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A MODIFIED BAZILEVIC FUNCTION ASSOCIATED WITH A

SPECIAL CLASS OF ANALYTIC FUNCTIONS Uα,n IN THEN

OPEN UNIT DISK

J. O. HAMZATN AND A. T. OLADIPO

Abstract. In this work, we investigate some properties of a modified Bazile-

vic function Fα,n as related to a special class of analytic functions Uα,n sat-
isfying the condition |UFα,n (z)| < 1, |z| < 1. in the open unit disk E. In
particular, some fundamental properties such as, characterization properties,
sufficient coefficient condition, radius problems, convolution properties as well

as application of fractional calculus, for functions Fα,n in the class Uα,n(z)
associated with modified Bazilevic function are considered.

1. Introduction

As usual we denote by A the class of all functions f of the form

f(z) = z +
∞∑
k=2

akz
k (1)

which are analytic in the open unit disk E = {z : |z| < 1}, with normalization
f(0) = f ′(0) − 1 = 0. Also we denote the subclass of A consisting of analytic
and univalent functions f(z) in the unit disk E by S. Here we shall recall some
well-known functions and concepts of analytic functions. Let f ∈ A, then f ∈ S∗ if
and only if

ℜ
{
zf ′(z)

f(z)

}
> β, z ∈ E. (2)

This class is called the class of starlike functions of order β. In like manner, let
f ∈ A, then, f ∈ K if and only if

ℜ
{
1 +

zf ′(z)

f(z)

}
> β, z ∈ E. (3)

This class is called the class of convex functions of order β. The above two classes
have been widely studied and investigated by various authors and their results have
appeared in prints, see ([9]), ([10]), ([12]), ([29]) and ([30]) just to mention but few.
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Now, research on various families of Bazilevic functions has a long history and will
continue to play a crucial role geometric function theory. However, the study of the
Bazilevic function commenced around 1955 by a Russian Mathematician Bazilevic
([5]), who defined a function f(z) (say) in E as

f(z) =

{
α

1 + ε2

∫ z

0

p(v)− iε

V

(
1+ iαε

(1+ε2)

) g(v) α
1+ε2 dv

} 1+iε
α

(4)

where p ∈ P , α > 0 and g ∈ Ψ∗. The family of this functions f(z) defined in
(4) became known as Bazilevic functions and is usually, denoted by B(α, ε). Then,
very little is known about the said family in (4), except that, he Bazilevic showed
that each function f ∈ B(α, ε) is univalent in E. By simplifying (4) it is quite
possible to understand and investigate the family better. It should be noted that
with special choices of parameters α, ε and the function g(z), the family B(α, ε)
reduces to some well-known subclasses of univalent functions defined and studied
by different authors, see ([3]), ([4]), ([19]), ([20]), ([23]) and ([31]) among others.
For instance, if we let ε = 0 then equation (4) immediately yields

f(z) =

{
α

∫ z

0

p(v)

V
g(v)αdv

} 1
α

. (5)

By differentiating equation (5) we have

z f ′(z) f(z)α−1

g(z)α
= p(z), z ∈ E (6)

or equivalently

ℜe
{
z f ′(z) f(z)α−1

g(z)α

}
> 0, z ∈ E (7)

The subclass of Bazilevic functions satisfying equation (6) are called Bazilevic func-
tions of type α and are denoted by B(α) ([36]). In 1973, Noonan ([22]) gave a plau-
sible description of functions of the class B(α) as those functions in Ψ for which
each r > 1, and the tangent to the curve Uα(r) =

{
εf(reiθ)α, 0 ≤ θ < 2π

}
never

turns back on itself as much as π radian. If α = 1, the class B(α) reduces to the
family of close-to-convex functions; that is,

ℜe
{
zf ′(z)

g(z)

}
> 0 z ∈ E. (8)

If we decide to choose g(z) = f(z) in inequality (4), we have

ℜe
{
zf ′(z)

f(z)

}
> 0 z ∈ E, (9)

which implies that f(z) is starlike. Furthermore, if one replace f(z) byzf ′(z), then

ℜe
{
1 +

zf ′′(z)

f ′(z)

}
> 0 z ∈ E,

which shows that f(z) is convex. Moreover, if g(z) = z in inequality (7), then the
family B1(α) (see [36] ) of functions satisfying

ℜe
{
z f ′(z) f(z)α−1

zα

}
> 0, z ∈ E. (10)
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is obtained. Several subfamilies of Bazilevic functions have been studied repeatedly
by different authors and their results authenticated diversely in literatures, see
([6]). In 1992, Abdulhalim ([1]) introduced a generalization of functions satisfying
inequality (10) as

ℜe
{
Dnf(z)α

zα

}
> 0, z ∈ E (11)

where the parameter α and the operator Dn is the famous Salagean derivative
operator ([35]) defined below. He denoted this class of functions by Bn(α). It
is easily seen that his generalization has extraneously included analytic functions
satisfying

ℜe
{
f(z)α

zα

}
> 0, z ∈ E (12)

which largely non-univalent in the unit disk (cf. ([31])). Abdulhalim ([1]) was able
to show that for all n ∈ N , each function of the class Bn(α) is univalent in E. Now
in 1983, Sălăgean ([35]) introduced the following differential operator:

D0f(z) = f(z)
D1f(z) = D(D0f(z)) = z f ′(z)
Dnf(z) = D(Dn−1f(z)) = z(Dn−1f(z))′.

(13)

Also in 2017, Darus and Owa ([8]) introduced and studied a fractional analytic
function gα(z)

gα(z) =
z

1− zα
= z +

∞∑
k=1

zα+k (z ∈ E) (14)

for some real α (0 < α ≤ 2) in the open unit disk. See also ([7]), ([14]-[18]) and ([37])
for more details on fractional analytic functions. However, for the sake of present
investigation, we shall consider the fractional analytic function f(z)α which has the
form

g(z)α =
zα

1− z
= zα +

∞∑
k=2

zα+k−1 (z ∈ E) (15)

for some real α (α > 0) in the open unit disk.
The Hadamard product or convolution of two functions f, g ∈ A is denoted by f ∗g
and is defined as follows:

(f ∗ g)(z) = z +

∞∑
k=2

akbkz
k = (g ∗ f)(z),

where f(z) is as defined in (1) and g(z) is given by

g(z) = z +
∞∑
k=2

bkz
k.

In view of (1) and (15), a new class, Wα,n, of fractional analytic function is derived
in E such that

f(z)α = f(z) ∗ g(z)α = zα +
∞∑
k=2

akz
α+k−1 (z ∈ E) (16)
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for some real α (α > 0) in the open unit disk.
From (13) and (16), we obtain the following differential operator

Dnf(z)α = αnzα +
∞∑
k=2

(α+ k − 1)nakz
α+k−1. (17)

From (17), we observe that

ℜe
{
Dnf(z)α

αnzα

}
> β, (0 ≤ β < 1) z ∈ E. (18)

Incidentally, (18) coincides with the special class of analytic function (Bazilevic)
denoted by Tα

n (β) studied by different authors (see ([14]-[15]), ([30]-[31]), ([32]) and
([36]) among others) . Here, we define a modified Bazilevic function Fα, n(z) ∈ Tα

n

such that

Fα, n(z) = z

(
1 +

∞∑
k=2

αn, kakz
k−1

)
(19)

where

αn. k =

(
α+ k − 1

α

)n

Interestingly, (19) coincides with (1) if we set α = 1 and n = 0. This work concerns
mainly with the study of the class Uα,n of all functions Fα,n ∈ Tα

n satisfying the
inequality

|UFα,n
(z)| < 1, z ∈ E, (20)

where

UFα,n(z) =
( z

Fα,n(z)

)2
F ′
α,n(z)− 1

is associated with the class of modified Bazilevic functions Tn
α .

Although, several authors have examined the special class U , of analytic function
f(z) defined in (1), satisfying the geometric condition:∣∣Uf (z)

∣∣ = ∣∣∣( z

f(z)

)2
f ′(z)− 1

∣∣∣ < 1, z ∈ E,

(see [26], [34] among others), the main object of the present work is to investigate
some basic properties of the new class UFα,n(z) satisfying the inequality (20). It is
known that each functions in Uf (z) belongs to S, and each function in

Sz =

{
z,

z

1± z
,

z

(1± z)2
,

z

1± z2
,

z

1± z + z2

}
belong to U . Also, the functions Sz are only function in S having integral coefficients
in the power series expansions of f ∈ S. We remark here that the functions in Sz

are extremal for certain geometric subclasses of S, ( see [2], [11], [24], [25], [26],
[27], [28], [33] and [34] among others).
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2. Some properties of class Uα,n

The first theorem given below is the characterisation property for Uα,n.
Theorem 2.1. Every Fα,n ∈ Uα,n has the representation

z

Fα,n(z)
= 1− αn,2a2(α)z − z

∫ z

0

ω(t)

t2
dt, a2(α) = a2(Fα,n) =

F ′′
α,n(0)

2αn,2
,

where αn,2 =
(
α+1
α

)n
, ω ∈ B1, the class of analytic functions in the unit disk E

such that ω(0) = ω′(0) = 0 and |ω(z)| < 1 for z ∈ E.
Proof. Suppose that Fα, n(z) = z +

∑∞
k=2 αn, kakz

k in Uα,n. Then we have that

F (z)
z ̸= 0 and

(
z

F (z)

)2
F ′(z) = 1 +

(
αn,3a3 − α2

n,2a
2
2

)
z2 + ..., z ∈ E where

α2
n,2 =

(
α+1
α

)2n
and αn,3 =

(
α+2
α

)n
.

This may be written as

z

Fα,n(z)
− z

(
z

Fα,n(z)

)′

=

(
z

Fα,n(z)

)2

F ′
α,n(z) = 1 + ω(z), z ∈ E (21)

where ω(z) =
(
αn,3 a3 − α2

n,2 a
2
2

)
z2+ ... and with ω ∈ B1. Also, by Schwarz lemma,

|ω(z)| ≤ |z|2, z ∈ E. Obviously,(
1

Fα,n(z)
− 1

z

)′

= −ω(z)

z2
.

Since (
1

F (z)
− 1

z

∣∣∣∣
z=0

= −αn,2a2 ,

then by simple integration

1

F (z)
− 1

z
= −αn,2a2 −

∫ z

0

ω(t)

t2
dt

and thus the desired representation follows.
This representation together with many others that follow from it led to a number
of recent investigations (see ([24]-([27])) and ([33]) for more details).

However, because ω ∈ B1, Schwarz lemma give |ω(z)| ≤ |z|2. Consequently,∣∣∣∣ z

F (z)
+ αn,2a2z − 1

∣∣∣∣ ≤ |w(z)| = |z|2 , z ∈ E. (22)

It was observed that if z is fixed (0 ≤ |z| < 1), then this inequality determines the
range of the functional

z

Fα,n(z)
+ (αn,2a2 − 1)z

in the class Uα,n. Particularly, if a2 = 0 then by a simple computation, (22) yields∣∣∣∣Fα,n(z)

z
− 1

1− |z|4

∣∣∣∣ ≤ |z|2

1− |z|4
, z ∈ E. (23)

So that for every Fα,n ∈ Uα,n with F ′′
α,n(0) = 0,

|z|
1 + |z|2

≤ |Fα,n(z)| ≤
|z|

1− |z|2
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and

ℜ
(
Fα,n(z)

z

)
≥ 1

1 + |z|2
>

1

2
, z ∈ D. (24)

Corollary 2.2. LetFα,n ∈ Uα,n. Then

(1)
∣∣∣ z
Fα,n(z)

− 1
∣∣∣ ≤ |z| (αα,2 |a2|+ |z|), z ∈ D.

(2) ℜ
(

Fα,n(z)
z

)
> 1

2 in D if F ′′
α,n(0) = 0.

Remark 2.1. It can easily be shown that if F (z) = f(z)
1+z ∈ U , then

(i)
∣∣∣ z
F (z) − 1

∣∣∣ ≤ |z|
(
|a2 − 1|+ |z|

)
, z ∈ E.

(ii) ℜ
(

F (z)
z

)
> 1/3 in E if F ′′(0) = 0.

Here, we note that one of the sufficient conditions for function Fα,n of the form
(19) to be in S∗ is that

∑∞
k=2 αn,kk|ak(α)| ≤ 1. However, the coefficient condition

is also sufficient for Fα,n to belong to H, where H denote the class of normalized
analytic function Fα,n satisfying the condition∣∣F ′

α,n(z)− 1
∣∣ < 1 in E.

Theorem 2.3. Suppose that Fα, n(z) = z+
∑∞

k=2 αn, kakz
k such that

∑∞
k=2 αn,k k |ak(α)| ≤

1, then, Fα,n ∈ Uα,n, where αn,k =
(
α+k−1

α

)n
. The result is sharp.

Proof. Following the assumption that
∑∞

k=2 αn,kk|ak| ≤ 1, then∣∣∣∣∣F ′
α,n(z)−

(
Fα,n(z)

z

)2
∣∣∣∣∣ =

∣∣∣∣∣∣1 +
∞∑
k=2

kαn,kakz
k−1 −

(
1 +

∞∑
k=2

αn,kakz
k−1

)2
∣∣∣∣∣∣

=

∣∣∣∣∣∣
∞∑
k=2

αn,k(k − 2) akz
k−1 −

( ∞∑
k=2

αn,kakz
k−1

)2
∣∣∣∣∣∣

= |z|2
∣∣∣∣∣∣
∞∑
k=2

αn,k(k − 2) akz
k−3 −

( ∞∑
k=2

αn,kak(α)z
k−2

)2
∣∣∣∣∣∣ .

Therefore,∣∣∣∣F ′
α,n(z)−

(
Fα,n(z)

z

)2∣∣∣∣ <∑∞
k=2 αn,k (k − 2) |ak| − (

∑∞
k=2 αn,k |ak|)

2

≤ 1− 2
∑∞

k=2 αn,k |ak|+ (
∑∞

k=2 αn,k |ak|)
2

≤ (1−
∑∞

k=2 αn,k |ak|)
2

≤
∣∣∣Fα,n(z)

z

∣∣∣2 .

That is ∣∣∣∣∣F ′
α,n(z)−

(
Fα,n(z)

z

)2
∣∣∣∣∣ ≤

∣∣∣∣Fα,n(z)

z

∣∣∣∣2
from which it is obvious that Fα,n ∈ Uα,n. The result is sharp.
To show that the constant 1 in the coefficient estimate cannot be replaced by a
larger number, for instance, 1 + δ (δ > 0), we consider the function

Fα,n(z) = z +
1 + δ

k
zk, (k ≥ 2).
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It is observed that F ′
α,n(z) = 1+(1+δ)zk−1 has a Zero in E since δ > 0. Therefore,

the result is the best possible.

3. Special Form of Functions in Class Uα,n

Our prime focus in this section is to investigate the analytic function Fα,n(z) in
E having the form

Fα,n =
z

1 +
∑∞

k=1 αn,kckzk
(25)

where

αn,k =
(α+ k − 1

α

)n
.

We shall remark here that if Fα,n ∈ S then z
Fα,n(z)

is non-vanishing in the unit

disk E and hence, can be represented as Taylor’s series of the form (25) which is
convenient for our investigation. Now, we recall that if Fα,n ∈ S and has the above
form, then from the well-known Area Theorem (see ([12]) and ([28])) we have that

∞∑
k=2

(
k − 1

)
α2
n,k

∣∣ck∣∣2 ≤ 1. (26)

But that condition is not sufficient for the univalence of the analytic function Fα,n of
the form (25) (see Theorem 3.3 below). In the next theorem, we present a sufficient
condition for the univalence in terms of the coefficients ak of analytic function Fα,n

of the form (25).
Theorem 3.1. Let Fα,n ∈ Tα

n have the form (25), if

∞∑
k=2

(
k − 1

)
αn,k

∣∣ck∣∣ ≤ 1

αn,k =
(α+ k − 1

α

)n
then Fα,n ∈ Uα,n and the constant 1 is the best possible in a sense: if

∞∑
k=2

(
k − 1

)
αn,k

∣∣ck∣∣ = (1 + α

α

)n(
1 +

√
δ
)

for some δ > 0, α > 0 and n ∈ N0, then there exists an Fα,n such that Fα,n is not
univalent in E.
Proof. For the first part of the statements, we have∣∣∣UFα,n(z)

∣∣∣ = ∣∣∣∣− z
( z

Fα,n(z)

)′
+

z

Fα,n(z)
− 1

∣∣∣∣ = ∣∣∣− ∞∑
k=2

(
k − 1

)
αn,kakz

k−1
∣∣∣

≤
∞∑
k=2

(
k − 1

)
αn,k

∣∣ak∣∣ ≤ 1.

To show that the theorem is sharp, we consider the function Fα,n(z) = z − mz2

where m =

√
1+

√
δ

1+
√

1+
√
δ
, δ > 0, so that 1/2 < m < 1.

Then, we have

z

Fα,n(z)
=

1

1−mz
= 1 +

∞∑
k=1

mkzk.
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Also, we can say that
∞∑
k=2

(
k − 1

)
αn,k|ck| =

∞∑
k=2

(
k − 1

)
αn,km

k = αn,k

( m

m− 1

)2
= αn,2

(
1 +

√
δ
)
.

Now, it is observed that F ′
α,n(z) = 1 − 2mz, therefore, F ′

α,n(1/2m) = 0 proving
that Fα,n is not univalent in the unit disk E. The coefficient condition of Theorem
3.1 is only a sufficient condition for Fα,n to be in the class Uα,n. In fact, it is not
too difficult to see that the condition of Theorem 3.1 is not a necessary condition
for the corresponding function to be in that class.
Theorem 3.2. Let Fα,n ∈ Uα,n have the form (25). Then

∞∑
k=2

(
k − 1

)2
α2
n,k|ck|2 ≤ 1 (27)

In particular, we have |c1| ≤ 2 and |ck| ≤ 1
(k−1)αn,k

for k ≥ 2 and αn,k is as earlier

defined. The result is sharp.
Proof. Recall that Fα,n ∈ Uα,n if and only if∣∣∣UFα,n(z)

∣∣∣ = ∣∣∣∣ z

Fα,n(z)
− z
( z

Fα,n

)′
− 1

∣∣∣∣ = ∣∣∣ ∞∑
k=2

(
k − 1

)
αn,kckz

k
∣∣∣.

We note that gα,n(z) =
∑∞

k=3

(
k − 2

)
αn,kakz

k−1 is analytic in E and therefore,

with z = reiθ, we have
∞∑
k=2

(
k − 1

)2
α2
n,k|ck|2r2(k) =

1

2π

∫ 2π

0

∣∣g(reiθ)∣∣2dθ < 1

so that, as r → 1−, we obtain the desired inequality. Because c1 = −F ′′
α,n(0)

2αn,2

and the Bieberbach inequality gives |c1| ≤ 2 and the fact that the Koebe function
k(z) = z

(1−z)2 , (α > 0) belong to Uα,n shows that the result is best possible.

Further, the inequality (27) implies that for k ≥ 2 we have |ck| ≤ 1
(k−1)αn,k

.

It is observed that the necessary coefficient condition of Theorem 3.2 for the class
Uα,n is stronger than that for the class S, namely the inequality (26).
Theorem 3.3. Let Fα,n ∈ Tα

n and have the form (25) satisfying the condition

∞∑
k=2

(
k − 1

)
α2
n,k|ck|2 ≤ 1.

Then, Fα,n is univalent in the disk |z| < 1√
2
and the result is the best possible.

Proof. Consider the function gα,n(z) =
1
rFα,n(rz) where 0 < r ≤ 1. Then

z

gα,n(z)
= 1 +

∞∑
k=1

αn,kckr
k.

Because
∞∑
k=2

(
k − 1

)
αn,k|ck|rk =

∞∑
k=2

√(
k − 1

)
αn,k|ck|

√(
k − 1

)
rk

≤
( ∞∑

k=2

(
k − 1

)
α2
n,k|ck|2

)1/2( ∞∑
k=2

(
k − 1

)
r2(k)

)1/2
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=
r2

1− r2
≤ 1

for 0 < r ≤ 1/
√
2, it follows easily that gα is in the class Uα,n. In particular Fα,n

is univalent in the disk |z| < 1/
√
2.

For the function Fα,n,0(z) = z − 1√
2
z2, we have

z

Fα,n,0(z)
=

1

1− 1√
2
z2

= 1 +

∞∑
k=1

( 1√
2

)k
zk

and
∞∑
k=2

(
k − 1

)
α2
n,k|ck|2 =

∞∑
k=2

(
k − 1

)
α2
n,k(1/2)

k = 1

Otherwise, ℜF ′
α,n,0(z) = ℜ

(
1−

√
2z
)
> 0 for |z| < 1√

2
and F ′

α,n,0(1/
√
2).

Theorem 3.4. Let Fα,n ∈ Tα
n and have the form (25) satisfying the condition

∞∑
k=2

(
k − 1

)2
α2
n,k|ck|2 ≤ 1.

Then Fα,n is univalent in the disk |z| <
√√

5−1
2 and the result is best possible.

Proof. As in the proof of the theorem just concluded. It suffices to see that

∞∑
k=2

(
k − 1

)
αn,k|ck|rk ≤

( ∞∑
k=2

(
k − 1

)2
α2
n,k|ck|2

)1/2( ∞∑
k=2

r2k
)1/2

=
r2√
1− r2

≤ 1,

where r4 + r2 − 1 ≤ 0, that is if 0 < r ≤ r0 =

√√
5−1
2 ≈ 0.78615. It means that the

function gα,n defined as gα,n(z) =
1
rFα,n(rz) is in the class Uα,n and hence Fα,n(z)

is univalent in the disk |z| < r0 =

√√
5−1
2 ≈ 0.78615. Now, for function Fα,n,0(z)

defined as

z

Fα,n,0(z)
= 1 +

∞∑
k=2

rk

(k − 1)αn,k
zk = 1− r0z

(αn,k)2
log
(
1− r0z

αn,k

)
where αk

n = αn,k, i.e. α
2
n = αn,2 , α3

n = αn,3 etc., then we have that ℜ(Fα,n,0(z)) >
0 in E. so that Fα,n ∈ A and

∞∑
k=3

(k − 2)2(αn,k)
2|ak|2 =

∞∑
k=3

(k − 2)2(αn,k)
2 r2(k−1)

(k − 2)2(αn,k)2
= 1.

On the other hand side for |z| < r0 we find that∣∣∣( z

Fα,n,0(z)
)2F ′

α,n,0(z)− 1
∣∣∣ = ∣∣∣− r20z

2

α4
n − α3

nr0z

∣∣∣ < r40
α4
n − α3

nr
2
0

= 1,

while for r0 ≤ z = r < 1:∣∣∣( z

Fα,n,0(z)
)2F ′

α,n,0(z)− 1
∣∣∣
z=r

=
r4

α4
n − α3

nr
2
≥ 1.
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It means that gα,n,0(z) = 1
rFα,n,0(rz) is in the class Uα,n for r ≤ r0, but not in

a larger value of r, and hence, Fα,n is univalent in the disk |z| < r0, but not in a
larger disk. Furthermore, a simple computation yields

F ′
α,n,0(z) =

1− r0z
αn

− r20z
2

α3
n(

1− r0z
αn

)[
1− r0z

α2
n
log
(
1− r0z

αn

)]2
and therefore, F ′

α,n,0(r0) = 0. Thus, Fα,n cannot be univalent in any disk larger
than the disk |z| < r0.

4. Further Properties of Functions in Uα,n

Theorem 4.1. Let Fα,n ∈ Tα
n of the form (25) with ck ≥ 0 and for all k ≥ 2.

Then we have the following equivalence:
(a)Fα,n ∈ S

(b)
Fα,n(z)F

′
α,n(z)

z ̸= 0 for z ∈ E
(c)
∑∞

k=2 αn,kck ≤ 1
(d)Fα,n ∈ Uα,n.

where αn,k = (α+k−1
α )n and z ∈ E.

Proof. (a) ⇒ (b): Let Fα,n ∈ Uα,n be of the form (25) with ak ≥ 0 for all k ≥ 2.
Then,

F ′
α,n(z) ̸= 0 and

Fα,n(z)

z
̸= 0 in E.

(b) ⇒ (c): From the representation of Fα,n and (21) we see that for z ∈ E,( rz

Fα,n(rz)

)2
F ′
α,n(rz) = 1−

∞∑
k=2

(k − 1)αn,kckr
kzk, αn,k =

(α+ k − 1

α

)n
from which as z

Fα,n(z)
̸= 0, it follows that F ′

α,n(rz) ̸= 0 is equivalence to

1−
∞∑
k=2

(k − 1)αn,kckr
kzk ̸= 0.

We claim that
∞∑
k=2

(k − 1)αn,kck ≤ 1.

Suppose on the contrary that
∞∑
k=2

(k − 1)αn,kck > 1.

Then, on the other hand, their exists a positive integer m such that
∞∑
k=2

(k − 1)αn,kck > 1

and so there exists an r0 with 0 < r0 < 1 and
m∑

k=2

(k − 1)αn,kckr
k
0 > 1.
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On the other hand, as ak ≥ 0 for k ≥ 2, we have that( r0
Fα,n(r0)

)2
F ′
α,n(r0) = 1−

∞∑
k=2

(k − 1)αn,kakr
k
0 ≤ 1−

m∑
k=2

(k − 1)αn,kakr
k
0 < 0

and since F ′
α,n(r) is a continuous function of r with F ′

α,n(0) = 1 and F ′
α,n(r) < 0,

there exists an r1(0 < r1 < r0 < 1) such that F ′
α,n(r) = 0. This is a contradiction.

Consequently, we must have
∞∑
k=2

(k − 1)αn,kck ≤ 1.

(c) ⇒ (d): Suppose that
∑∞

k=2(k− 1)αn,kck ≤ 1. Then, by Theorem 3.1, it follows
that Fα,n ∈ Uα,n.

(d) ⇒ (a): Uα,n ∈ S.
Finally, we consider the radius property of univalent functions as well as the con-
volution property with Uα,n. We noted that if for every Fα,n ∈ S the function
1
rFα,n(rz) for 0 < r ≤ r0, and r0 is the largest number for which this holds, then
we say that r0 is the Uα,n radius (or the radius of Uα,n-property) in the class S. In
this case, we may conveniently write r0 = ruα,n(S).
Theorem 4.2.

ruα,n(S) =
1√
2
.

Proof. Let Fα,n ∈ S. Then every such an Fα,n has the form

z

Fα,n(z)
= 1 +

∞∑
k=1

αn,kckz
k.

Then by (26) we obtain
∞∑
k=2

(k − 1)α2
n,k|ck|2 ≤ 1.

The desired conclusion clearly follows from theorem 3.3. Moreover, to see that the
number 1√

2
is the best possible, we consider the function

Fα,n(z) =
z(1− 1√

2
z)

1− z2
.

If we put z = ρeiθ ∈ E, then

ℜ
(
(1− z2)F ′

α,n(z)
)
=

(1− ρ2)
(
1 + ρ2 −

√
2ρcosθ

)∣∣1− ρ2ei2θ
∣∣ > 0

for 0 ≤ ρ < 1. Thus, Fα,n is close-to-convex in E and therefore, Fα,n ∈ S.
Next, we note that ∣∣∣∣( z

Fα,n(z)

)2
F ′
α,n(z)− 1

∣∣∣∣ = ∣∣∣ z√
2− z

∣∣∣2
is less than 1 for |z| < 1√

2
, equal to 1 for |z| = 1√

2
and bigger than 1 for 1√

2
< z =

r < 1. The sharpness part follows.
Theorem 4.3. Let Fα,n, Gα,n ∈ S with the representations

z

Fα,n(z)
= 1 +

∞∑
k=1

αn,kakz
k,

z

Gα,n(z)
= 1 +

∞∑
k=1

αn,kbkz
k.
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If

Φ(z) =
z

Fα,n(z)
∗ z

Gα,n(z)
= 1 +

∞∑
k=1

αn,kakbkz
k ̸= 0

for every z ∈ E, then

Fα,n =
z

Φ(z)
∈ Uα,n

and, in particular, Fα,n is univalent in E.
Proof. For Fα,n, Gα,n ∈ S with their representations we have that

∞∑
k=2

(k − 1)αn,k|ak|2 ≤ 1 and
∞∑
k=2

(k − 1)αn,k|bk|2 ≤ 1.

By assumption

Φ(z) =
z

Fα,n(z)
∗ z

Gα,n(z)
= 1 +

∞∑
k=1

αn,kakbkz
k ̸= 0,

and therefore, the function Fα,n is analytic in E. By the classical Cauchy-Schwarz
inequality, we conclude that

∞∑
k=2

(k − 1)αn,k|akbk| ≤
( ∞∑

k=2

(k − 1)αn,k|ak|2
) 1

2
( ∞∑

k=2

(k − 1)αn,k|bk|2
) 1

2 ≤ 1,

which by theorem (4.1), Fα,n ∈ Uα,n.
Remark 4.1. If we let α = 1 and n = 0 in all the results obtained above, we
obtain the results due to Obradovic and Ponnusamy ([28]).

5. Application of Fractional Calculus

Before proceeding to the result in this section, the following useful definitions
shall be necessary .
Definition 5.1 Given function f(z) of the form (1). The fractional integral of
order ϵ (0 < ϵ ≤ 1) is defined such that

D−ϵ
z f(z) =

1

Γ(ϵ)

∫ z

0

f(t)

(z − t)1−ϵ
dt (28)

where f(z) is analytic function in a simply connected region of z−plane containing
the origin and the multiplicity of (z − t)ϵ−1 is removed by requiring log(z − t) to
be real when (z − t) > 0.
Definition 5.2. Similarly, the fractional derivative of order ϵ (0 ≤ ϵ < 1) denoted
by Dϵ

zf(z) is given such that

Dϵ
zf(z) =

1

Γ(1− ϵ)

d

dz

∫ z

0

f(t)

(z − t)ϵ
dt (29)

where the multiplicity of (z− t)−ϵ is as removed in Definition 5.1. It can be verified
from (30) that the fractional derivative of order m is given by

Dϵ
zf(z) =

dm

dzm
(
Dϵ−m

z f(z)
)
, m ≤ ϵ < m+ 1, m ∈ N0 = N ∪ {0}

and that of order m+ ϵ is given by

Dm+ϵ
z f(z) =

dm

dzm
(
Dϵ

zf(z)
)
, m ≤ ϵ < m+ 1, m ∈ N0 = N ∪ {0} .
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Interestingly both (28) and (29) have the series representations

D−ϵ
z f(z) =

1

Γ(2 + ϵ)
zϵ+1 +

∞∑
k=2

Γ(k + 1)

Γ(k + 1 + ϵ)
ckz

k+ϵ (30)

and

Dϵ
zf(z) =

1

Γ(2− ϵ)
z1−ϵ +

∞∑
k=2

Γ(k + 1)

Γ(k + 1− ϵ)
ckz

k−ϵ (31)

respectively. (see [13], [21] and [38] among others).
Theorem 5.1. Let Fα,n(z) ∈ Tα

n of the form (25) belongs to Uα,n, then

|z|1+ϵ

Γ(2 + ϵ)

{
1− 2

2 + ϵ

( α

α+ 1

)n
|z|
}

≤
∣∣D−ϵ

z f(z)
∣∣ ≤ |z|1+ϵ

Γ(2 + ϵ)

{
1 +

2

2 + ϵ

( α

α+ 1

)n
|z|
}

(32)
where all the parameters involved are as earlier defined.
The inequality (32) is attained for function F (z) given as

F (z) =
z

1 + z
.

Proof. With reference to Theorem 3.1, we have
∞∑
k=2

ck ≤
( α

α+ 1

)k
. (33)

Also, from definition (28), we have

D−ϵ
z f(z) =

1

Γ(2 + ϵ)
zϵ+1 +

∞∑
k=2

Γ(k + 1)

Γ(k + 1 + ϵ)
ckz

k+ϵ.

It follows that

Γ(2 + δ)z−ϵD−ϵ
z f(z) = z +

∞∑
k=2

Γ(k + 1)Γ(2 + ϵ)

Γ(k + 1 + ϵ)
ckz

k = z +
∞∑
k=2

µ(k)ckz
k (34)

where µ(k) = Γ(k+1)
Γ(k+1+ϵ) . It is noteworthy to say that µ(k) is a decreasing function

of k and

0 < µ(k) ≤ µ(2) =
2

2 + ϵ
.

Now, appealing to (33) and (34), we obtain∣∣∣Γ(2 + δ)z−ϵD−ϵ
z f(z)

∣∣∣ ≤ |z|+ µ(2)|z|2
∞∑
k=2

ck ≤ |z|+
( 2

2 + ϵ

)( α

α+ 1

)n
|z|2.

Similarly,∣∣∣Γ(2 + δ)z−ϵD−ϵ
z f(z)

∣∣∣ ≥ |z| − µ(2)|z|2
∞∑
k=2

ck ≥ |z| −
( 2

2 + ϵ

)( α

α+ 1

)n
|z|2.

This completes the proof of Theorem 5.1.
Theorem 5.2. Let Fα,n(z) ∈ Tα

n of the form (25) belongs to Uα,n, then

|z|1−ϵ

Γ(2− ϵ)

{
1− 2

2− ϵ

( α

α+ 1

)n
|z|
}

≤
∣∣D−ϵ

z f(z)
∣∣ ≤ |z|1−ϵ

Γ(2− ϵ)

{
1 +

2

2− ϵ

( α

α+ 1

)n
|z|
}

(35)
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where all the parameters involved are as earlier defined.
The inequality (35) is attained for function F (z) given as

F (z) =
z

1 + z
.

Proof. The proof is similar to that of Theorem 5.1.
However, for various choices of the parameters, n, α, δ in the Theorem 5.1 and
Theorem 5.2, several corollaries follow as simple consequences. Few of them are
listed below:
Illustration 5.1. Let F1,n(z) ∈ T 1

n be in the class U1,n, then

|z|1+ϵ

Γ(2 + ϵ)

{
1− 2

2 + ϵ

(1
2

)n
|z|
}

≤
∣∣D−ϵ

z f(z)
∣∣ ≤ |z|1+ϵ

Γ(2 + ϵ)

{
1 +

2

2 + ϵ

(1
2

)n
|z|
}

Illustration 5.2. Let F1,n(z) ∈ T 1
n be in the class U1,n, then for ϵ = 1

|z|2

2

{
1− 2

3

(1
2

)n
|z|
}

≤
∣∣D−ϵ

z f(z)
∣∣ ≤ |z|2

2

{
1 +

2

3

(1
2

)n
|z|
}

Illustration 5.3. Let F1,n(z) ∈ T 1
n of the form (25) belongs to U1,n, then

|z|1−ϵ

Γ(2− ϵ)

{
1− 2

2− ϵ

(1
2

)n
|z|
}

≤
∣∣D−ϵ

z f(z)
∣∣ ≤ |z|1−ϵ

Γ(2− ϵ)

{
1 +

2

2− ϵ

(1
2

)n
|z|
}
(36)

Illustration 5.4. Let F1,n(z) ∈ T 1
n of the form (25) belongs to U1,n, then for

α = 1 and ϵ = 0

|z|
{
1−

(1
2

)n
|z|
}

≤
∣∣D−ϵ

z f(z)
∣∣ ≤ |z|

{
1 +

(1
2

)n
|z|
}

(37)
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