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NON-INSTANTANEOUS IMPULSIVE FRACTIONAL

SEMILINEAR EVOLUTION EQUATION WITH FINITE DELAY

JAYANTA BORAH AND SWAROOP NANDAN BORA

Abstract. This article deals with the existence of mild solution for a class
of non-instantaneous impulsive fractional evolution equation with finite delay.

With the aid of Burton-Kirk’s fixed point theorem, fractional calculus and
semigroup theory, a set of sufficient conditions for existence of the mild solution

is established. The derived theory is illustrated by an example.

1. Introduction

Physical problems pertaining to memory and hereditary properties can be ex-
plained more realistically with the help of fractional calculus. Consequently, many
partial differential equations and integro-differential equations representing physi-
cal phenomena have been recast in fractional set up for gaining more information
about the system [20]. An extensive study of various types of abstract fractional
differential equations with Caputo fractional derivative can be found in the book
by Kostic̀ [15]. Using the concept of solution of integral equations developed in the
book by Prüss [21], Bazhlekova [4] extended the classical theory of C0-semigroup to
discuss the solution operator of fractional Cauchy problem in abstract space. For
recent development on qualitative study of fractional differential equations, readers
are referred to [27].

Mathematical modeling of a dynamical system in which the trajectory of the
state variable undergoes a short term abrupt jump after relatively long smooth
evolution is known as instantaneous impulsive differential equation. This topic
has been gaining more and more attention of late due to applications in various
fields of engineering, science and economics. For details on theory on impulsive
fractional differential equation, readers are referred to the monograph by Stamova
and Stamov [23] and for current developments to the articles [10, 17, 22, 24, 26] and
the references therein. Hernández and O’Regan [13] pointed out that some practical
problems involving impulse cannot be properly represented by such models. For
instance, in hemodynamical study, the introduction of drugs in the blood stream
and subsequent absorption by human body is a continuous and gradual process.
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This type of phenomena can be appropriately explained by a non-instantaneous
impulsive differential equation. In a Banach space (X, ‖.‖), Hernández and O’Regan
[13] considered the following model problem:

x′(t) = Ax(t) + f(t, x(t)), t ∈ Ji = (si, ti+1], i = 0, 1, . . . , N, (1)

x(t) = gi(t, x(t)), t ∈ (ti, si], i = 1, 2, . . . , N, (2)

x(0) = x0, (3)

where A : D(A) ⊂ X → X is the generator of a C0-semigroup of bounded linear
operators {Q(t)}t≥0 on X; 0 = t0 = s0 < t1 ≤ s1 ≤ t2 < ... < tN ≤ sN ≤ tN+1 =
T is a partition of the interval [0, T ]; f and gi are suitable functions. Recent
developments on qualitative analysis of differential equations in classical as well as
in fractional derivatives can be found in [2, 6, 8, 9, 11, 16, 18, 19].

Functional differential equations may be used to represent those phenomena in
which the derivative of the state variable not only depends on its present state but
also on the knowledge of past time. Abada et al. [1] established sufficient condi-
tions for the existence of mild and extremal solutions for some impulsive functional
differential equations in separable Banach spaces of the form

x′(t)−Ax(t) = f(t, xt), a.e. t ∈ J = [0, T ], t 6= tk, k = 1, 2, . . . , N,

∆x|t=tK = Ik(x(t−k )), k = 1, 2, . . . , N,

x(t) = φ(t), t ∈ [−r, 0],

where A : D(A) ⊂ X → X generates a C0-semigroup; f and Ik, k = 1, 2, . . . , N are
given functions, and D = {ψ : [−r, 0]→ X,ψ is continuous everywhere except at a
finite number of points s at which ψ(s−), ψ(s+) exist and ψ(s−) = ψ(s+)}.

Agarwal et al. [3] studied the existence of solution of a class of fractional neutral
functional differential equations with bounded delay of the following form:

CDα(x(t)− g(t, xt)) = f(t, xt), t ∈ (t0,∞), t0 ≥ 0,

xt0 = φ ∈ C([−r, 0],Rn).

The existence of solution was achieved by using Burton-Kirk’s’s fixed point the-
orem. Jiang [14] used analytic semigroup theory of linear operators and fixed point
theory to prove the existence of mild solutions for a class of semilinear fractional
differential equations with finite delay. Guo et al. [12] used Banach fixed point
theorem and Schauder fixed point theorem to study the existence of solutions of
impulsive fractional functional differential equations. Bellmekki et al. [5] estab-
lished sufficient conditions for the existence and uniqueness of solution of semilinear
functional differential equations with finite delay.

In this work, we establish sufficient conditions for the existence of mild solution
for a class of impulsive fractional functional differential equations with finite delay
of the following form:

CDα
t x(t) = Ax(t) + f(t, xt), t ∈ Ji = Ji, i = 0, 1, ..., N, (4)

x(t) = gi(t, xt), t ∈ (ti, si], i = 1, 2, ..., N, (5)

x(t) = φ(t), t ∈ [−r, 0], (6)

where A,X, the points s and t are same as in the description in [13]; D as defined
in [1] is a Banach space with respect to the norm ‖φ‖D = sup

−r≤s≤0
‖φ(s)‖; xt(s) =

x(t + s),−r ≤ s ≤ 0, i.e., xt represents the history of the state from t − r up to
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the present time t. We further assume that the semigroup {Q(t)}t>0 is uniformly
bounded by M > 1.

We proceed as follows: in section 2 we recall some definitions and preliminaries
which are required to develop our work; in section 3, we derive sufficient conditions
for the existence of mild-solution of the system (4)–(6). At the end, an example is
presented to support the obtained results.

2. Preliminaries

By C(J,X) we denote the Banach space of bounded continuous functions from
J into X with the norm

‖x‖∞ = sup
t∈J
‖x(t)‖.

We consider the Banach space DT = {x : [−r, T ]→ X such that x|Jk ∈ C(Jk, X),
for k = 0, 1, 2, ..., N, and x(tk

+), x(tk
−) exist ,x(tk

−) = x(tk), k = 0, 1, 2, ..., N, x0 =
φ ∈ D and sup

t∈[−r,T ]

‖x(t)‖ <∞}, endowed with the norm

‖x‖DT = sup
t∈[−r,T ]

‖x(t)‖.

If x ∈ DT , then for each t > 0, xt is an element of D and xt(θ) = x(t+θ), θ ∈ [−r, 0].
If x ∈ PT , then for any i = 0, 1, 2, . . . , N, the function x̃i ∈ C([ti, ti+1], X) is
constructed as follows:

x̃i(t) =

{
x(t), for t ∈ (ti, ti+1],
x(t+i ), for t = ti.

For B ⊂ DT , we denote B̃i = {x̃i : x ∈ DT }.

LEMMA 2.1. [13] A set B ⊂ DT is relatively compact in DT if and only if each

set B̃i is relatively compact in C([ti, ti+1], X).

Here we introduce some definitions and fundamental results of fractional calculus
from the book by Zhou et al. [27].
Let J = [a, b],−∞ < a < b <∞ be a finite interval on the real axis R.

DEFINITION 2.2. The Riemann-Liouville fractional integral aD
−α
t f(t) of order

α > 0 is defined by

Iαa f(t) =a D
−α
t f(t) =

1

Γ(α)

∫ t

a

(t− s)α−1
f(s)ds,

provided the right-hand side is pointwise defined on [a, b].

DEFINITION 2.3. The Caputo fractional derivative of order α > 0 for a function
f ∈ Cnα , n ∈ N is defined as

C
aD

α
t f(t) =a D

−(n−α)
t Dnf(t) =

1

Γ(n− α)

∫ t

a

(t−s)n−α−1f (n)(s)ds, t > a, n = [α]+1,

where [α] denotes the integral part of α.

If there is no confusion about the base point of both the operators defined above,
we simply remove it.
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DEFINITION 2.4. [27] Consider the fractional evolution equation

CDα
t x(t) = Ax(t) + f(t, xt), a.e. t ∈ J, 0 < α < 1, (7)

x(t) = φ ∈ D . (8)

For continuous functions f : J × X → X with A generating the semigroup
{Q(t)}t≥0, a continuous function x : J →X satisfying the integral equation x(t) =

Sα(t)φ(0) +
∫ t

0
Pα(t− s)f(s, xs)ds is called a mild solution for the problem (7)-(8).

Here

Sα(t) =

∫ ∞
0

Mα(θ)Q(tαθ)dθ, Pα(t) = α

∫ ∞
0

θMα(θ)Q(tαθ)dθ, and

Mα(θ) =

∞∑
n=1

(−ω)
n−1

(n− 1)!Γ(1− αn)
, 0 < α < 1, ω ∈ C,

where Mα(ω) satisfies the following equality∫ ∞
0

Mα(θ)θδdθ =
Γ(1 + δ)

Γ(1 + αδ)
, for δ ≥ 0.

LEMMA 2.5. [28] For any t > 0, Sα(t) and Pα(t) are linear bounded operators,
more precisely, for any x ∈ X,

‖Sα(t)x‖ ≤M‖x‖, ‖Pα(t)x‖ ≤ M

Γ(α)
‖x‖.

LEMMA 2.6. [28] For {Q(t)}t>0 compact ,{Sα(t)}t>0 and {Pα(t)}t>0 are also
compact.

LEMMA 2.7. [28] Operators {Sα(t)}t>0 and {Pα(t)}t>0 are strongly continuous.

LEMMA 2.8. (Burton-Kirk’s fixed point theorem) Let X be a Banach space and
F1, F2 be two operators satisfying
(a) F1 is a contraction and
(b) F2 is completely continuous.
Then, either the operator equation x = F1(x) + F2(x) possesses a solution, or the
set E = {x ∈ X : λF1(xλ ) + λF2(x) = x, for some 0 < λ < 1} is unbounded.

3. Existence of PC-mild solution

In this section we first formulate the definition of PC-mild solution of our problem
and then prove the existence of solutions with finite delay.
In view of definition 2.4 and the results by Hernández and O’Regan [13], we define
the mild solution as follows:

DEFINITION 3.1. A function x ∈ DT satisfying the integral equation

x(t) =


φ(t), t ∈ [−r, 0],

Sα(t)x0 +
∫ t

0
Pα(t− s)f(s, xs)ds, t ∈ [0, t1],

gi(t, xt), t ∈ (ti, si],

Sα(t− si)gi(si, xsi) +
∫ t
si
Pα(t− s)f(s, xs)ds, t ∈ [si, ti+1],

is to be called a PC-mild solution of the problem (4)-(6).
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We introduce the following hypotheses:
(H1) The functions gi are continuous and there are positive constants Lgi such
that ‖gi(t, ψ1)− gi(t, ψ2)‖ ≤ Lgi‖ψ1−ψ2‖D , for all ψ1, ψ2 ∈ D , t ∈ (ti, si] and each
i = 1, 2, ..., N ;
(H2) For each φ ∈ D , the function f(., φ) : J → X is strongly measurable and for
each t ∈ J, the function f(t, .) : D → X is continuous;

(H3) There exist a constant α1 ∈ (0, α) and a function m ∈ L
1
α1 (J,R+) such that

‖f(t, ψ)‖ ≤ m(t)W (‖ψ‖D), a.e. t ∈ J, ψ ∈ D ,

where W : [0,∞)→ R+ is a continuous nondecreasing function with

K1

∫ ti+1

si

(t− s)α−1
m(s)ds <

∫ ∞
K0

ds

W (s)
,

where

0 = M‖φ(0)‖, K1 =
M

Γ(α)
, for t ∈ [0, t1], and

K̃0 = max
1≤i≤N

M‖gi(si, 0)‖
1−MLgi

, K̃1 = max
1≤i≤N

M

(1−MLgi)Γ(α)
, t ∈ [si, ti+1], i = 1, 2, . . . , N.

(H4) The operator A is the infinitesimal generator of a compact semigroup of uni-
formly bounded linear operators {Q(t)}t≥0 such that there exists M > 1 satisfying

‖Q(t)‖ ≤M.

It is to be noted that a =
α− 1

1− α1
∈ (−1, 0).

THEOREM 3.2. Assume that the above hypotheses hold and ‖gi(., 0)‖ are bounded
for each i = 1, 2, . . . , N . Then, for every initial value φ ∈ D , the system of equa-
tions (4)-(6) has a unique PC-mild solution x ∈ DT , provided (1 +M)Lgi < 1.

Proof. Let F : DT → DT be defined by

Fx(t) =


φ(t), t ∈ [−r, 0],
gi(t, xt), t ∈ (ti, si],

Sα(t)φ(0) +
∫ t

0
Pα(t− s)f(s, xs)ds, t ∈ [0, t1],

Sα(t− si)gi(si, xsi) +
∫ t
si
Pα(t− s)f(s, xs)ds, t ∈ [si, ti+1].

By hypothesis (H3) and the results by Chen et al. [9], it is easily observed that the
operator is well-defined. To apply Burton-Kirk’s fixed point theorem, we use the
following decomposition of F :

F = F 1 + F 2 =

N∑
i=0

F 1
i +

N∑
i=0

F 2
i ,
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where F j
i : DT → DT , i = 1, 2, . . . , N, j = 1, 2 are defined as

F 1
i x(t) =


gi(t, xt), t ∈ (ti, si], i ≥ 1,
Sα(t− s)gi(s, xsi), t ∈ Ji, i ≥ 1,
Sα(t)x0, t ∈ [0, t1],
0, otherwise,

and

F 2
i x(t) =


φ(t), t ∈ [−r, 0],∫ t
si

(t− s)α−1
Pα(t− s)f(s, xs)ds, t ∈ Ji, i ≥ 0,

0, otherwise.

Our proof consists of the following six steps.
Step I: To show that the function F 2 is continuous.
Let {xn}∞n=1 be a sequence of functions in DT such that xn converges to x ∈ DT .
Then lim

n→∞
xn(s) = x(s), for s ∈ [−r, T ].

Since ‖xs‖ ≤ ‖x‖∞, for s ∈ J , by condition (H2), we have

lim
n→∞

f(s, xns ) = f(s, xs) for each s ∈ Ji.

Now, for each s ∈ Ji,

‖(F 2
i x

n)(s)− (F 2
i x)(s)‖ ≤ M

Γ(α)

tαi+1

α
sup

s∈[si,ti+1]

‖f(s, xns )− f(s, xs)‖.

Hence by Lebesgue’s dominated convergence theorem, we have

‖(F 2
i x

n)− (F 2
i x)‖ → 0 as n→∞.

Hence F 2 is continuous in DT .
Step II: To show that F 2 sends a bounded set to a bounded set in DT .
For η > 0, consider the ball Bη = {x ∈ DT : ‖x‖DT ≤ η}.
Now, for any x ∈ Bη and t ∈ (ti, ti+1], we have

‖(F 2
i x)(t)‖ = ‖

∫ t

si

(t− s)α−1
Pα(t− s)f(s, xs)ds‖

≤ M

Γ(α)

∫ t

si

(t− s)α−1
Pα(t− s)m(s)W (‖xs‖)ds

≤ M

Γ(α)
W (η)

∫ t

si

(t− s)α−1
m(s)ds

≤ M

Γ(α)
W (η)

(ti+1 − si)(1+a)(1−α1)

(1 + a)
1−α1

‖m‖
L

1
α1 ([si,ti+1])

=: li, a finite quantity.

Hence for each x ∈ Bη and i = 0, 1, . . . , N,

‖(F 2
i x)(t)‖ ≤ li.

Also the boundedness of (F 2
i x)(t) is trivial for any t 6∈ Ji.

Step III: To show that the set of functions [ ˜F x : x ∈ Br]i, i = 0, 1, . . . , N, is an
equicontinuous set in C([ti, ti+1];X).
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Let x ∈ Bη and si < τ1 < τ2 ≤ ti+1.
Now

‖(F 2
i x)(τ2)− (F 2

i x)(τ1)‖ = ‖
∫ τ2

si

(τ2 − s)α−1
Pα(τ2 − s)f(s, xs)ds

−
∫ τ1

si

(τ1 − s)α−1
Pα(τ1 − s)f(s, xs)ds‖

≤ ‖
∫ τ2

τ1

(τ2 − s)α−1
Pα(τ2 − s)f(s, xs)ds‖

+ ‖
∫ τ1

si

Pα(τ2 − s)[(τ1 − s)α−1 − (τ2 − s)α−1
]f(s, xs)ds‖

+ ‖
∫ τ1

si

(τ1 − s)α−1
[Pα(τ2 − s)f(s, xs)− Pα(τ1 − s)f(s, xs)]ds‖

≤ M

Γ(α)

∫ τ2

τ1

(τ2 − s)α−1
m(s)W (‖xs‖D)ds

+
M

Γ(α)
‖
∫ τ1

si

[(τ1 − s)α−1 − (τ2 − s)α−1
]m(s)W (‖xs‖D)ds

+ ‖
∫ τ1

si

(τ1 − s)α−1
[Pα(τ2 − s)Pα(τ1 − s)]m(s)W (‖xs‖D)dt

≤ M

Γ(α)
W (η)

∫ τ2

τ1

(τ2 − s)α−1
m(s)ds

+
M

Γ(α)
W (η)

∫ τ1

si

[(τ1 − s)α−1 − (τ2 − s)α−1
]m(s)ds

+W (η)

∫ τ1

si

(τ1 − s)α−1‖Pα(τ2 − s)− Pα(τ1 − s)‖m(s)ds

=: I1 + I2 + I3.

We have

I1 =
M

Γ(α)
W (η)

∫ τ2

τ1

(τ2 − s)α−1
m(s)ds

≤ M

Γ(α)
W (η)

(τ2 − τ1)
(1+a)(1−α1)

(1 + a)
1−α1

‖m‖
L

1
α1 [si,ti+1]

→ 0 as τ2 → τ1.
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For τ1 < τ2,

I2 ≤
M

Γ(α)
W (η)

[∫ τ1

si

[(τ1 − s)α−1 − (τ2 − s)α−1
]

1
1−α1

ds
]1−α1

‖m‖
L

1
α1 [si,ti+1]

≤ M

Γ(α)
W (η)

[ ∫ τ1

si

[
(τ1 − s)a − (τ2 − s)a]ds

]1−α1

‖m‖
L

1
α1 [si,ti+1]

≤ M

Γ(α)(1 + a)
(1−α1)

W (η)
[
(τ2 − τ1)

1+a − ((τ2 − si)1+a − (τ1 − si)1+a
)
]1−α1‖m‖

L
1
α1 [si,ti+1]

≤ M

Γ(α)(1 + a)
(1−α1)

W (η)(τ2 − τ1)
(1+a)(1−α1)‖m‖

L
1
α1 [si,ti+1]

→ 0 as τ2 → τ1.

For ε > 0 small enough, we have

I3 ≤W (η)

∫ τ1−ε

si

(τ1 − s)α−1‖Pα(τ2 − s)− Pα(τ1 − s)‖m(s)ds

+W (η)

∫ τ1

τ1−ε
(τ1 − s)α−1‖Pα(τ2 − s)− Pα(τ1 − s)‖m(s)ds

≤W (η)

∫ τ1

si

(τ1 − s)α−1
m(s)ds sup

s∈[si,t1−ε]
‖Pα(τ2 − s)− Pα(τ1 − s)‖

+
2M

Γ(α)

∫ t1

t1−ε
(t1 − s)(α−1)

m(s)ds.

First term on the right-hand side tends to zero as τ2 → τ1 since Pα(t) is compact
for t > 0 and hence continuous in the uniform operator topology. Second term
tends to zero as ε→ 0 by I2.
Step IV: To show that for i = 0, 1, . . . , N and si < s < t ≤ ti+1, the set V (τ) =⋃
τ∈[s,t]

{(F 2
i x)(τ) : x ∈ Bη} is a pre-compact set in X.

For 0 < ε < t− si and any δ > 0, define an operator (F 2
i )
δ

ε on Bη by the formula

(F 2
i )
δ

εx(τ) = α

∫ τ−ε

si

∫ ∞
δ

θ(τ − s)α−1
Mα(θ)Q((τ − s)αθ)f(s, xs)dθds

= αQ(εαδ)

∫ τ−ε

si

∫ ∞
δ

θ(τ − s)α−1
Mα(θ)Q((τ − s)αθ − εαδ)f(s, xs)dθds.
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From the compactness of the operatorQ(εαδ), we see that the set V δε (τ) = {(F 2
i )
δ

εx(τ) :
x ∈ Bη} is relatively compact in X. Moreover for any x ∈ Bη, we have

‖(F 2
i )x(τ)− (F 2

i )
δ

εx(τ)‖ ≤ α‖
∫ τ

si

∫ δ

0

θ(τ − s)α−1
Mα(θ)Q((τ − s)αθ − εαδ)f(s, xs)dθds‖

+ α‖
∫ τ

τ−ε

∫ ∞
δ

θ(τ − s)α−1
Mα(θ)Q((τ − s)αθ − εαδ)f(s, xs)dθds‖

≤W (η)αM

∫ τ

si

(τ − s)α−1
m(s)ds

∫ δ

0

Mα(θ)dθ

+W (η)
M

Γ(α)

∫ τ

τ−ε
(τ − s)α−1

m(s)ds

→ 0 as ε→ 0, δ → 0.

Therefore, there are pre-compact sets arbitrarily close to the set V δε (τ) = {(F 2
i )
δ

εx(τ) :
x ∈ Bη}. Hence the set V (τ) is pre-compact in X. Consequently, the operator
T 2 : DT → DT is completely continuous.
Step V: To show that F 1 is a contraction on Bη.
Let x, y ∈ Bη and t ∈ (ti, ti+1], i = 1, 2, . . . , N. Therefore

‖T 1
i x(t)−T 1

i y(t)‖ ≤ (1 +M)Lgi‖xt − yt‖D
≤ (1 +M)Lgi‖x− y‖∞.

This implies that

‖T 1x−T 1y‖DT ≤ Θ‖x− y‖DT ,
which is a contraction since Θ < 1.
Step VI: To find the a priori bounds.
Consider the set

E = {x ∈ DT : x = λT 2(x) + λT 1
(x
λ

)
for some 0 < λ < 1}.

For each t ∈ [0, t1], we have

x(t) = λSα(t)φ(0) + λ

∫ t

0

(t− s)α−1
Pα(t− s)f(s, xs)ds.

Hence for each t ∈ [0, t1], we have

‖x(t)‖ ≤M‖φ(0)‖+
M

Γ(α)

∫ t

0

(t− s)α−1
m(s)W (‖xs‖D)ds. (9)

But ‖xt‖D≤{sup ‖x(t+s)‖::−r≤s≤0},0≤t≤t1.
If we define µ(t) = {sup ‖x(s)‖ :: −r ≤ s ≤ t}, 0 ≤ t ≤ t1, then (9) becomes

‖x(t)‖ ≤M‖φ(0)‖+
M

Γ(α)

∫ t

0

(t− s)α−1
m(s)W (µ(s))ds. (10)

Hence from the definition of µ, we have

µ(t) ≤M‖φ(0)‖+
M

Γ(α)

∫ t

0

(t− s)α−1
m(s)W (µ(s))ds.

Thus we have

µ(t) ≤ K0 +K1

∫ t

0

(t− s)α−1
m(s)W (µ(s))ds,
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where K0 = M‖φ(0)‖,K1 = M
Γ(α) .

If we denote the right-hand side inequality by v(t), then

µ(t) ≤ v(t) ∀ t ∈ [0, t1], v(0) = K0,

and

v′(t) = (s− t)α−1
m(t)W (µ(t)).

This gives

v′(t) ≤ (s− t)α−1
m(t)W (v(t)).

Therefore, ∫ v(t)

v(0)

du

W (u)
≤ K1

∫ t

0

(t− s)α−1
m(s)ds <

∫ ∞
K0

du

W (u)
.

Hence there exists a constant C such that

µ(t) ≤ v(t) ≤ C, ∀ t ∈ [0, t1].

Now from the definition of µ, it follows that

‖x‖DT ≤ µ(t1) ≤ C, ∀ x ∈ E .

For each t ∈ (ti, si], i = 1, 2, . . . , N,

x(t) = λgi

(
t,
xt
λ

)
.

This implies that for each t ∈ (ti, si],

‖x(t)‖ ≤ Lgi‖xt‖+ λ‖gi(t, 0)‖,

‖x(t)‖ ≤ Lgi‖xt‖DT + ‖gi(t, 0)‖. (11)

If ‖xt‖DT ≤ µ(t), then (11) becomes

‖x(t)‖ ≤ Lgiµ(t) + ‖gi(t, 0)‖. (12)

Using the definition of µ in (12), we have

µ(t) ≤ Lgiµ(t) + ‖gi(t, 0)‖. (13)

Thus

µ(t) ≤ ‖gi(t, 0)‖
1− Lgi

= Mti .

This gives µ(t) ≤Mti , t ∈ (ti, si].
Hence from (12), we have

‖x(t)‖ ≤ LgiMti + ‖gi(t, 0)‖ =: Li.

Thus

‖x‖DT ≤ Li.
Finally for t ∈ [si, ti+1], i = 1, 2, . . . , N, we have

x(t) = λSα(t− si)gi(si,
xsi
λ

) + λ

∫ t

si

(t− s)α−1
Pα(t− s)f(s, xs)ds.

Hence for each t ∈ [si, ti+1], we have

‖x(t)‖ ≤MLgi‖xsi‖+Mλ‖gi(si, 0)‖+ λ
M

Γ(α)

∫ t

si

(t− s)α−1
m(s)W (‖xs‖D)ds.
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Therefore,

‖x(t)‖ ≤MLgi‖xsi‖+M‖gi(si, 0)‖+
M

Γ(α)

∫ t

si

(t− s)α−1
m(s)W (‖xs‖D)ds. (14)

If ‖xt‖DT ≤ µ(t), then (14) becomes

‖x(t)‖ ≤MLgiµ(t) +M‖gi(si, 0)‖+
M

Γ(α)

∫ t

si

(t− s)α−1
m(s)W (µ(s))ds. (15)

Using the definition of µ in (15), we have

µ(t) ≤ K̃0 + K̃1

∫ t

si

(t− s)α−1
m(s)W (µ(s))ds, (16)

where

K̃0 = max
1≤i≤N

M‖gi(si, 0)‖
1−MLgi

, K̃1 = max
1≤i≤N

M

(1−MLgi)Γ(α)
.

If we denote the right hand side inequality by v(t), then

µ(t) ≤ v(t), ∀ t ∈ [si, ti+1], v(si) = K̃0,

and

v′(t) = K̃1(s− t)α−1
m(t)W (µ(t)), t ∈ [si, ti+1].

By the increasing property of W, we obtain

v′(t) ≤ K̃1(s− t)α−1
m(t)W (v(t)), t ∈ [si, ti+1].

Hence upon integration, we get∫ v(t)

v(si)

ds

W (s)
≤ K̃1

∫ t

si

(t− s)α−1
m(s)ds <

∫ ∞
K̃0

ds

W (s)
.

Therefore there exists a constant C̃i such that µ(t) ≤ v(t) ≤ C̃i, ∀t ∈ [si, ti+1].
Consequently,

‖x‖DT ≤MLgiC̃i +M‖gi(t, 0)‖+
M

Γ(α)

∫ t

si

(t− s)α−1
m(s)W (C̃i)ds.

This implies that the set E is bounded.
Thus by Burton-Kirk’s fixed point theorem, the operator F has a fixed point in
DT which is a mild solution of the system (4)-(6). �

4. Example

We consider the fractional reaction-diffusion equation with delay described by

CDα
t x(t, z) =

∂2

∂z2
x(t, z) + F (t, x(t− r, z)), t ∈ Ji+1, i = 0, 1, ..., N, z ∈ [0, π],(17)

x(t, z) = Gi(t, x(t− r, z)), z ∈ [0, π], t ∈ (ti, si], i = 1, 2, ..., N, (18)

x(t, 0) = x(t, π) = 0, t ∈ [0, T ], (19)

x(t, z) = φ(t, z), t ∈ [−r, 0], z ∈ [0, π], (20)

where r > 0, φ ∈ D = {ψ : [−r, 0] × [0, π] → R, ψ is continuous everywhere except
at a finite number of points s at which ψ(s−), ψ(s+) exist and ψ(s−) = ψ(s+)}, the
impulse time ti satisfies t0 = s0 < t1 ≤ s1 < t2 < ... < tN ≤ sN < tN+1 = T and
F,Gi are given functions.



JFCA-2020/12(1) NON-INSTANTANEOUS IMPULSIVE FRACTIONAL 131

Let us take X = L2([0, π]) and define A : D(A) ⊂ X → X by Ax = x′′ with
domain

D(A) = {x ∈ X : x, x′ are absolutely continuous , x′′ ∈ X,x(0) = x(π) = 0}.
Then

Aw =

∞∑
n=1

e−n
2t(w,wn)wn, w ∈ X,

where (., .) is an inner product in L2 and wn(s) =
√

2
π sinns, n = 1, 2, . . . is the

orthogonal set of eigenvectors in A. Then A generates a C0-semigroup {Q(t)}t≥0

on X. There exists M ≥ 1 such that

‖Q(t)‖B(X) ≤M.

Let x(t)z = x(t, z), t ∈ J, z ∈ [0, π].
For the case (t, φ) ∈ [−r, b]×D :
Assume that (i) For all i = 0, 1, . . . , N, the function f : [si, ti+1]×D → X defined by
f(t, xt)z = F (t, x(t − r, z)), t ∈ Ji, z ∈ [0, π] is continuous and satisfies hypotheses
(H2) and (H3).
(ii) For all i = 1, . . . , N, the functions gi : (ti, si]×D → X defined by gi(t, xt)z =
Gi(t, x(t− r, z)), t ∈ (ti, si], z ∈ [0, π] are continuous and satisfy hypothesis (H1).
With the above setting, the system of equations (17)-(19) gets transformed to the
abstract form (4)-(6). Since all the conditions of Theorem 3.2 are satisfied, the
problem (17)-(19) has a mild solution x on [−r, T ]× [0, π].
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