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EXISTENCE THEORY FOR y-TYPE COMPLEX-ORDER
IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS

D. VIVEK, S.K. NTOUYAS, K. KANAGARAJAN

ABSTRACT. This paper investigates the existence and uniqueness of solutions
for a class of impulsive differential equations using -type complex-order de-
rivative. The results are obtained by using fixed point principles. An example
to illustrate the results is included.

1. INTRODUCTION

Differential equations with fractional order have recently proved to be strong
tools in the modeling of many phenomena in various fields of engineering, physics
and economics. As a consequence there was an intensive development of the theory
of differential equations of fractional order. One can see the monographs of Kilbas
et al. [19], Lakshmikantham et al. [20], Miller and Ross [23], Podlubny [25] and
Samko et al. [27] and the references therein. Though the concepts and the calculus
of fractional derivative are few centuries old, it is realized only recently that these
derivatives form an excellent framework for modelling real world problems. In
the literature, there are several studies on distinct operators such as the Riemann-
Liouville the Caputo, the Hilfer, the Erdelyi-Kober and the Hadamard, for example
[18, 19]. As mentioned above, a problem in the advancement of fractional calculus
studies is the wide variety of definitions of fractional derivative operators. One way
to overcome this problem is to consider ever more general definitions of fractional
derivative operators, from which fractional derivative operators can be obtained
as particular cases. In this sense, the study of Caputo fractional derivative of a
function with respect to another function has been initiated by Almeida [3]. An
important application of more general definitions was done by Colombaro et al. [12].
We can also highlight the work done by Almeida [4, 5] on v-fractional derivative
and integrals. However, most of the work done in the field so far has been based
on the use of real order fractional derivative and integrals. It is worth to indicate
that there are several authors who also applied complex-order fractional derivative.
This in turn led to the sustained study of the theory of complex-order differential
equations [21]. In 1977, Ross [26] considered a use for a derivative of complex order
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in the fractional calculus. Some basic theory for fractional differential equation
with complex order was investigated by Neamaty et al. [24]. In [6, 13, 29, 30, 31],
the authors have proved the existence of solutions of some kinds of complex-order
differential equations by using fixed point techniques. Subsequently Harikrishnan
et al. [16] have discussed the problem for ¢-Hilfer fractional differential equation
with complex-order.

This paper is devoted to the study of the existence and uniqueness of solutions
of Y-type complex-order initial value problems for impulsive differential equations
(IDEs for short) of the form

(‘2% (t) = F(t,ut), teJ=[0,T], t+#t, (1)
Auli=t, = Ir(u(ty)), (2)
U(O) = Uo, (3)

where k = 1,...,n, °2%¥ is the 1)-type Caputo fractional derivative of order 6 € C,
0 =m+ia,a e RT, 0 <a<1,me (0,1]. Here, # : JxR — R is a given function,
Ii i RoRug R 0=ty <t; <...<tpm <tmiy1 =T, Aulpy, = u(t]) —u(ty),
u(t}) = limp, o+ u(ty + k) and u(t; ) = limy,_,o- u(t, + h) represent the right and
left limits of u(t) at t = tx.

IDEs have become increasingly important in recent years as mathematical models
of real-world processes and phenomena studied in control theory, physics, chemistry,
population dynamics, biotechnology, and economics. There has been a significant
development in impulse theory and this has been especially true in the area of IDEs
with fixed moments; see, for example, the monographs of Bainov and Simeonov [8],
Lakshmikantham et al. [22], and Samoilenko and Perestyuk [28], Benchohra et al.
[9] as well as the papers of Agur et al. [2], Ballinger and Liu [7], Benchohra et al.
[10, 11], Franco et al. [14], and the references contained therein. This work initiates
new avenues for obtaining existence and uniqueness of solutions of IDEs involving
1-type complex-order derivative.

2. PRELIMINARIES

In this section, we introduce notations and definitions that are used through-
out the remainder of this paper. By C(J,R) we denote the Banach space of all
continuous functions from J into R with the norm

[ullo = sup {lu(®)] : ¢ € J}.

Definition 2.1. [3] Let a > 0, F an integrable function defined on J and ¥ €
C™(J) an increasing differentiable function such that v '(t) # 0 for allt € J. The
left-sided - Riemann-Liouville fractional order o of a function F is given by
I _
ot = s [0 @ - 0 F s,
I'(a) Jo
where I' is the gamma function.

Definition 2.2. [16] The ¥-type Riemann-Liouville fractional integral of order
0 € C, (R(O) >0) of a function F : (0,00) — R is

SOV F (1) = ﬁ / 6 1(5) (0(t) — (s))’~" F(s)ds.



112 D. VIVEK, S.K. NTOUYAS, K. KANAGARAJAN JFCA-2021/12(1)

Definition 2.3. [16] For a function & given on the interval J, the v¥-type Caputo
fractional-order 8 € C, (R(0) > 0), is defined by

(97) (0= 15— / b (5) (b(1) ()" F(s)ds,

when n = [R(0)] + 1 and [R(0)] denotes the integral part of the real number 6.

Definition 2.4. [19] The Stirling asymptotic formula of the gamma function for
z € C is following

I'(z) = (2W)%z%e—z {1 +0 (i)} . (Jarg(z)] < ms|z] = o),
and its results for |T'(u + iv)|, (u,v € R) is
ID(u + )| = (2m)% [u]*" 2 e~vmmlvI/2 {1 +0 <1)] , (v — 00).
v

Lemma 2.5. [1] Let 0 € C, (R > 0) and .Z : [a,b] — R. The following holds:

(1) If Z € Cla,b], then 2% 75V F(t) = F(1).
(2) If F € C"Va,b], then IO P00 F(t) = F(t) — S p_e e [0(t) — ¥(a)]¥,

where, ¢, = =4
The following lemma concerns a linear variant of the problem (1)-(3).

Lemma 2.6. Let 0 € C and h : J — R be continuous. A function u is a solution
of the integral equation

o+ el Jy ©(5) (00) — b)) if t € (0.0,

ey — 1o+l z ftk 1) ()~ 0o D) his)ds
+ gy Ji, ¢ ( (t) = ¥(s)" " h(s)ds

+20<tk<tlk( u(ty,)), if t € (i, trt].
(4)
where k =1,...,m, if and only if u is a solution of the ¥-type complex-order IDE
(‘2% (t) = h(t), teJ=[0,T], t#t, (5)
Auli=y, = Ix(u(ty)), (6)
U(O) = Up- (7)

Proof. Assume u satisfies (5)-(7). If ¢t € [0,¢1] then
2%V u(t) = h(t).

Lemma 2.5 implies
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If t € (t1,t2], then Lemma 2.5 implies
ult) = u(ty) + ﬁ / () (000) — (5)" ()

= Aufyey, +ulty) + ﬁ [ (0) (i) = vl ey

= L(u(t7)) + o + ﬁ O () ($(tr) — ()" h(s)ds

1 ¢ / 0—1
@ /tf” (5) ((t) — ¥(5))° " h(s)ds.

If t € (t2,t3] then from Lemma 2.5, we get
u(t) = u(tf) + ﬁ / ) (0 ()" (s

= Aulye, +ulty) + ﬁ 6 (0) i) = vl sy

= L(u(ty)) + I (u(ty) + uo + ﬁ / " (s) (1) — $(5))" " h(s)ds

ta
S PO W) ) s
b ) 0 - 6 sy,
L) J,
If t € (tk,tr+1] then again from Lemma 2.5 we get (4). The converse follows by
direct computation. This completes the proof. ([l

In order to define the solution of (1)-(3), we shall consider the space (the
Filippov-Wazewski theorem, see [17])

PC(JL,R)={u:J—=R: u:C((tk, txt1],R), k=0,...,m and there exist
u(ty) and u(tf), k=1,...,n with u(t;) = u(ts)} .
The space PC(J,R) is a Banach space with the norm

||u||PC = sup |u(t)].
teJ

Set J':=1[0,T]\ {t1,t2,...,tn}
We assume the following conditions to prove the existence of solution of the
problem (1)-(3).
(A1) The function .7 : J x R — R is continuous.
(A2) There exists a constant | > 0 such that |Z#(t,2) — F(t,y)| < l|z —yl|, for
each t € J, and each z,y € R.
(A3) There exists a constant {* > 0 such that |I(zx) — Ix(y)| < I*|z —y|, for
eachz,ye Rand k=1,...,n.
(A4) There exists a constant M > 0 such that |.Z(¢,2)| < M for each t € J and
each z € R.
(A5) The functions I : R — R are continuous and there exists a constant
M* > 0 such that |Ix(z)] < M* foreachz € R, k=1,...,n.



114 D. VIVEK, S.K. NTOUYAS, K. KANAGARAJAN JFCA-2021/12(1)

(A6) There exists p € C(J,R") and ¢ : [0,00) — (0,00) continuous and nonde-
creasing such that |7 (¢, x)| < p(t)cp (|z|) for all t € J, x € R.

(A7) There exists ¢* : [0,00) — (0,00) continuous and nondecreasing such that
[T (2)] < o* (|x|) for all x € R.

(A8) There exists an number M > 0 such that

M

(M)”(¢$)12$|)‘|1”|\oo + (M )W(i)&(l\ﬁl\m —&—ntp*(M)

> 1.
luo| +

Theorem 2.7. Assume that (A1)-(A3) are satisfied. If
lin+ 1D ((T)™ }
— 4+ nl"| <1
[ m[L(0)]
then problem (1)-(3) has a unique solution on J.

Proof. In view of Lemma 2.6, we define the mapping .4 : PC(J,R) — PC(J,R)
by

(8)

(A u)(t) = Z k W (5) (W(tr) — ¥(s))" " F (s,u(s))ds
0<tk<t te—1
+ﬁ t ¥ (s) () — (s))" T F(s,uls))ds + Y Iululty))

0<tp<t

and we have to show that .4 has a fixed point. This fixed point is then a solution
of the problem (1)-(3). Now, for u,v € PC(J,R), we have

(A u)(t) = (A v)(#)]

1 b , —1|| & P
<W > / 07(5) (0(t1) — ()" [ 12 s, (s)) — 2 (5, 5)) s

0<tk<t te—1

|r
+ |Ik<u<tk>> Li(v(t)]
0<trp<t
! S e ’ 0—
< mk; - ’@/’ () (¥(tr) —v(s)) 1‘\u(s)—v(s)|ds
Lot ) n i
= i L[ 0 w0 = vy ) s 32 ) i)
nl(y(T))™ w— ()™ B o e —
= M) [ llo + mIT(0)] [ [l +nl* | [
Therefore,
JAw) = (A0 < [W +nl*] = vl

Consequently by Eq. (8), -4 is a contraction. As a result of Banach fixed point
theorem, we deduce that .4 has a fixed point which is a solution of problem (1)-
(3). O

The following discussion is based on Schaefer’s fixed point theorem.
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Theorem 2.8. If the assumptions (A1), (A4)-(A5) are satisfied, then problem
(1)-(3) has at least one solution on J.

Proof. We need to prove that the operator .4 has a fixed point. We will split the
proof in four steps.
Claim 1. ./ is continuous.

Let {u,} be a sequence such that u, — u in PC(J,R). Then for each t € J

(A up)(t) = (A u)(t)]

<% » /t,fi

O<tk <t

0 (5) () = ()| 17 (5, up(s) = F(t,u(s))] ds

1/)(8))9_1‘ | Z (s, up(s)) — F(t,u(s))| ds
+ Z |Ik up(ty)) — In(ulty)] -

0<tp<t
Since .# and Iy, k =1,...,n are continuous functions, we have
(A up) = (A u)||, —0 asp— oo.

Claim 2. .4 maps bounded sets into bounded sets in PC(J,R).

In fact, it is sufficient to show that for any n* > 0, there exists a positive
constant ¢ such that for each u € B,» = {u€ PC(J,R) : |lul|, < n*}, we have
|(ZFu)|l. << By (A4) and (A5) we have for each t € J

A OO! < ol + 7 /

O<t <tvtk—1

_w(s))e 1’| ( |d8+ Z |Ik

() = ¥()" 17 (s, u(s)) ds

0<tp<t
| 2 PM@@)™ M) |
< fuo| + m 0] + m L0 +nM*.
Thus
(A u)ll, < luol + nM@(T))™  M@(T)™ +nM* =

mT@ " m[O)
Claim 3. .4 maps bounded set into equicontinuous set of PC(J,R).

Let t1,t2 € J, t1 < ta, By~ be a bounded set of PC(J,R) as in Claim 2, and let
u € By-. Then

[(Au)(t2) = (A u)(t)]

1om
< o ),
o [ @0 - s 1F el 3 )
\r<| | sl

[2(9(t2) = d(t)™ + (W(E2))™ = ()" + Y [I(u(ty)))]

m|I‘( )| 0<ty<ta—t1

b () (lt) — 9()° ™ = ¥ (5) () — 0())° 7 1F (5, (o) ds

As t; — to, the right-hand side of the above inequality tends to zero. As a conse-
quence of Claim 1 to Claim 3 together with Arzeld-Ascoli theorem, we can conclude
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that A4 : PC(J,R) — PC(J,R) is completely continuous.
Claim 4. A priori bounds.
Now it remains to show that the set

x ={ue€ PC(J,R): ueAAu) forsomel<\<1}

is bounded. Let u € x, then u = A(A u) for some 0 < A < 1. Thus, for each t € J
we have

u(t) = o+ s Y / " () (ltk) — ()" F (s, uls))ds

0<t <t/tk-1

+F<A0> /() (1) — ()" F(s,uls))ds + X > Tp(ulty)
th 0<tp<t

This implies by (A4) and (A5) (as in Claim 2) that for each t € J we have
nM((T)™ | M(p(T)™

|u(t)] < fuol + +nM*.
m [T(0)] m [I(0)|
Thus for every t € J, we have
nM@(T))™ | M(T)™
lull . < luol + + +nM* := R.
m [I'(0)| m [I(0)|
This shows that the set x is bounded. As a result of Schaefer’s fixed point theorem,
we deduce that .4 has a fixed point which is a solution of problem (1)-(3). O

In the following theorem we present an existence result for problem (1)-(3) by
using the nonlinear alternative of Leray-Schauder type [15] and which the assump-
tions (A4) and (A5) are weakened.

Theorem 2.9. Assume that assumptions (A3), (A6)-(A8) are satisfied. Then
problem (1)-(3) has at least one solution on J.

Proof. Consider the operator .4 defined in Theorem 2.7. It can be easily shown,
as in Theorem 2.8, that .4 is continuous and completely continuous (see, Theorem
6.1, [17]). For 0 < A < 1, let u be such that for each ¢ € J we have u(t) = A(A u)(?).
Then from (A6)—(A7) we have for each t € J

)] < ol + 55 Z / ) () — 05D pls)e (fuls) ) s

0<t <t/tk—1

() = ()" () (uls)) ds + Y

sz(HM@W ) PR g ().

Thus

0<tk<t 123

[

T m o T)m oo * -
o] + ([|ull o) LRI 1 o(u| ) LML 4 (], )

Then by (A8), there exists M such that |lul|_ # M. Let
X ={uePC(JR): |lull., <7}
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The operator .4 : X — PC(J,R) is continuous and completely. From the choice of
X, there is no uw € 9U such that u = A\(#u) for some A € (0,1). As a consequence
of the nonlinear alternative of Leray-Schauder type, we deduce that .4 has a fixed
point u in U which is a solution of problem (1)-(3). This completes the proof. [

3. AN EXAMPLE

Consider the following 1-type complex-order IDEs of the form

. t)] 1
cgrin) ()= — ULy, et 9
[u3 ")
Aufy_y = 2L (10)
’ 3+‘u(% )‘
u(0) = uo, (11)
WhereG:eria,a:%andm:l.
Set .
7 (t = — 4
F(t,x) 00 +2) (t,x) € J x [0,00),
and .
Iy(z) = sra © € [0, 00).
Let z,y € [0,00) and ¢t € J. Then we have
1
(7 (t,2) = F Lyl < 5 |2 — 9l
Hence the condition (A2) is satisfied with { = ;5. Let x,y € [0,00). Then we have

u(e) ~ )] < 512 .

Therefore, the condition (A3) is satisfied with I* = 1. We shall check that condition
(8) is fulfilled with ¢(T") = 1 and n = 1. Indeed, the conditon (8) holds. Then by
Theorem 2.7 problem (9)-(11) has a unique solution on J.
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