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FEKETE-SZEGÖ INEQUALITY FOR CERTAIN CLASSES OF
CLOSE-TO-CONVEX FUNCTIONS

GAGANDEEP SINGH, GURCHARANJIT SINGH, HARJINDER SINGH

Abstract. Close-to-convex functions and quasi-convex functions are of great

importance in geometric function theory. In the present investigation, the
authors study the subclass C1 of close-to-convex functions and the subclasses

C′ and C′1 of quasi convex functions in the open unit disc E = {z : |z| < 1}.
The sharp upper bounds of the functional |a3 − µa2

2|, µ real, for the functions

of the form f(z) = z +
∑∞

n=2 anzn belonging to these classes are provided.
This work will pave the way to investigate the upper bound of the Fekete-

Szegö functional for some other subclasses of close-to-convex and quasi-convex

functions.

1. Introduction

Let A denote the class of functions of the form

f(z) = z +
∞∑
n=2

anz
n (1)

which are analytic in the unit disc E = {z : |z| < 1}. Let S be the class of functions
of the form (1) which are analytic univalent in E.

We shall concentrate on the coefficient problem for the class S and certain of its
subclasses. In 1916, Bieberbach [3] proved that |a2| ≤ 2 for f(z) ∈ S as a corollary
to an elementary area theorem. He conjectured that, for each function f(z) ∈ S,
|an| ≤ n; equality holds for the Koebe function k(z) = z/(1− z)2, which maps the
unit disc E onto the entire complex plane minus the slit along the negative real
axis from − 1

4 to −∞. De Branges [5] solved the Bieberbach conjecture in 1984.
The contribution of Löwner [10] in proving that |a3| ≤ 3 for the class S was huge.

With the known estimates |a2| ≤ 2 and |a3| ≤ 3, it was natural to seek some
relation between a3 and a2

2 for the class S. This thought prompted Fekete and
Szegö [6] and they used Löwner’s method to prove the following well-known result
for the class S:
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If f(z) ∈ S, then

|a3 − µa2
2| ≤


3− 4µ if µ ≤ 0,

1 + 2 exp
(
−2µ
1− µ

)
if 0 ≤ µ ≤ 1,

4µ− 3 if µ ≥ 1.

(2)

The inequality (2) plays a very important role in determining estimates of higher
coefficients for some subclasses of S (see Chichra [4], Babalola [2]).

Next, we define some subclasses of S and obtain analogous of (2).
We denote by S∗ the class of univalent starlike functions g(z) = z+

∑∞
n=2 bnz

n ∈
A and satisfying the condition

<
(
zg′(z)
g(z)

)
> 0, z ∈ E. (3)

We denote by K the class of convex univalent functions h(z) = z+
∑∞
n=2 cnz

n ∈ A
which satisfy the condition

<
(

(zh′(z))′

h′(z)

)
> 0, z ∈ E. (4)

A function f(z) ∈ A is said to be close to convex if there exists a function
g(z) ∈ S∗ such that

<
(
zf ′(z)
g(z)

)
> 0, z ∈ E. (5)

The class of close to convex functions is denoted by C and was introduced by Ka-
plan [8], who showed that all close to convex functions are univalent.The immediate
shoot of C are its following subclasses:

C1 =
{
f(z) ∈ A : <

(
zf ′(z)
h(z)

)
> 0, h(z) ∈ K, z ∈ E

}
, (6)

C ′ =
{
f(z) ∈ A : <

(
(zf ′(z))′

g′(z)

)
> 0, g(z) ∈ S∗, z ∈ E

}
, (7)

C ′1 =
{
f(z) ∈ A : <

(
(zf ′(z))′

h′(z)

)
> 0, h(z) ∈ K, z ∈ E

}
. (8)

Some specific examples for the functions belonging to the classes C, C1, C ′ and
C ′1 are
f(z) = z

(1−z)2 ,

f1(z) = 3
16
√

2

[(
1 + 10

√
2

3 z
) 8

5 − 1
]
,

f2(z) =
∫ z
0

3
√

5
44z

[(
1 + 29

3
√

5
z
) 44

29 − 1
]
dz

and

f3(z) =
∫ z
0

3
√

3
28z

[(
1 + 19

3
√

3
z
) 28

19 − 1
]
dz respectively.

Abdel Gawad and Thomas [1] investigated the class C1 and also obtained (2) for
−∞ < µ ≤ 1 (although this result seems to be doubtful).
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Let U be the class of analytic bounded functions of the form

w(z) =
∞∑
n=1

dnz
n, z ∈ E, (9)

and satisfying the conditions w(0) = 0, |w(z)| < 1. It is known (see [11]) that

|d1| ≤ 1, |d2| ≤ 1− |d1|2. (10)

We shall apply the subordination principle due to Rogosinski [12], which states
that if f(z) ≺ F (z), then f(z) = F (w(z)), w(z) ∈ U (where ≺ stands for subordi-
nation).

Hummel [7] proved a conjecture of V. Singh that |c3 − c22| ≤ 1
3 for the class

K. Keogh and Merkes [9] obtained the estimates (2) for the classes S∗, K and C.
Estimates (2) for the classes C1, C

′
and C

′

1 have been waiting to be determined for
the last 60 years.

Lemma 1 Let g(z) ∈ S∗. Then

|b3 −
3µ
4
b22| ≤


3(1− µ) if µ ≤ 2

3 ,

1 if 2
3 ≤ µ ≤

4
3 ,

3(µ− 1) if µ ≥ 4
3 .

This lemma is a direct consequence of the result of Keogh and Merkes [9] which
states that for g(z) ∈ S∗,

|b3 − µb22| ≤


3− 4µ if µ ≤ 1

2 ,

1 if 1
2 ≤ µ ≤ 1,

4µ− 3 if µ ≥ 1.

Lemma 2 Let h(z) ∈ K. Then

|c3 −
3µ
4
c22| ≤


1− 3

4µ if µ ≤ 8
9 ,

1
3 if 8

9 ≤ µ ≤
16
9 ,

3
4µ− 1 if µ ≥ 16

9 .

This lemma is a direct consequence of a result of Keogh and Merkes [9], which
states that for h(z) ∈ K,

|c3 − µc22| ≤


1− µ if µ ≤ 2

3 ,
1
3 if 2

3 ≤ µ ≤
4
3 ,

µ− 1 if µ ≥ 4
3 .

Unless mentioned otherwise, throughout the paper we assume the following no-
tations:
w(z) ∈ U, z ∈ E.
For 0 < c < 1, we write w(z) = z( c+z1+cz ) so that 1+w(z)

1−w(z) = 1 + 2cz+ 2z2 + ..., z ∈ E.
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2. Main Results

Theorem 1 Let f(z) ∈ C ′. Then

|a3 − µa2
2| ≤



19
9
− 9µ

4
if µ ≤ 16

27
,

64
81µ
− 5

9
if

16
27
≤ µ ≤ 2

3
,

5
9

+
(8− 9µ)2

81µ
if

2
3
≤ µ ≤ 8

9
,

5
9

+
(9µ− 8)2

16− 9µ
if

8
9
≤ µ ≤ 32

27
,

5µ
4
− 7

9
if

32
27
≤ µ ≤ 4

3
,

9µ
4
− 19

9
if µ ≥ 4

3
.

(11)

These results are sharp.
Proof. By definition of C ′,

(zf ′(z))′

g′(z)
=

1 + w(z)
1− w(z)

,

which on expansion yields

1 + 4a2z + 9a3z
2 + · · · = (1 + 2b2z + 3b3z2 + · · · )(1 + 2d1z + 2(d2 + d2

1)z2 + · · · ).
Identifying terms in the above expansion,

a2 =
1
2

(b2 + d1), (12)

a3 =
b3
3

+
4
9
b2d1 +

2
9

(d2 + d2
1). (13)

From (12) and (13)and using (10),it is easily established that

|a3−µa2
2| ≤

1
3

∣∣∣b3− 3
4
µb22

∣∣∣+ 1
18
|8−9µ||b2||d1|+

1
36

(8(1−|d1|2)+ |8−9µ||d1|2). (14)

|a3 − µa2
2| ≤

2
9

+
1
3

∣∣∣b3 − 3
4
µb22

∣∣∣+
1
18
|8− 9µ|xy +

1
36

(|8− 9µ| − 8)x2, (15)

where x = |d1| ≤ 1 and y = |b2| ≤ 2.

Case I. Suppose that µ ≤ 2
3 . By Lemma 1, (15) can be written as

|a3 − µa2
2| ≤

2
9

+ (1− µ) +
1
9

(8− 9µ)x− µ

4
x2 = H0(x), say,

and
H

′

0(x) =
1
9

(8− 9µ)− µ

2
x, H

′′

0 (x) = −µ
2
.

Subcase I(i). For µ ≤ 0, since x ≥ 0 we have H ′0(x) > 0.

H0(x) is an increasing function in [0, 1] and maxH0(x) = H0(1) =
19
9
− 9µ

4
.

Subcase I(ii). Suppose 0 < µ ≤ 2
3 . H

′

0(x) = 0 when x = 2(8−9µ)
9µ = x0.

x0 > 1 if and only if µ < 16
27 and we have maxH0(x) = H0(1) = 19

9 −
9µ
4 .

Combining the above two subcases, we obtain first result of (11).



168 GAGANDEEP SINGH, GURCHARANJIT SINGH, HARJINDER SINGH JFCA-2021/12(1)

Subcase I(iii). For 16
27 ≤ µ ≤

2
3 (x0 < 1),since H

′′

0 (x) < 0, therefore we have
maxH0(x) = H0(x0) = 64

81µ −
5
9 .

Case II. Suppose that 2
3 ≤ µ ≤

8
3 , then by Lemma 1,(15) takes the form

|a3 − µa2
2| ≤

2
9

+
1
3

+
1
9
|8− 9µ|x− µ

4
x2.

Subcase II(i). 2
3 < µ < 8

9 .
Under the above condition, from (15), we get

|a3 − µa2
2| ≤

2
9

+
1
3

+
1
9

(8− 9µ)x− µ

4
x2 = H1(x), say.

H
′

1(x) =
1
9

(8− 9µ)− µ

2
x,H

′′

1 (x) = −µ
2
< 0

H
′

1(x) = 0 implies that x = 2(8−9µ)
9µ = x1 and maxH1(x) = H1(x1) = 5

9 + (8−9µ)2

81µ .

Subcase II(ii). For 8
9 ≤ µ ≤

32
27 , by Lemma 1, (15) reduces to

|a3 − µa2
2| ≤

5
9

+ (9µ− 8)x+
(16− 9µ)

36
x2 = H2(x), say.

H
′

2(x) = (9µ− 8)− 1
18

(9µ− 16)x,H
′′

2 (x) < 0.

H
′

2(x) vanishes when x = 2(9µ−8)
(16−9µ) = x2 < 1 and

maxH2(x) = H2(x2) = 5
9 + (8−9µ)2

(16−9µ) .

Subcase II(iii). 32
27 ≤ µ ≤

4
3 . (15) can be expressed as

|a3 − µa2
2| ≤

5
9

+
1
9

(9µ− 8)x− (16− 9µ)
36

x2 = H3(x), say.

H
′

3(x) =
1
9

(9µ− 8)− 1
18

(16− 9µ)x.

H
′

3(x) = 0 yields x = 2(9µ−8)
(16−9µ) = x3 ≥ 1 and

maxH3(x) = H3(1) = 5µ
4 −

7
9 .

Case III. µ ≥ 4
3 . By Lemma 1, (15) can be put in the form

|a3 − µa2
2| ≤

2
9

+ (µ− 1) +
1
9

(9µ− 8)x− (16− 9µ)
36

x2 = H4(x), say.

H
′

4(x) =
1
9

(9µ− 8)− 1
18

(16− 9µ)x

which vanishes at x = 2(9µ−8)
(16−9µ) = x4 ≥ 1 and therefore maxH4(x) = H4(1) =

9µ
4 −

19
9 .

The first and second inequalities of (11) coincide at µ = 16
27 and each is equal to

7
9 .
The second and third inequalities of (11) coincide at µ = 2

3 and each is equal to 17
27 .

The third and fourth inequalities of (11) coincide at µ = 8
9 and each is equal to 5

9 .
The fourth and fifth inequalities of (11) coincide at µ = 32

27 and each is equal to 19
27 .

The fifth and last inequalities of (11) coincide at µ = 4
3 and each is equal to 8

9 .
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Results of (11)are sharp for the functions defined by their respective derivatives
in order as follows:
f

′

1(z) = 1
z

[(∫ z
0

(1+t)2

(1−t)4 dt
)]

.

f
′

2(z) = 1
z

[(∫ z
0

(1+t)(1+2ct+2t2+...)
(1−t)3 dt

)]
where c = 2(8−9µ)

9µ .

f
′

3(z) = 1
z

[(∫ z
0

(1+t)(1+2dt+2t2+...)
(1−t)3 dt

)]
where d = 2(8−9µ)

9µ .

f
′

4(z) = 1
z

[(∫ z
0

(1+t)(1+2et+2t2+...)
(1−t)3 dt

)]
where e = 2(9µ−8)

(16−9µ) .

f
′

5(z) = 1
z

[(∫ z
0

[(1 + 29
3
√

5
t)

15
29 dt]

)]
where |t| < 3

√
5

29 .

f
′

6(z) = f
′

1(z).
Proof of the theorem is complete.

Theorem 2 Let f(z) ∈ C ′1. Then

|a3 − µa2
2| ≤



1− µ if µ ≤ 4
9
,

16
81µ

+
1
9

if
4
9
≤ µ ≤ 8

9
,

1
3

+
(9µ− 8)2

36(16− 9µ)
if

8
9
≤ µ ≤ 4

3
,

3µ
4
− 5

9
if

4
3
≤ µ ≤ 16

9
,

µ− 1 if µ ≥ 16
9
.

The results are sharp.
Proof. Proceeding as in Theorem 1, we have

|a3 − µa2
2| ≤

2
9

+
1
3
|c3 −

3
4
µc22|+

1
18
|8− 9µ||c2||d1|+

1
36

(|8− 9µ| − 8)|d1|2. (16)

Case I. Suppose that µ ≤ 8
9 . By Lemma 2, and putting x = |d1| ≤ 1 and

y = |c2| ≤ 1,(16) reduces to

|a3 − µa2
2| ≤

2
9

+
1
3

(
1− 3µ

4

)
+

1
18

(8− 9µ)xy − µ

4
x2

=
(

5
9
− µ

4

)
+

1
18

(8− 9µ)x− µ

4
x2 = H6(x), say.

Then

H ′6(x) =
8− 9µ

18
− µ

2
x, H ′′6 (x) = −µ

2
.

When H ′6(x) = 0, we have 8− 9µ = 9µx = 9µx6, say.

Subcase I(i). For µ ≤ 0, since x ≥ 0 we have H ′6(x) ≥ 0. Suppose µ > 0. Since
x ≤ 1, H ′6(x) ≥ 4/9 − µ > 0 if and only if µ < 4/9. Then for µ < 4/9, we have
H6(x) ≤ H6(1) = 1− µ.

Subcase I(ii). Suppose that 4
9 ≤ µ ≤ 8

9 . Then maxH6(x) = H6(x6) =
16/81µ+ 1/9.
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Case II. Suppose that 8
9 ≤ µ ≤

16
9 . By Lemma 2 and (16),

|a3 − µa2
2| ≤

1
3

+
1
18

(9µ− 8)x− 1
36

(16− 9µ)x2 = H7(x), say.

Then H ′7(x) = 0 when x = (9µ − 8)/(16 − 9µ) = x7, say, and H ′′7 (x) = −(16 −
9µ)/18 < 0. Since x7 ≤ 1, this is relevant only for µ ≤ 4

3 .

Subcase II(i). Suppose that 8
9 ≤ µ ≤

4
3 . Then

maxH7(x) = H7(x7) =
1
3

+
(9µ− 8)2

36(16− 9µ)
.

Subcase II(ii). If 4
3 ≤ µ ≤ 16

9 , then H ′7(x) ≥ 0, so H7(x) is a monotonically
increasing function of x and maxH7(x) = H7(1) = 3µ/4− 5/9.

Case III. Suppose that µ ≥ 16
9 . By Lemma 2, from (16),

|a3 − µa2
2| ≤

2
9

+
1
3

(
3µ
4
− 1
)

+
1
18

(9µ− 8)x+
1
36

(9µ− 16)x2 = H8(x), say.

We have H ′8(x) > 0 and maxH8(x) = H8(1) = µ− 1.
This completes the proof.

Extremal function f1(z) for the first and the last results is defined by f
′

1(z) =
1
z

[(∫ z
0

(1+t)
(1−t)2 dt

)]
.

Extremal function f2(z) for the second bound is defined by f
′

2(z) = 1
z

[(∫ z
0

(1+2ct+2t2+...)
(1−t)2 dt

)]
,

where c = (8−9µ)
9µ .

Extremal function f3(z) for the third bound is defined by f
′

3(z) = 1
z

[(∫ z
0

(1+2ct+2t2+...)
(1−t2)2 dt

)]
,

where c = (9µ−8)
16−9µ .

Extremal function f4(z) for the fourth bound is defined by f
′

4(z) = 1
z

[(∫ z
0

(1 + 19t
3
√

3
)

9
19 dt

)]
,

|t| ≤ 3
√

3
19 .

Proceeding as in Theorem 2 and using elementary calculus, we can easily prove
the following theorem.
Theorem 3 Let f(z) ∈ C1. Then

|a3 − µa2
2| ≤



5
3
− 9µ

4
if µ ≤ 2

9
,

2
3

+
1

9µ
if

2
9
≤ µ ≤ 2

3
,

1− µ

4
+

(3µ− 2)2

12(4− 3µ)
if

2
3
≤ µ ≤ 8

9
,

7
9

+
(3µ− 2)2

12(4− 3µ)
if

8
9
≤ µ ≤ 10

9
,

7
9

+ 2(µ− 1) if
10
9
≤ µ ≤ 16

9
,

9µ
4
− 5

3
if µ ≥ 16

9
.
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The results are sharp. Extremal function f1(z) for the first and the last results is
defined by f1(z) =

[(∫ z
0

(1+t)
(1−t)2 dt

)]
.

Extremal function f2(z) for the second bound is defined by f2(z) =
[(∫ z

0
(1+2ct+2t2+...)

(1−t) dt
)]

,

where c = (2−3µ)
3µ .

Extremal function f3(z) for the third and fourth bound is defined by f3(z) =[(∫ z
0

(1+2ct+2t2+...)
(1−t) dt

)]
, where c = (3µ−2)

2(4−3µ) .

Extremal function f4(z) for the fifth bound is defined by f4(z) =
[(∫ z

0
(1 + 10

√
2

3 t)
3
5 dt
)]

,

where |t| ≤ 3
10
√

2
.
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