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ON A MILD SOLUTION TO HILFER TIME-FRACTIONAL

STOCHASTIC DIFFERENTIAL EQUATION

MCSYLVESTER EJIGHIKEME OMABA

Abstract. Consider a Hilfer time-fractional stochastic differential equation

Dα,ν
t u(x, t) = λ

∫
B(0,tν/α)

σ(u(y, t))ẇ(y, t)dy, t > 0

of order 0 < α < 1 and type 0 ≤ ν ≤ 1. The initial condition u(x, 0) =

u0(x), x ∈ B(0, tν/α) ⊂ R2 is a non-random function assumed to be non-
negative and bounded, Dα,ν

t is a generalized Riemann–Liouville time - frac-
tional derivative operator, σ is Lipschitz continuous, ẇ(y, t) a space-time white

noise and λ > 0 is the level of the noise. The existence and uniqueness of a
solution to the class of equation is given under some precise condition, we
give moment growth bounds and long-term behaviours of the mild solution for
α > 1

2
. We show that the energy growth (second moment) of the solution to

the Hilfer time-fractional stochastic differential equation grows exponentially

in time at most a precise rate of c2 exp
(
c5λ

2
2α−1 t

)
for all t > 0 and at least a

precise rate of c7 exp
(
c10λ

2
2α−1 t

)
for some time t, for some positive constants

c2, c5, c7, c10. More so, we show that when the non-linear term σ grows faster
than linear, the energy of the solution fails to have global existence at all times

t for all α ∈ (0, 1).

1. Introduction

Fractional calculus has become very popular and important due to its application
in modeling the anomalous diffusion behaviour of physical processes. They best
describe systems which have long-time memory and long-range interaction.

Hilfer proposed a generalized Riemann–Liouville fractional derivative, which
combines Riemann–Liouville fractional derivative and Caputo fractional derivative.
This family of parameters gives certain degree of freedom on the initial conditions
and produces more types of stationary states. While there have been studies on
both Riemann-Liouville and Caputo fractional derivatives, see [2, 12, 13, 14] and
their references, the Hilfer fractional derivative otherwise known as the generalized

2010 Mathematics Subject Classification. 26A33, 34A08, 60H15, 82B44.
Key words and phrases. Asymptotic behaviour, Energy moment growth bounds, Integral so-

lution, Space-time white noise, Hifer time-fractional derivative, Generalized Riemann–Liouville

derivative.
Submitted Jan. 30, 2020.

1



2 M. E. OMABA JFCA-2021/12(2)

Riemann–Liouville fractional derivative makes it possible for one to interpolate be-
tween the Riemann–Liouville fractional derivative and Caputo fractional derivative.
This type of fractional derivative operator finds its application in the theoretical
stimulation of dielectric relaxation in glass forming materials and aquifer problems
(hydrogeology), see [5, 6, 7, 8] and their references.

In [4], Furati et al. considered an initial value problem for a class of nonlinear
fractional differential equation involving Hilfer fractional derivative; Sandev et al. in
[16] obtained the solution of a fractional diffusion equation with a Hilfer–generalized
Riemann–Liouville time fractional derivative in terms of Mittag–Leffler–type func-
tions and Fox’s H–function; Gu and Trujillo in [6] also considered the existence of
mild solution for evolution equation with Hilfer fractional derivative. Rihan et al.
in [15] furthered the study by considering a class of stochastic differential system
with Hilfer fractional derivative and Poisson jumps in Hilbert space where the exis-
tence and uniqueness of mild solutions using successive approximation theory were
studied, see also [1, 9, 10] for recent papers on the study of mild solutions of classes
of Hilfer fractional stochastic differential equations.

In what follows, since modeling of most problems of real situations is best de-
scribed by stochastic differential equations rather than the deterministic counter-
part, we therefore perturb a class of Hilfer time-fractional differential equation with
space-time white noise and study the properties of mild solution to a class of Hilfer
(generalized Riemann–Liouville) time-fractional stochastic differential equation. To
the best of our knowledge, this model has not been studied and none of our results
exist in literature for this class of time-fractional stochastic differential equation.
Thus, we consider the following Hilfer time-fractional stochastic differential equa-
tion of order 0 < α < 1 and type 0 ≤ ν ≤ 1

Dα,ν
t u(x, t) = λ

∫
B(0,tν/α)

σ(u(y, t))ẇ(y, t)dy, 0 < t < ∞,

I1−µ
t u(x, 0+) = u0(x), x ∈ B(0, tν/α), µ = α+ ν − αν,

(1)

where ẇ(y, t) is a space-time white noise, λ > 0 the noise level, σ : B(0, tν/α) → R
a Lipschitz continuous function, and Dα,ν

t the generalized R–L tempered time-
fractional derivative of order 0 < α ≤ 1 and type 0 ≤ ν ≤ 1 given by Hilfer as
follows [7]

Dα,ν
t u(x, t) =

(
I
ν(1−α)
t D

(
I
(1−ν)(1−α)
t

))
u(x, t).

The two parameter family of fractional derivatives allows one to interpolate between
Riemann-Liouville and the Caputo derivatives.
That is, for ν = 0, it reduces to the classical Riemann–Liouville fractional derivative

Dα,0
t u(x, t) = Dα

(
I
(1−α)
t u(x, t)

)
= Dα

t u(x, t),

with

Dα
t u(x, t) =

1

Γ(1− α)

∂

∂t

∫ t

0

(t− s)−αu(x, s)ds, α ∈ (0, 1)

and

Iαt u(x, t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(x, s)ds, α ∈ (0, 1).
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For ν = 1, it reduces to the Caputo fractional derivative

Dα,1
t u(x, t) =

(
I
(1−α)
t Dα

)
u(x, t) = ∗D

α
t u(x, t),

with

∗D
α
t u(x, t) =

1

Γ(1− α)

∫ t

0

(t− s)−α∂su(x, s)ds, α ∈ (0, 1).

For 0 < ν < 1, it interpolates continuously between the two derivatives.
Now, define the mild solution to equation (1) in L2(P) as follows:

Definition 1.1. We say that
(
u(x, t), x ∈ B(0, tµ), 0 ≤ t ≤ T ∗) is a mild solution

of Equation (1) if a.s, the following is satisfied

u(x, t) =
u0(x)

Γ(µ)
t(α−1)(1−ν)

+
λ

Γ(α)

∫ t

0

∫
B(0,tν/α)

(t− s)α−1σ(u(y, s))ẇ(y, s)dyds

=
u0(x)

Γ(µ)
t(µ−1) +

λ

Γ(α)

∫ t

0

∫
B(0,tν/α)

(t− s)α−1σ(u(y, s))w(dy, ds), µ > 1.

Also, if
(
u(x, t), x ∈ B(0, tµ), 0 ≤ t ≤ T ∗) satisfies the following additional

condition

sup
t∈[0,T∗]

sup
x∈B(0, tµ)

E|u(x, t)|2 < ∞,

then we say that
(
u(x, t), x ∈ B(0, tµ), 0 ≤ t ≤ T ∗) is a random field solution to

Equation (1).

The above problem is motivated by the following proposition

Proposition 1.2 ([6]). If 0 < α < 1 and 0 ≤ ν ≤ 1, then the solution of the
generalized fractional differential equation

Dα,ν
a+ x(t) = f(t, x(t)), t > a

I1−µ
a+ x(a+) = xa, µ = α+ ν − αν,

is given by

x(t) =
xa

Γ(µ)
(t− a)(α−1)(1−ν) +

1

Γ(α)

∫ t

a

(t− s)α−1f(s, x(s))ds.

Next, we give an estimates (bounds) on an incomplete gamma function.

Theorem 1.3 ([11]). The following inequalities

exp

(
−ax

a+ 1

)
≤ a

xa
γ(a, x) ≤ 1F1(a; a+ 1;−x) ≤ 1

a+ 1

(
1 + ae−x

)
for all x > 0,

hold, where 1F1(a; a+ 1;−x) is a confluent hypergeometric (Kummer) function.
Also, for 0 < a ≤ 1,

1− e−x

x
≤ a

xa
γ(a, x).
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The function γ(z, x) is an incomplete gamma function given by

γ(z, x) =

∫ x

0

e−ttz−1dt, x > 0

with the relation

Γ(z) = γ(z, x) + Γ(z, x),

where Γ(z, x) is the complement of the incomplete gamma function given by

Γ(z, x) =

∫ ∞

x

e−ttz−1dt, x > 0.

The paper is outlined as follows. In section 2, we gave the main results and their
proofs and section 3 contains a concise summary of the paper.

2. Main Results

Here, we make the following assumption on σ; that is, σ is globally Lipschitz:

Condition 2.1. There exist a finite positive constant, Lipσ such that for all x, y ∈
B(0, tν/α) ⊂ R2, we have

|σ(x)− σ(y)| ≤ Lipσ|x− y|,

with σ(0) = 0 for convenience.

We define the L2(P) norm as follows:

∥u∥2,α,β,ν :=

{
sup

0≤t≤T∗
sup

x∈B(0,tν/α)

e−βtE|u(x, t)|2
}1/2

,

where T ∗ is a fixed finite number and obtain the following result

Theorem 2.2. Suppose c3 < 1
(λLipσ)

2 for positive constant Lipσ together with Con-

dition (2.1), then there exists solution u that is unique up to modification, with

c3 := π
Γ2(α)

T∗2 ν
α

+2α−1

2α−1 , α > 1
2 .

The proof of the above result is by Banach’s fixed point theorem and is based
on the following lemma(s):

For µ > 1, we define the operator

Au(x, t) =
u0(x)

Γ(µ)
t(µ−1) +

λ

Γ(α)

∫ t

0

∫
B(0,tν/α)

(t− s)α−1σ(u(y, s))w(dy, ds),

and the fixed point of the operator A gives the solution of Equation (1).

Lemma 2.3. Given a random solution u such that ∥u∥2,α,β,ν < ∞ and Condition
(2.1) holds. Then there exist positive constants c2 and c3 such that

∥Au∥22,α,β,ν ≤ c2 + c3λ
2Lip2σ∥u∥22,α,β,ν ,

where c2 := c1
Γ2(µ)T

∗2(µ−1), c3 := π
Γ2(α)

T∗2 ν
α

+2α−1

2α−1 , α > 1
2 .
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Proof. By Itô isometry and assuming that |u0(x)|2 ≤ c1, we obtain

E|Au(x, t)|2 =
|u0(x)|2

Γ2(µ)
t2(µ−1)

+
λ2

Γ2(α)

∫ t

0

∫
B(0,tν/α)

(t− s)2α−2E|σ(u(y, s))|2dyds

≤ c1
Γ2(µ)

t2(µ−1)

+
λ2Lip2σ
Γ2(α)

∫ t

0

∫
B(0,tν/α)

(t− s)2α−2E|u(y, s)|2dyds

≤ c1
Γ2(µ)

t2(µ−1)

+
λ2Lip2σ
Γ2(α)

πt2ν/α
∫ t

0

sup
y∈B(0,tν/α)

E|u(y, s)|2(t− s)2α−2ds.

Multiply through by e−βt we have

e−βtE|Au(x, t)|2 ≤ c1
Γ2(µ)

t2(µ−1)e−βt

+
λ2Lip2σ
Γ2(α)

πt2ν/α∥u∥22,α,β,ν
∫ t

0

(t− s)2α−2e−β(t−s)ds

=
c1

Γ2(µ)
t2(µ−1)e−βt

+
λ2Lip2σ
Γ2(α)

πt2ν/α∥u∥22,α,β,νβ1−2α
[
Γ(2α− 1)− Γ(2α− 1, βt)

]
=

c1
Γ2(µ)

t2(µ−1)e−βt

+
λ2Lip2σ
Γ2(α)

πt2ν/α∥u∥22,α,β,νβ1−2αγ(2α− 1, βt), R(α) >
1

2
.

Now take sup over t ∈ [0, T ∗], T ∗ < ∞, and sup over x ∈ B(0, tν/α) and upper
bound estimate of Theorem 1.3 to obtain

∥Au∥22,α,β,ν ≤ c1
Γ2(µ)

sup
0<t≤T∗

t2(µ−1)e−βt +
λ2Lip2σ
Γ2(α)

πT ∗2ν/α

β2α−1

1

(2α− 1)(2α)

× sup
0<t≤T∗

(βt)2α−1

(
1 + (2α− 1)e−βt

)
∥u∥22,α,β,ν

≤ c1
Γ2(µ)

sup
0<t≤T∗

t2(µ−1) +
λ2Lip2σ
Γ2(α)

πT ∗2 ν
α+2α−1

2α− 1
∥u∥22,α,β,ν

= c2 + c3λ
2Lip2σ∥u∥22,α,β,ν ,

with positive constants and the second line follows since e−βt ≤ 1 for all t ∈
[0, T ∗]. �

Similarly, we obtain the following result

Lemma 2.4. Suppose u and v are random solutions such that ∥u∥2,α,β,ν+∥v∥2,α,β,ν <
∞ and Condition (2.1) holds. Then there exists a positive constant c3 such that

∥Au−Av∥22,α,β,ν ≤ c3λ
2Lip2σ∥u− v∥22,α,β,ν .
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Proof of Theorem 2.2. By fixed point theorem we have u(x, t) = Au(x, t) and from
Lemma 2.3,

∥u∥22,α,β,ν = ∥Au∥22,α,β,ν ≤ c2 + c3λ
2Lip2σ∥u∥22,α,β,ν

which follows that

∥u∥22,α,β,ν
[
1− c3λ

2Lip2σ
]
≤ c2 ⇒ ∥u∥2,α,β,ν < ∞ ⇔ c3 <

1

(λLipσ)
2
.

Similarly, from Lemma 2.4,

∥u− v∥22,α,β,ν = ∥Au−Av∥22,α,β,ν ≤ c3λ
2Lip2σ∥u− v∥22,α,β,ν ,

thus

∥u− v∥22,α,β,ν
[
1− c3λ

2Lip2σ
]
≤ 0

and therefore

∥u− v∥2,α,β,ν < 0 (⇒ ∥u− v∥2,α,β,ν = 0)

if and only if

c3 <
1

(λLipσ)
2
.

The existence and uniqueness result follows by Banach’s contraction principle. �

2.1. Growth moment estimates. For the growth moment results, we present
the following renewable inequalities, which give bounds on the functions involved:

Proposition 2.5 ([3]). Let ρ > 0 and suppose that f(t) is a locally integrable
function satisfying

f(t) ≤ c1 + κ

∫ t

0

(t− s)ρ−1f(s)ds, for all t > 0,

where c1 is some positive number. Then, we have

f(t) ≤ c2 exp
(
c3(Γ(ρ))

1/ρκ1/ρt
)
, for all t > 0,

for some positive constants c2 and c3.

We also give the converse of the above proposition:

Proposition 2.6 ([3]). Let ρ > 0 and suppose that f(t) is a nonnegative, locally
integrable function satisfying

f(t) ≥ c1 + κ

∫ t

0

(t− s)ρ−1f(s)ds, for all t > 0,

where c1 is some positive number. Then, we have

f(t) ≥ c2 exp
(
c3(Γ(ρ))

1/ρκ1/ρt
)
, for all t >

e

ρ

(
Γ(ρ)κ

)−1/ρ
,

for some positive constants c2 and c3.

Theorem 2.7. Given that Condition 2.1 holds, then for all t > 0 and α > 1
2 we

have

sup
x∈B(0,tν/α)

E|u(x, t)|2 ≤ c2 exp
(
c5λ

2
2α−1 t

)
,

for some positive constants c2 and c5.
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Proof. Following similar steps as in Lemma 2.3 and the assumption that the initial
condition is bounded above,

sup
x∈B(0,tν/α)

E|u(x, t)|2 ≤ c1
Γ2(µ)

t2(µ−1)

+
λ2Lip2σ
Γ2(α)

πt2ν/α
∫ t

0

sup
y∈B(0,tν/α)

E|u(y, s)|2(t− s)2α−2ds

≤ c1
Γ2(µ)

sup
0<t≤T∗

t2(µ−1)

+
λ2Lip2σ
Γ2(α)

πT ∗2ν/α
∫ t

0

sup
y∈B(0,tν/α)

E|u(y, s)|2(t− s)2α−2ds.

Let f(t) := sup
x∈B(0,tν/α)

E|u(x, t)|2 then we have

f(t) ≤ c2 + c3λ
2

∫ t

0

(t− s)2α−2f(s)ds

= c2 + c3λ
2

∫ t

0

(t− s)(2α−1)−1f(s)ds.

Thus by applying Proposition 2.5 for α > 1
2 , we obtain

f(t) ≤ c2 exp
[
c4λ

2
2α−1 (Γ(2α− 1))

1
2α−1 t

]
= c2 exp

[
c5λ

2
2α−1 t

]
,

and the result follows. �

Similarly, we have the lower bound estimate by assuming that the initial condi-
tion u0(x) > c6 for some positive constant c3 and

Condition 2.8. There exist a finite positive constant, Lσ such that for all x ∈
B(0, tν/α), we have

|σ(x)| ≥ Lσ|x|.

Thus

Theorem 2.9. Given that Condition 2.8 holds, then there exists a time t such that
for α > 1

2 we have

inf
x∈B(0,tν/α)

E|u(x, t)|2 ≥ c7 exp
(
c10λ

2
2α−1 t

)
,

for some positive constants c7 and c10.

Proof. With the assumption that the initial condition u0(x) > c6, we have

inf
x∈B(0,tν/α)

E|u(x, t)|2 ≥ c6
Γ2(µ)

t2(µ−1)

+
λ2L2

σ

Γ2(α)
πt2ν/α

∫ t

0

inf
y∈B(0,tν/α)

E|u(y, s)|2(t− s)2α−2ds

≥ c6
Γ2(µ)

inf
0<t≤T∗

t2(µ−1)

+
λ2L2

σ

Γ2(α)
π inf

0<t≤T∗
t2ν/α

∫ t

0

inf
y∈B(0,tν/α)

E|u(y, s)|2(t− s)2α−2ds.
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Let g(t) := inf
x∈B(0,tν/α)

E|u(x, t)|2 then we have

g(t) ≥ c7 + c8λ
2

∫ t

0

(t− s)2α−2g(s)ds

= c7 + c8λ
2

∫ t

0

(t− s)(2α−1)−1g(s)ds.

Applying Proposition 2.6 for α > 1
2 , then for t > e

2α−1

(
c8λ

2Γ(2α − 1)
)− 1

2α−1 we
obtain

g(t) ≥ c7 exp
[
c9λ

2
2α−1 (Γ(2α− 1))

1
2α−1 t

]
= c7 exp

[
c10λ

2
2α−1 t

]
,

and the result follows. �
We now give immediate consequences of the above Theorem 2.7 and Theorem

2.9. First is the long time behaviour of the energy solution, which says that the
rate of growth depends on the operator and the noise term (the noise level) as time
t grows to T ∗:

Corollary 2.10. Suppose that α > 1
2 and that positive constants c5, c10 are as in

Theorem 2.7 and Theorem 2.9. Then for all x ∈ B(0, tν/α) and λ > 0,

c10λ
2

2α−1 ≤ lim inf
t→T∗

logE|u(x, t)|2

t
.

Remark 2.11. From Theorem 2.9, we obtain the following estimate: logE|u(x, t)|2 ≥
log c7 + c10λ

2
2α−1 t ≥ c10λ

2
2α−1 t.

The next result gives the rate of growth of the second moment with respect to
the noise parameter λ:

Corollary 2.12. Suppose that α > 1
2 and conditions of Theorem 2.7 and Theorem

2.9 hold. Then for all x ∈ B(0, tν/α) and for some time t,

2

2α− 1
≤ lim inf

λ→∞

log logE|u(x, t)|2

log λ
≤ lim sup

λ→∞

log logE|u(x, t)|2

log λ
≤ 2

2α− 1
.

2.2. Global non-existence of solution. We show that if the function σ grows
faster than linear, then the second moment E|u(x, t)|2 of the solution to (1) ceases
to exist for all time t.

Now, suppose that instead of Condition 2.8, we have the following condition:

Condition 2.13. There exist a finite positive constant, Lσ such that for all x ∈
B(0, tν/α) ⊂ R2, we have

|σ(x)| ≥ Lσ|x|β , β > 1.

Theorem 2.14. Suppose that Condition 2.13 is in force. Then there does not exist
a solution to Equation (1) for all 0 < α < 1.

Proof. Assuming the lower bound condition on the initial condition u0(x), then by
Condition 2.13, we have

E|u(x, t)|2 ≥ c7 + c8λ
2

∫ t

a

(t− s)2(α−1)E|u(x, s)|2(β)ds

≥ c7 + c8λ
2

∫ t

0

(t− s)2(α−1)

(
inf

x∈B(0,tν/α)
E|u(x, s)|2

)β

ds.
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Let g(t) := inf
x∈B(0,tν/α)

E|u(x, t)|2. Then it follows that

g(t) ≥ c7 + c8λ
2

∫ t

0

(t− s)2(α−1)gβ(s)ds

≥ c7 + c8λ
2

∫ t

0

t2(α−1)gβ(s)ds,

since t ≥ t − s and (t − s)2(α−1) ≥ t2(α−1) for all 2(α − 1) < 0. Multiply through
by t2(α−1), then

g(t)t2(α−1) ≥ c7t
2(α−1) + c8λ

2

∫ t

0

gβ(s)ds

= c7t
2(α−1) + c8λ

2

∫ t

0

(
s2(α−1)g(s)

)β
s2β(α−1)

ds.

Let y(t) = t2(α−1)g(t), 0 < t ≤ T ∗, then we have

y(t) ≥ c7T
∗2(α−1) + c8λ

2

∫ t

0

yβ(s)

s2β(α−1)
ds.

Applying the fundamental theorem of calculus, thus

ẏ(t) ≥ c8λ
2 yβ(t)

t2β(α−1)
,

and solving the differential equation ẏ(t) = c8λ
2 yβ(t)
t2β(α−1) , that is,

ẏ(t)
yβ(t)

= c8λ
2t2β(1−α)

with y(0) = c7T
∗2(α−1) we have

y(t) =

{
(1− β)c8λ

2

1 + 2β(1− α)
t1+2β(1−α) + y(0)1−β

} 1
1−β

and the solution fails to exist for all 1 + 2β(1 − α) > 0, that is, for all β > 1 and
0 < α < 1. �

3. Conclusion

Long term behaviours (with respect to time t and with respect to the noise level
λ) of the mild solution to a Hilfer time-fractional stochastic differential equation
were studied. The existence and uniqueness result was obtained under some precise
conditions and we proved the second moment energy bounds (upper and lower
estimates) of the solution. The result showed that our solution grows exponentially
in time and the solution fails to exist for all time t when the nonlinear term grows
more than linear for α ∈ (0, 1).
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