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EXISTENCE AND UNIQUENESS OF MILD SOLUTIONS OF

BOUNDARY VALUE PROBLEMS FOR CAPUTO-HADAMARD

FRACTIONAL DIFFERENTIAL EQUATIONS WITH INTEGRAL

AND ANTI-PERIODIC CONDITIONS

ADEL LACHOURI, ABDELOUAHEB ARDJOUNI, AHCENE DJOUDI

Abstract. In this paper, we investigate the existence and uniqueness of mild
solutions of a boundary value problem for Caputo-Hadamard fractional differ-
ential equations with integral and anti-periodic conditions. Our analysis relies

on classical fixed point theorems. Examples are given to illustrate our results.

1. Introduction

The concept of fractional calculus is a generalization of the ordinary differentia-
tion and integration to arbitrary non integer order. Fractional differential equations
with and without delay arise from a variety of applications including in various
fields of science and engineering such as applied sciences, physics, chemistry, bi-
ology, medicine, etc. In particular, problems concerning qualitative analysis of
linear and nonlinear fractional differential equations with and without delay have
received the attention of many authors, see [1]–[16], [18]–[32] and the references
therein. Fractional differential equations involving Riemann-Liouville and Caputo
type fractional derivatives have been studied extensively by several researchers.
However, the literature on Hadamard type fractional differential equations is not
yet as enriched. The fractional derivative due to Hadamard, introduced in 1892,
differs from the aforementioned derivatives in the sense that the kernel of the in-
tegral in the definition of Hadamard derivative contains a logarithmic function of
arbitrary exponent.

Recently in [32], Xu discussed the existence and uniqueness of solutions of the
following fractional differential equation{

cDqx(t) = f (t, x (t)) , t ∈ [0, 1] , 1 < q ≤ 2,

x(1) = µ
∫ 1

0
x (s) ds, x′ (0) + x′ (1) = 0,

where cDα denotes the Caputo fractional derivative of order q, f : [0, 1] × R → R
is a given continuous function.
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The boundary value problems for the nonlinear fractional differential equation{
Dα

1 x (t) = f (t, x (t)) , t ∈ [1, T ] , 0 < α ≤ 1,
ax (1) + bx (T ) = c,

has been investigated in [9], where Dα
1 is the Caputo-Hadamard fractional deriva-

tive, f : [1, T ]×R → R is a given continuous function, a, b and c are real constants
such that a+ b ̸= 0.

Motivated by these works, we study the existence and uniqueness of mild solu-
tions for the following boundary value problem for the fractional differential equa-
tion

Dα
1x (t) = f (t, x (t)) , t ∈ [1, T ], (1)

x (1) + x (T ) = b

∫ T

1

x (s)
ds

s
, (2)

where f : [1, T ] × R → R is a continuous function, Dα
1 is the Caputo-Hadamard

fractional derivative of order 0 < α < 1 and b ∈ R such that 2− b log (T ) > 0.
This paper is organized as follows. In Section 2, we recall briefly some basic defi-

nitions and preliminary facts which will be used throughout subsequent sections. In
Section 3, we shall provide sufficient conditions ensuring the existence and unique-
ness of mild solutions for the problem (1)-(2) via applications of classical fixed point
theorems. Finally in Section 4, we give examples to illustrate the theory presented
in the previous sections.

2. Preliminaries

In this section we present some basic definitions, notations and results of frac-
tional calculus which are used throughout this paper.

Let C ([1, T ],R) be the Banach space of all real-valued continuous functions
defined on the compact interval [1, T ], endowed with the maximum norm.

Definition 1 ([21]). The Hadamard fractional integral of order α > 0 for a con-
tinuous function x : [1,+∞) → R is defined as

Iα1 x (t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

x (s)
ds

s
, α > 0.

Definition 2 ([20]). The Caputo-Hadamard fractional derivative of order α for a
continuous function x : [1,+∞) → R is defined as

Dα
1 x (t) =

1

Γ (n− α)

∫ t

1

(
log

t

s

)n−α−1

δn (x) (s)
ds

s
, n− 1 < α < n,

where δn =
(
t d
dt

)n
, n = [α] + 1.

Lemma 1 ([20]). Let α > 0. Suppose x ∈ Cn−1 ([0,+∞),R) and x(n) exists almost
every-where on any bounded interval of [1,+∞). Then

Dα
1 [Iα1 x] (t) = x(t),

and

Iα1 [Dα
1 x] (t) = x(t)−

n−1∑
k=0

x(k) (1)

Γ (k + 1)
(log t)

k
.

In particular, when 0 < α < 1, Iα1 [Dα
1 x] (t) = x(t)− x(1).
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Theorem 1 (Banach’s fixed point theorem [17]). Let Ω be a non-empty closed
subset of a Banach space (S, ∥.∥), then any contraction mapping Φ of Ω into itself
has a unique fixed point.

Theorem 2 (Schaefer’s fixed point theorem [17]). Let S be a Banach space, and
Φ : S → S completely continuous operator. If the set E = {x ∈ S : x = λΦx, for
some λ ∈ (0, 1)} is bounded, then N has fixed points.

3. Main results

Let us start by defining what we mean by a solution of the problem (1)-(2).

Definition 3. A function x ∈ C ([1, T ] ,R) is said to be a mild solution of the
problem (1)-(2) if x satisfies the corresponding integral equation of (1)-(2).

For the existence of solutions for the problem (1)-(2), we need the following
auxiliary lemma.

Lemma 2. Let ∆ = 2− b log (T ), x ∈ C ([1, T ] ,R) and x′ exists. If x is a solution
of the boundary value problem (1)-(2), then x is a solution of the integral equation

x(t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

f (s, x (s))
ds

s

+
b

∆Γ(α)

∫ T

1

(∫ s

1

(
log

s

σ

)α−1

f (σ, x (σ))
dσ

σ

)
ds

s

− 1

∆Γ (α)

∫ T

1

(
log

T

s

)α−1

f (s, x (s))
ds

s
, (3)

for t ∈ [1, T ].

Proof. Suppose x satisfies the problem (1)-(2). Then, by applying Iα1 to both sides
of (1), we have

Iα1 (Dα
1x (t)) = Iα1 (f (t, u (t))) .

In view of Lemma 1, we get

x (t) = x (1) + Iα1 (f (t, u (t))) . (4)

The condition (2) implies that

2x (1) +
1

Γ (α)

∫ T

1

(
log

T

s

)α−1

f (s, x (s))
ds

s

= b log (T )x (1) +
b

Γ (α)

∫ T

1

(∫ s

1

(
log

s

σ

)α−1

f (σ, x (σ))
dσ

σ

)
ds

s
,

so

x (1) =
b

∆Γ(α)

∫ T

1

(∫ s

1

(
log

s

σ

)α−1

f (σ, x (σ))
dσ

σ

)
ds

s

− 1

∆Γ (α)

∫ T

1

(
log

T

s

)α−1

f (s, x (s))
ds

s
. (5)

Substituting (5) in (4) we get the integral equation (3). The proof is completed. �
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Now, we transform the integral equation (3) to be applicable to fixed point
theorems, we define the operator Φ : C ([1, T ],R) → C ([1, T ],R) by

(Φx) (t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

f (s, x (s))
ds

s

+
b

∆Γ(α)

∫ T

1

(∫ s

1

(
log

s

σ

)α−1

f (σ, x (σ))
dσ

σ

)
ds

s

− 1

∆Γ (α)

∫ T

1

(
log

T

s

)α−1

f (s, x (s))
ds

s
.

Where figured fixed point must satisfy the identity operator equation Φu = u.
In the following subsections we prove existence, as well as existence and unique-

ness results, for the boundary value problem (1)-(2) by using a variety of fixed point
theorems.

3.1. Existence and uniqueness results via Banach’s fixed point theorem.

Theorem 3. Assume the following hypothesis
(H1) There exists a constant k > 0 such that

|f (t, x)− f (t, y)| ≤ k |x− y| ,

for t ∈ [1, T ] and x, y ∈ R.
If

k (log T )
α

Γ (α+ 1)
+

k |b| (log T )α+1

∆Γ(α+ 2)
+

k (log T )
α

∆Γ(α+ 1)
< 1, (6)

then the boundary value problem (1)-(2) has a unique mild solution in [1, T ].

Proof. Let Φ defined by (3). Clearly, the fixed points of operator Φ are mild
solutions of the problem (1)-(2). Let x, y ∈ C ([1, T ],R). Then for t ∈ [1, T ], we
have

|(Φx) (t)− (Φy) (t)|

≤ 1

Γ (α)

∫ t

1

(
log

t

s

)α−1

|f (s, x (s))− f(t, y (s))| ds
s

+
|b|

∆Γ(α)

∫ T

1

(∫ s

1

(
log

s

σ

)α−1

|f (σ, x (σ))− f(t, y (s))| dσ
σ

)
ds

s

+
1

∆Γ (α)

∫ T

1

(
log

T

s

)α−1

|f (s, x (s))− f(t, y (s))| ds
s

≤ k (log t)
α

Γ (α+ 1)
∥x− y∥+ k |b| (log T )α+1

∆Γ(α+ 2)
∥x− y∥+ k (log T )

α

∆Γ(α+ 1)
∥x− y∥

≤

(
k (log T )

α

Γ (α+ 1)
+

k |b| (log T )α+1

∆Γ(α+ 2)
+

k (log T )
α

∆Γ(α+ 1)

)
∥x− y∥ .

Therefore

∥Φx− Φy∥ ≤

(
k (log T )

α

Γ (α+ 1)
+

k |b| (log T )α+1

∆Γ(α+ 2)
+

k (log T )
α

∆Γ(α+ 1)

)
∥x− y∥ .
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From (6), Φ is a contraction. As a consequence of Banach’s fixed point theorem,
we get that Φ has a unique fixed point which is the unique mild solution of the
problem (1)-(2). �

3.2. Existence results via Schaefer’s fixed point theorem.

Theorem 4. Assume the following hypothesis
(H2) There exists a constant M > 0 such that

|f (t, x)| ≤ M,

for t ∈ [1, T ] and each x ∈ R.
Then the boundary value problem (1)-(2) has at least one mild solution in [1, T ].

Proof. We shall use Schaefer’s fixed point theorem to prove that Φ defined by (3)
has a fixed point. The proof will be given in several steps.

Step 1. The continuity of f implies the continuity of the operator Φ defined by
(3).

Step 2. Φ maps bounded sets into bounded sets in C ([1, T ] ,R).
Indeed, it is enough to show that for any η > 0, there exists a positive constant

l such that for each x ∈ Bη = {x ∈ C ([1, T ] ,R) : ∥x∥ ≤ η}, we have ∥Φx∥ ≤ l. In
fact, we have

|(Φx) (t)| ≤ 1

Γ (α)

∫ t

1

(
log

t

s

)α−1

|f (s, x (s))| ds
s

+
|b|

∆Γ(α)

∫ T

1

(∫ s

1

(
log

s

σ

)α−1

|f (σ, x (σ))| dσ
σ

)
ds

s

+
1

∆Γ (α)

∫ T

1

(
log

T

s

)α−1

|f (s, x (s))| ds
s

≤ M

Γ (α+ 1)
(log t)

α
+

M |b|
∆Γ(α+ 2)

(log T )
α+1

+
M

∆Γ(α+ 1)
(log T )

α

≤
(
∆+

|b| log T
α+ 1

+ 1

)
M

∆Γ(α+ 1)
(log T )

α
.

Thus

∥Φx∥ ≤
(
(∆ + 1) (α+ 1) + |b| log T

α+ 1

)
M

∆Γ(α+ 1)
(log T )

α
= l.

Step 3. Φ maps bounded sets into equicontinuous sets of C ([1, T ] ,R).
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Let t1, t2 ∈ [1, T ] with t1 < t2, Bη be a bounded set of C ([1, T ] ,R) as in Step 2,
and let x ∈ Bη. Then

|(Φx) (t2)− (Φx) (t1)|

≤

∣∣∣∣∣ 1

Γ(α)

∫ t2

1

(
log

t2
s

)α−1

f (s, x (s))
ds

s
− 1

Γ(α)

∫ t1

1

(
log

t1
s

)α−1

f (s, x (s))
ds

s

∣∣∣∣∣
≤ 1

Γ(α)

∫ t1

1

∣∣∣∣∣
(
log

t2
s

)α−1

−
(
log

t1
s

)α−1
∣∣∣∣∣ |f (s, x (s))| ds

s

+
1

Γ(α)

∫ t2

t1

(
log

t2
s

)α−1

|f (s, x (s))| ds
s

≤ M

Γ(α)

∫ t1

1

((
log

t1
s

)α−1

−
(
log

t2
s

)α−1
)

ds

s
+

M

Γ(α)

∫ t2

t1

(
log

t2
s

)α−1
ds

s

≤ M

Γ(α+ 1)

(
(log t1)

α
+

(
log

t2
t1

)α

− (log t2)
α
+

(
log

t2
t1

)α)
≤ 2M

Γ(α+ 1)

(
log

t2
t1

)α

.

As t1 → t2, the right-hand side of the above inequality tends to zero and the
convergence is independent of x in Bη. As consequence of Step 1 to Step 3, together
with the Arzela-Ascoli theorem, we can conclude that Φ is completely continuous.

Step 4. Apriori bounds.
Now it remains to show that the set

E = {x ∈ C ([1, T ] ,R) : x = λΦx for some 0 < λ < 1} ,

is bounded. Let x ∈ E, then x = λΦx for some 0 < λ < 1. Thus, for each t ∈ [1, T ]
we have

x (t) = λ

[
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

f (s, x (s))
ds

s

+
b

∆Γ(α)

∫ T

1

(∫ s

1

(
log

s

σ

)α−1

f (σ, x (σ))
dσ

σ

)
ds

s

− 1

∆Γ (α)

∫ T

1

(
log

T

s

)α−1

f (s, x (s))
ds

s

]
.
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For λ ∈ (0, 1), we have

|(Φx) (t)| ≤ 1

Γ (α)

∫ t

1

(
log

t

s

)α−1

|f (s, x (s))| ds
s

+
|b|

∆Γ(α)

∫ T

1

(∫ s

1

(
log

s

σ

)α−1

|f (σ, x (σ))| dσ
σ

)
ds

s

+
1

∆Γ (α)

∫ T

1

(
log

T

s

)α−1

|f (s, x (s))| ds
s

≤ M

Γ (α+ 1)
(log t)

α
+

M |b|
∆Γ(α+ 2)

(log T )
α+1

+
M

∆Γ(α+ 1)
(log T )

α

≤
(
∆+

|b| log T
α+ 1

+ 1

)
M

∆Γ(α+ 1)
(log T )

α
= R.

Thus

∥Φx∥ ≤
(
(∆ + 1) (α+ 1) + |b| log T

α+ 1

)
M

∆Γ(α+ 1)
(log T )

α
= R.

This implies that the set E is bounded. As a consequence of Schaefer’s fixed point
theorem, we deduce that Φ has a fixed point which is a mild solution of the problem
(1)-(2). �

4. Examples

In this section, we present some examples to illustrate our results of the previous
section.

Example 1. We consider the fractional boundary value problem

D
1
2x (t) =

sin (x (t))

5t
, t ∈ [1, e] , (7)

x (1) + x (e) =

∫ e

1

x (s)
ds

s
, (8)

where α = 1
2 , T = e, b = 1 and f (t, x) = sin(x)

5t . For any x, y ∈ R and t ∈ [1, e], we
have

|f (t, x)− f (t, y)| ≤ 1

5
|x− y| .

Therefore, the condition k(log T )α

Γ(α+1) + k|b|(log T )α+1

∆Γ(α+2) + k(log T )α

∆Γ(α+1) < 1 holds with k = 1
5

and ∆ = 1. Indeed, 2

5Γ( 1
2+1)

+ 1

5Γ( 1
2+2)

≃ 0.60 < 1. By Theorem 3, the problem

(7)-(8) has a unique mild solution in [1, e].

Example 2. We consider the fractional boundary value problem

D
1
2x (t) =

cos (x (t))

2 exp (−t)
, t ∈ [1, e] , (9)

x (1) + x (e) =
1

2

∫ e

1

x (s)
ds

s
, (10)

where α = 1
2 , T = e, b = 1

2 , ∆ = 3
2 and f (t, x) = cos(x)

2 exp(−t) . We have

|f (t, x)| ≤ |cos (x)|
2 exp (−t)

≤ 1

2e−e
.
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Choosing M = 1
2e−e , then by Theorem 4, the problem (9)-(10) has a mild solution

in [1, e].
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