta^2)}{2(1+\beta^2-2\beta cos\theta)}$$

Thus implies that, for $\beta(-1 < \beta \le 0)$ and $0 < \gamma \le 1$

$$Re\left\{\frac{z_0\left(K_c^{\delta}f(z_0)\right)'}{K_c^{\delta}f(z_0)}\right\} \ge \frac{\beta(2-\gamma)-(2+\gamma)}{2(\beta-1)}.$$

This contradicts the condition in the theorem.

Hence, there is no $z_0 \in E$ such that $|\omega(z_0)| = 1$ for all $z \in E$, that is

$$\left(\frac{K_c^{\delta}f(z)}{z}\right)^{\frac{1}{\gamma}} \prec \frac{1-\beta z}{1-z}, \ z \in E.$$

Furthermore, since

$$\omega(z) = \frac{\left(\frac{K_c^{\delta}f(z)}{z}\right)^{\frac{1}{\gamma}} - 1}{\left(\frac{K_c^{\delta}f(z)}{z}\right)^{\frac{1}{\gamma}} - \beta}$$

and $|\omega(z)| < 1$, $(z \in E)$, we conclude that

$$\left(\frac{K_c^{\delta}f(z)}{z}\right)^{\frac{1}{\gamma}} > \frac{1-\beta}{2}, \ z \in E,$$

we complete the proof of the theorem.

References

- T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities. J. Math. Anal. Appl., Vol. 38, 746-765, 1972.
- [2] I. S. Jack, Functions starlike and convex of order $\alpha.$ J. London Math. Soc., Vol. 1, 469-474, 1971.
- [3] I.B.Jung, Y.C Kim and H. M. Srivastava, The Hard space of analytic functions associated with certain one-parameter families of integral operators. J. Math. Anal. Appl., Vol. 176 No. 1, 138-147, 1993.

JFCA-2020/12(1)

- [4] S. S. Miller and P. T. Mocanu, Second order differential inequalities in the complex plane. J. Math. Anal. Appl., Vol. 65, 289-305, 1978.
- [5] K. Ochiai, S. Owa and M. Acu, Applications of Jack's lemma for certain subclasses of analytic functins. General Math., Vol. 13, 73-82, 2005.
- [6] Y. Komatu, On analytic prolongation of a family of operations. Mathematica (Cluj)., Vol. 32 (55) No.2, 141-145, 1990.
- [7] G. S. Salagean, Subclasses of univalent functions. In complex analysis -fifth Romanian-Finnish seminar, part-1 (Bucharest, 1981) Vol. 1013 of Lecture Notes in Mathematics, 362-372, Springer, Berlin, Germany, 1983.
- [8] H. Shiraishi and S. Owa, Starlike and convexity for analytic functions concerned with Jack's lemma. J. open problems Compt. Math., Vol. 2, 37-47, 2009.
- [9] B.A. Uralegaddi and C. Somantha, Certain classes of univalent functions, In Current topics in analysis function theory, 371-374, World Scientific, River Edge, NJ, USA, 1992.

P.Thirupathi Reddy

Department of Mathematics, Kakatiya University, Warangal- 506 009, Telangana, India.

E-mail address: reddypt2@gmail.com

B. VENKATESWARLU (CORRESPONDING AUTHOR) DEPARTMENT OF MATHEMATICS, GSS, GITAM UNIVERSITY, DODDABALLAPUR- 562 163, BEN-GALURU RURAL, INDIA.

 $E\text{-}mail\ address: \texttt{bvlmaths@gmail.com}$

RAJKUMAR N. INGLE

Department of Mathematics, Bahirji Smarak Mahavidyalay, Bashmathnagar Dist., Hingoli, Maharastra, India.

S. Sreelakshmi

Department of Mathematics, T.S.W.R College , Elkathurthy - 505 476, Warangal Urban, Telangana, India.

 $E\text{-}mail\ address:$ sreelakshmisarikona@gmail.com