SOME PROPERTIES FOR CERTAIN MULTIVALENT FUNCTIONS ASSOCIATED WITH DIFFER-INTEGRAL OPERATOR AND EXTENDED MULTIPLIER TRANSFORMATIONS

R. M. EL-ASHWAH, W. Y. KOTA

Abstract. In this paper, the authors study some properties of multivalent functions

$$
\mathfrak{D}_{p, n}^{\gamma, \ell}(a, c ; \mu, \sigma) f(z)=(1-\sigma) \mathfrak{J}_{p, n}^{\gamma, \ell}(a, c ; \mu) f(z)+\sigma \mathfrak{J}_{p, n}^{\gamma, \ell}(a+1, c ; \mu) f(z)
$$

and
$\mathfrak{B}_{p, n}^{\gamma, \ell}(a, c ; \mu, \sigma) f(z)=(1-\sigma) \mathfrak{J}_{p, n}^{\gamma, \ell}(a, c ; \mu) f(z)+\sigma \mathfrak{J}_{p, n+1}^{\gamma, \ell}(a, c ; \mu) f(z)$

$$
\left(n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}, \mu>0, \gamma \geq 0, \ell \geq 0, a, c \in \mathbb{R}, \sigma \in \mathbb{C}, a>-\mu p, p \in \mathbb{N} \text { and }(c-a)>0\right)
$$

defined by Erdélyi-Kober-type integral operator and an extended multiplier transformations.

1. Introduction

Let \mathcal{A}_{p} be the class of all functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{\kappa=p+1}^{\infty} a_{\kappa} z^{\kappa} \quad(p \in \mathbb{N}, \mathbb{N}=\{1,2, \ldots\}) \tag{1.1}
\end{equation*}
$$

which are analytic and multivalent in the open unit disc $\mathcal{U}=\{z:|z|<1\}$. Catas [8] defined the linear operator $\mathcal{I}_{p}^{n}(\gamma, \ell) f(z)$ by the following form (see also [24])

$$
\begin{aligned}
\mathcal{I}_{p}^{n}(\gamma, \ell) f(z)=z^{p}+ & \sum_{\kappa=p+1}^{\infty}\left(\frac{p+\ell+\gamma(\kappa-p)}{p+\ell}\right)^{n} a_{\kappa} z^{\kappa} \\
& \left(n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}, \gamma \geq 0, \ell \geq 0 \text { and } p \in \mathbb{N}\right) .
\end{aligned}
$$

Note that,

$$
\mathcal{I}_{p}^{0}(1,0) f(z)=f(z), \quad \text { and } \quad \mathcal{I}_{p}^{1}(1,0) f(z)=\frac{z f^{\prime}(z)}{p}
$$

[^0]Also, for $\mu>0, a, c \in \mathbb{R}, a>-\mu p, p \in \mathbb{N}$ and $(c-a)>0$, modified an Erdélyi-Kober-type integral operator [16], El-Ashwah and Drbuk [13] defined the linear operator $\mathcal{J}_{p}(a, c ; \mu) f(z)$ by the following form

$$
\begin{aligned}
\mathcal{J}_{p}(a, c ; \mu) f(z) & =\frac{\Gamma(c+\mu p)}{\Gamma(a+\mu p) \Gamma(c-a)} \int_{0}^{1}(1-t)^{c-a-1} t^{a-1} f\left(z t^{\mu}\right) d t \\
& =z^{p}+\frac{\Gamma(c+\mu p)}{\Gamma(a+\mu p)} \sum_{\kappa=p+1}^{\infty} \frac{\Gamma(a+\kappa \mu)}{\Gamma(c+\kappa \mu)} a_{\kappa} z^{\kappa}
\end{aligned}
$$

Note that,

$$
\mathcal{J}_{p}(a, a ; \mu) f(z)=f(z), \quad \text { and } \quad \mathcal{J}_{p}(1,0 ; 1) f(z)=\frac{z f^{\prime}(z)}{p}
$$

Now, for $n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}, \mu>0, \gamma \geq 0, \ell \geq 0, a, c \in \mathbb{R}, a>-\mu p, p \in$ \mathbb{N} and $(c-a)>0$, we define the linear operator $\mathfrak{J}_{p, n}^{\gamma, \ell}(a, c ; \mu) f(z)$ by the following form

$$
\begin{equation*}
\mathfrak{J}_{p, n}^{\gamma, \ell}(a, c ; \mu) f(z)=z^{p}+\frac{\Gamma(c+\mu p)}{\Gamma(a+\mu p)} \sum_{\kappa=p+1}^{\infty}\left(\frac{p+\ell+\gamma(\kappa-p)}{p+\ell}\right)^{n} \frac{\Gamma(a+\kappa \mu)}{\Gamma(c+\kappa \mu)} a_{\kappa} z^{\kappa} . \tag{1.2}
\end{equation*}
$$

The above-defined operator includes several simpler operators. We point out here some of these special cases as follows:
(i): Putting $\gamma=1$ and $a=c$, we obtain $I_{p}(n, \ell) f(z)$, which was studied by Kumar et al. [17] (see also [28]);
(ii): Putting $\gamma=1, \ell=0$ and $a=c$, we obtain $D_{p}^{n} f(z)$, which was studied by Kamali and Orhan [15] (see also [2, 22]);
(iii): Putting $a=c$, we obtain $D_{\gamma, p}^{n} f(z)$, which was studied by Aouf et al. [4];
(iv): Putting $n=-m$ and $a=c$, we obtain $J_{p}^{m}(\gamma, \ell) f(z)$, which was studied by El-Ashwah and Aouf [12] (see also [5, 27]);
(v): Putting $n=-m(m \in \mathbb{Z}), \gamma=1, \ell=1$ and $a=c$, we obtain $D_{p}^{m} f(z)$, which was studied by Patel and Sahoo [23];
(vii): Putting $\gamma=1, p=1$ and $a=c$, we obtain $I_{\ell}^{n} f(z)$, which was studied by Cho and Srivastava [10] (see also [9]);
(viii): Putting $\ell=0, p=1$ and $a=c$, we obtain $I_{\gamma}^{n} f(z)$, which was studied by Al-Oboudi [1];
(ix): Putting $\gamma=1, \ell=0, p=1$ and $a=c$, we obtain $D^{n} f(z)$, which was studied by Salagean [26];
(x): Putting $a=\beta, c=\alpha+\beta-\delta+1, \mu=1$ and $n=0$, we obtain $\mathfrak{R}_{\beta, p}^{\alpha, \delta} f(z)$ $(\delta>0 ; \alpha \geq \delta-1 ; \beta>-p)$ which was studied by Aouf et al. [3];
(xi): Putting $a=\beta, c=\alpha+\beta, \mu=1$ and $n=0$, we obtain $Q_{\beta, p}^{\alpha} f(z)$ $(\alpha \geq 0 ; \beta>-p)$ which was studied by Liu and Owa [19];
(xii): Putting $p=1, a=\beta, c=\alpha+\beta, \mu=1$ and $n=0$, we obtain $Q_{\beta}^{\alpha} f(z)$ ($\alpha \geq 0, \beta>-1$) which was studied by Jung et al. [14];
(xiii): Putting $p=1, a=\alpha-1, c=\beta-1, \mu=1$ and $n=0$, we obtain $L(\alpha, \beta) f(z)\left(\alpha, \beta \in \mathbb{C} \backslash \mathbb{Z}_{0}, \mathbb{Z}_{0}=\{0,-1,-2, \ldots\}\right)$ which was studied by Carlson and Shaffer [7];
(xiv): Putting $p=1, a=\nu-1, c=v, \mu=1$, and $n=0$, we obtain $I_{\nu, v} f(z)$ $(\nu>0 ; v>-1)$ which was studied by Choi et al. [11];
(xv): Putting $p=1, a=\alpha, c=0, \mu=1$ and $n=0$, we obtain $D^{\alpha} f(z)$ ($\alpha>-1$) which was studied by Ruscheweyh [25];
(xvi): Putting $p=1, a=1, c=m, \mu=1$ and $n=0$, we obtain the operator $I_{m} f(z)\left(m \in \mathbb{N}_{0}\right)$ which was studied by Noor [21];
(xvii): Putting $p=1, a=\beta, c=\beta+1, \mu=1$ and $n=0$, we obtain $J_{\beta} f(z)$ which was studied by Bernardi [6];
(xviii): Putting $p=1, a=1, c=2, \mu=1$ and $n=0$, we obtain $J f(z)$ which was studied by Libera [18].
It is readily verified from (1.2) that

$$
\begin{equation*}
\mathfrak{J}_{p, n}^{\gamma, \ell}(a+1, c ; \mu) f(z)=\frac{a}{a+\mu p} \mathfrak{J}_{p, n}^{\gamma, \ell}(a, c ; \mu) f(z)+\frac{\mu}{a+\mu p} z\left(\mathfrak{J}_{p, n}^{\gamma, \ell}(a, c ; \mu) f(z)\right)^{\prime} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathfrak{J}_{p, n+1}^{\gamma, \ell}(a, c ; \mu) f(z)=\frac{p+\ell-p \gamma}{p+\ell} \mathfrak{J}_{p, n}^{\gamma, \ell}(a, c ; \mu) f(z)+\frac{\gamma}{p+\ell} z\left(\mathfrak{J}_{p, n}^{\gamma, \ell}(a, c ; \mu) f(z)\right)^{\prime} \tag{1.4}
\end{equation*}
$$

Now, we define the two functions $\mathfrak{D}_{p, n}^{\gamma, \ell}(a, c ; \mu, \sigma) f(z)$ and $\mathfrak{B}_{p, n}^{\gamma, \ell}(a, c ; \mu, \sigma) f(z)$ as follows

$$
\begin{align*}
& \mathfrak{D}_{p, n}^{\gamma, \ell}(a, c ; \mu, \sigma)(z)=(1-\sigma) \mathfrak{J}_{p, n}^{\gamma, \ell}(a, c ; \mu) f(z)+\sigma \mathfrak{J}_{p, n}^{\gamma, \ell}(a+1, c ; \mu) f(z) \\
& \quad\left(n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}, \mu>0, \gamma \geq 0, \ell \geq 0, a, c \in \mathbb{R}, \sigma \in \mathbb{C}, a>-\mu p, p \in \mathbb{N},(c-a)>0\right) \tag{1.5}
\end{align*}
$$

and

$$
\begin{align*}
& \mathfrak{B}_{p, n}^{\gamma, \ell}(a, c ; \mu, \sigma)(z)=(1-\sigma) \mathfrak{J}_{p, n}^{\gamma, \ell}(a, c ; \mu) f(z)+\sigma \mathfrak{J}_{p, n+1}^{\gamma, \ell}(a, c ; \mu) f(z) \\
& \quad\left(n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}, \mu>0, \gamma \geq 0, \ell \geq 0, a, c \in \mathbb{R}, \sigma \in \mathbb{C}, a>-\mu p, p \in \mathbb{N},(c-a)>0\right) \tag{1.6}
\end{align*}
$$

We note that:
(i): If $n=0$ in (1.5), then the function $\mathfrak{D}_{p, n}^{\gamma, \ell}(a, c ; \mu, \sigma)(z)$ reduces to

$$
\begin{align*}
\mathfrak{D}_{p}(a, c ; \mu, \sigma)(z)=(1-\sigma) \mathfrak{J}_{p}(a, c ; \mu, \sigma) f & (z)+\sigma \mathfrak{J}_{p}(a+1, c ; \mu, \sigma) f(z) \\
& (\mu>0, a, c \in \mathbb{R}, \sigma \in \mathbb{C}, a>-\mu p, p \in \mathbb{N},(c-a)>0) \tag{1.7}
\end{align*}
$$

(ii): If $a=c$ in (1.6), then the function $\mathfrak{B}_{p, n}^{\gamma, \ell}(a, c ; \mu, \sigma)(z)$ reduces to (see [4]) $\mathfrak{B}_{p, n}^{\gamma, \ell}(\sigma)(z)=(1-\sigma) \mathfrak{J}_{p, n}(\gamma, \ell) f(z)+\sigma \mathfrak{J}_{p, n+1}(\gamma, \ell) f(z)\left(n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}, \gamma \geq 0, \ell \geq 0, \sigma \in \mathbb{C}, p \in \mathbb{N}\right) ;$
(iii): If $a=c=0, \mu=1$ and $n=0$ in (1.5) or $a=c, n=0, \gamma=1$ and $\ell=0$ in (1.6), then the two functions $\mathfrak{D}_{p, n}^{\gamma, \ell}(a, c ; \mu, \sigma)(z)$ and $\mathfrak{B}_{p, n}^{\gamma, \ell}(a, c ; \mu, \sigma)(z)$ reduce to

$$
\begin{equation*}
\mathfrak{F}_{p}(\sigma)(z)=(1-\sigma) f(z)+\sigma \frac{z f^{\prime}(z)}{p} \quad\left(f(z) \in \mathcal{A}_{p}, \sigma \in \mathbb{C}, p \in \mathbb{N}\right) \tag{1.9}
\end{equation*}
$$

To prove our main works, we need that lemma:
Lemma 1.1. [20] Let $\varphi(x, y), \varphi: D \rightarrow \mathbb{C}, D \subset \mathbb{C} \times \mathbb{C}$ be complex valued function, $x=x_{1}+i x_{2}$ and $y=y_{1}+y_{2}$. Suppose that $\varphi(x, y)$ satisfies the following conditions:

- $\varphi(x, y)$ is continuous in D,
- $(1,0) \in D$ and $\Re(\varphi(1,0))>0$,
- for all $\left(i x_{2}, y_{1}\right) \in D$ and $y_{1} \leq-\frac{1+x_{2}^{2}}{2}, \Re\left(\varphi\left(i x_{2}, y_{1}\right)\right) \leq 0$.

Let $q(z)=1+q_{1} z+q_{2} z^{2}+\ldots$ be regular in the unit disc \mathcal{U} such that $\left(q(z), z q^{\prime}(z)\right) \in$ D, $(z \in \mathcal{U})$. If

$$
\Re\left\{\varphi\left(q(z), z q^{\prime}(z)\right)\right\}>0 \quad(z \in \mathcal{U})
$$

then $\Re(q(z))>0$.
In this paper, the authors study some properties of multivalent functions $\mathfrak{D}_{p, n}^{\gamma, \ell}(a, c ; \mu, \sigma) f(z)$ and $\mathfrak{B}_{p, n}^{\gamma, \ell}(a, c ; \mu, \sigma) f(z)$ defined by Erdélyi-Kober-type integral operator and an extended multiplier transformations.

2. The main results

Unless otherwise mentioned, we suppose that $f(z) \in \mathcal{A}_{p}, n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$, $\mu>0, \gamma \geq 0, \ell \geq 0, a, c \in \mathbb{R}, \sigma \in \mathbb{C}, a>-\mu p, p \in \mathbb{N}$ and $(c-a)>0$.
Theorem 2.1. Let $\mathfrak{D}_{p, n}^{\gamma, \ell}(a, c ; \mu, \sigma) f(z)$ be defined by (1.5). If

$$
\Re\left(\frac{\mathfrak{D}_{p, n}^{\gamma, \ell}(a, c ; \mu, \sigma) f(z)}{z^{p}}\right)>\tau, \quad(0 \leq \tau<1 ; \Re(\sigma) \geq 0)
$$

then

$$
\Re\left(\frac{\mathfrak{J}_{p, n}^{\gamma, \ell}(a, c ; \mu) f(z)}{z^{p}}\right)>\frac{2(a+\mu p) \tau+\mu \Re(\sigma)}{2(a+\mu p)+\mu \Re(\sigma)}
$$

Proof. Let $q(z)$ be a function defined by

$$
\begin{equation*}
\frac{\mathfrak{J}_{p, n}^{\gamma, \ell}(a, c ; \mu) f(z)}{z^{p}}=\zeta+(1-\zeta) q(z) \tag{2.1}
\end{equation*}
$$

such that

$$
\zeta=\frac{2(a+\mu p) \tau+\mu \Re(\sigma)}{2(a+\mu p)+\mu \Re(\sigma)}
$$

and $q(z)=1+q_{1} z+q_{2} z^{2}+\ldots$ is regular in \mathcal{U}. By using (1.3), we obtain

$$
\begin{align*}
& \frac{\mathfrak{D}_{p, n}^{\gamma, \ell}}{}(a, c ; \mu, \sigma) f(z) \tag{2.2}\\
& z^{p}=(1-\sigma) \frac{\mathfrak{J}_{p, n}^{\gamma, \ell}(a, c ; \mu) f(z)}{z^{p}}+\sigma \frac{\mathfrak{J}_{p, n}^{\gamma, \ell}(a+1, c ; \mu) f(z)}{z^{p}} \\
&=\zeta+(1-\zeta) q(z)+\frac{\mu \sigma}{a+\mu p}(1-\zeta) z q^{\prime}(z)
\end{align*}
$$

From (2.1) and (2.2), we have

$$
\begin{equation*}
\Re\left(\frac{\mathfrak{D}_{p, n}^{\gamma, \ell}(a, c ; \mu, \sigma) f(z)}{z^{p}}-\tau\right)=\Re\left(\zeta-\tau+(1-\zeta) q(z)+\frac{\mu \sigma}{a+\mu p}(1-\zeta) z q^{\prime}(z)\right)>0 \tag{2.3}
\end{equation*}
$$

If

$$
\varphi(x, y)=\zeta-\tau+(1-\zeta) x+\frac{\mu \sigma}{a+\mu p}(1-\zeta) y
$$

with

$$
q(z)=x=x_{1}+i x_{2} \quad \text { and } \quad z q^{\prime}(z)=y=y_{1}+i y_{2}
$$

and using Lemma 1.1, then

- $\varphi(x, y)$ is continuous in D,
- $(1,0) \in D$ and $\Re(\varphi(1,0))=1-\tau>0$,
- for all $\left(i x_{2}, y_{1}\right) \in D$ and $y_{1} \leq-\frac{1+x_{2}^{2}}{2}$,

$$
\begin{aligned}
\Re\left(\varphi\left(x_{2} i, y_{1}\right)\right) & =\zeta-\tau+(1-\zeta) y_{1} \frac{\mu \Re(\sigma)}{a+\mu p} \\
& \leq \zeta-\tau-(1-\zeta) \frac{\mu\left(1+x_{2}^{2}\right) \Re(\sigma)}{2(a+\mu p)} \leq 0
\end{aligned}
$$

We have $\Re(q(z))>0$, that is

$$
\Re\left(\frac{\mathfrak{J}_{p, n}^{\gamma, \ell}(a, c ; \mu, \sigma) f(z)}{z^{p}}\right)>\zeta=\frac{2(a+\mu p) \tau+\mu \Re(\sigma)}{2(a+\mu p)+\mu \Re(\sigma)}
$$

The proof of Theorem 2.1 is completed.
Putting $n=0$ in Theorem 2.1, we obtain the following corollary:
Corollary 2.2. Let $\mathfrak{D}_{p}(a, c ; \mu, \sigma)(z)$ be defined by (1.7). If

$$
\Re\left(\frac{\mathfrak{D}_{p}(a, c ; \mu, \sigma) f(z)}{z^{p}}\right)>\tau, \quad(0 \leq \tau<1 ; \Re(\sigma) \geq 0)
$$

then

$$
\Re\left(\frac{\mathfrak{J}_{p}(a, c, \mu) f(z)}{z^{p}}\right)>\frac{2(a+\mu p) \tau+\mu \Re(\sigma)}{2(a+\mu p)+\mu \Re(\sigma)}
$$

Theorem 2.3. Let $\mathfrak{B}_{p, n}^{\gamma, \ell}(a, c ; \mu, \sigma) f(z)$ be defined by (1.6). If

$$
\Re\left(\frac{\mathfrak{B}_{p, n}^{\gamma, \ell}(a, c ; \mu, \sigma) f(z)}{z^{p}}\right)>\tau, \quad(0 \leq \tau<1 ; \Re(\sigma) \geq 0)
$$

then

$$
\Re\left(\frac{\mathfrak{J}_{p, n}^{\gamma, \ell}(a, c ; \mu) f(z)}{z^{p}}\right)>\frac{2(p+\ell) \tau+\gamma \Re(\sigma)}{2(p+\ell)+\gamma \Re(\sigma)}
$$

Proof. Using the same technique as in the proof of Theorem 2.1 with Equation (1.4), we obtain the proof of Theorem 2.3

Remark 2.4. Putting $a=c$ in Theorem 2.3, we obtain the result which was studied by Aouf et al. [4, Theorem 1].

Putting $a=c=0, \mu=1$ and $n=0$ in Theorem 2.1 or $a=c, n=0, \gamma=1$ and $\ell=0$ in Theorem 2.3, we obtain the following corollary:

Corollary 2.5. Let $\mathfrak{F}_{p}(\sigma)(z)$ be defined by (1.9). If

$$
\Re\left(\frac{\mathfrak{F}_{p}(\sigma)(z)}{z^{p}}\right)>\tau, \quad\left(f(z) \in \mathcal{A}_{p}, 0 \leq \tau<1 ; \Re(\sigma) \geq 0\right)
$$

then

$$
\Re\left(\frac{f(z)}{z^{p}}\right)>\frac{2 p \tau+\Re(\sigma)}{2 p+\Re(\sigma)}
$$

Theorem 2.6. Let $\mathfrak{D}_{p, n}^{\gamma, \ell}(a, c ; \mu, \sigma) f(z)$ be defined by (1.5). If

$$
\Re\left(\frac{\mathfrak{D}_{p, n}^{\gamma, \ell}(a, c ; \mu, \sigma) f(z)}{z^{p}}\right)<\tau, \quad(\tau>1 ; \Re(\sigma) \geq 0)
$$

then

$$
\Re\left(\frac{\mathfrak{J}_{p, n}^{\gamma, \ell}(a, c ; \mu) f(z)}{z^{p}}\right)<\frac{2(a+\mu p) \tau+\mu \Re(\sigma)}{2(a+\mu p)+\mu \Re(\sigma)}
$$

Proof. Let $q(z)$ be a function defined by

$$
\begin{equation*}
\frac{\mathfrak{J}_{p, n}^{\gamma, \ell}(a, c ; \mu) f(z)}{z^{p}}=\zeta+(1-\zeta) q(z) \tag{2.4}
\end{equation*}
$$

such that

$$
\zeta=\frac{2(a+\mu p) \tau+\mu \Re(\sigma)}{2(a+\mu p)+\mu \Re(\sigma)}>1
$$

and $q(z)=1+q_{1} z+q_{2} z^{2}+\ldots$ is regular in \mathcal{U}. By using (1.3) and (2.4), we obtain $\Re\left(\tau-\frac{\mathfrak{D}_{p, n}^{\gamma, \ell}(a, c ; \mu, \sigma) f(z)}{z^{p}}\right)=\Re\left(\tau-\zeta-(1-\zeta) q(z)-\frac{\mu \sigma}{a+\mu p}(1-\zeta) z q^{\prime}(z)\right)>0$.

If

$$
\begin{equation*}
\varphi(x, y)=\tau-\zeta-(1-\zeta) x-\frac{\mu \sigma}{a+\mu p}(1-\zeta) y \tag{2.5}
\end{equation*}
$$

with

$$
q(z)=x=x_{1}+i x_{2} \quad \text { and } \quad z q^{\prime}(z)=y=y_{1}+i y_{2}
$$

and using Lemma 1.1, then

- $\varphi(x, y)$ is continuous in D,
- $(1,0) \in D$ and $\Re(\varphi(1,0))=\tau-1>0$,
- for all $\left(i x_{2}, y_{1}\right) \in D$ and $y_{1} \leq-\frac{1+x_{2}^{2}}{2}$,

$$
\begin{aligned}
\Re\left(\varphi\left(x_{2} i, y_{1}\right)\right) & =\tau-\zeta-(1-\zeta) y_{1} \frac{\mu \Re(\sigma)}{a+\mu p} \\
& \leq \tau-\zeta+(1-\zeta) \frac{\mu\left(1+x_{2}^{2}\right) \Re(\sigma)}{2(a+\mu p)} \leq 0
\end{aligned}
$$

We have $\Re(q(z))>0$, that is

$$
\Re\left(\frac{\mathfrak{J}_{p, n}^{\gamma, \ell}(a, c ; \mu, \sigma) f(z)}{z^{p}}\right)<\zeta=\frac{2(a+\mu p) \tau+\mu \Re(\sigma)}{2(a+\mu p)+\mu \Re(\sigma)}
$$

The proof of Theorem 2.6 is completed.
Putting $n=0$ in Theorem 2.6, we obtain the following corollary:
Corollary 2.7. Let $\mathfrak{D}_{p}(a, c ; \mu, \sigma)(z)$ be defined by (1.7). If

$$
\Re\left(\frac{\mathfrak{D}_{p}(a, c ; \mu, \sigma) f(z)}{z^{p}}\right)<\tau, \quad(\tau>1 ; \Re(\sigma) \geq 0)
$$

then

$$
\Re\left(\frac{\mathfrak{J}_{p}(a, c, \mu) f(z)}{z^{p}}\right)<\frac{2(a+\mu p) \tau+\mu \Re(\sigma)}{2(a+\mu p)+\mu \Re(\sigma)} .
$$

Theorem 2.8. Let $\mathfrak{B}_{p, n}^{\gamma, \ell}(a, c ; \mu, \sigma) f(z)$ be defined by (1.6). If

$$
\Re\left(\frac{\mathfrak{B}_{p, n}^{\gamma, \ell}(a, c ; \mu, \sigma) f(z)}{z^{p}}\right)<\tau, \quad(\tau>1 ; \Re(\sigma) \geq 0)
$$

then

$$
\Re\left(\frac{\mathfrak{J}_{p, n}^{\gamma, \ell}(a, c ; \mu) f(z)}{z^{p}}\right)<\frac{2(p+\ell) \tau+\gamma \Re(\sigma)}{2(p+\ell)+\gamma \Re(\sigma)}
$$

Proof. Using the same technique as in the proof of Theorem 2.6 with Equation (1.4), we obtain the proof of Theorem 2.8

Remark 2.9. Putting $a=c$ in Theorem 2.8, we obtain the result which was studied by Aouf et al. [4, Theorem 2].

Putting $a=c=0, \mu=1$ and $n=0$ in Theorem 2.6 or $a=c, n=0, \gamma=1$ and $\ell=0$ in Theorem 2.8, we obtain the following corollary:

Corollary 2.10. Let $\mathfrak{F}_{p}(\sigma)(z)$ be defined by (1.9). If

$$
\Re\left(\frac{\mathfrak{F}_{p}(\sigma)(z)}{z^{p}}\right)<\tau, \quad\left(f(z) \in \mathcal{A}_{p}, \tau>1 ; \Re(\sigma) \geq 0\right)
$$

then

$$
\Re\left(\frac{f(z)}{z^{p}}\right)<\frac{2 p \tau+\Re(\sigma)}{2 p+\Re(\sigma)}
$$

Using the same technique as in the proof of the above theorems and putting $f(z)=\frac{z f^{\prime}(z)}{p}$, we obtain the following theorems:
Theorem 2.11. Let $\mathfrak{D}_{p, n}^{\gamma, \ell}(a, c ; \mu, \sigma) f(z)$ be defined by (1.5). If

$$
\Re\left(\frac{\left(\mathfrak{D}_{p, n}^{\gamma, \ell}(a, c ; \mu, \sigma) f(z)\right)^{\prime}}{p z^{p-1}}\right)>\tau, \quad(0 \leq \tau<1 ; \Re(\sigma) \geq 0)
$$

then

$$
\Re\left(\frac{\left(\mathfrak{J}_{p, n}^{\gamma, \ell}(a, c ; \mu) f(z)\right)^{\prime}}{p z^{p-1}}\right)>\frac{2(a+\mu p) \tau+\mu \Re(\sigma)}{2(a+\mu p)+\mu \Re(\sigma)}
$$

Putting $n=0$ in Theorem 2.11, we obtain the following corollary:
Corollary 2.12. Let $\mathfrak{D}_{p}(a, c ; \mu, \sigma)(z)$ be defined by (1.7). If

$$
\Re\left(\frac{\left(\mathfrak{D}_{p}(a, c ; \mu, \sigma) f(z)\right)^{\prime}}{p z^{p-1}}\right)>\tau, \quad(0 \leq \tau<1 ; \Re(\sigma) \geq 0)
$$

then

$$
\Re\left(\frac{\left(\mathfrak{J}_{p}(a, c, \mu) f(z)\right)^{\prime}}{p z^{p-1}}\right)>\frac{2(a+\mu p) \tau+\mu \Re(\sigma)}{2(a+\mu p)+\mu \Re(\sigma)} .
$$

Theorem 2.13. Let $\mathfrak{B}_{p, n}^{\gamma, \ell}(a, c ; \mu, \sigma) f(z)$ be defined by (1.6). If

$$
\Re\left(\frac{\left(\mathfrak{B}_{p, n}^{\gamma, \ell}(a, c ; \mu, \sigma) f(z)\right)^{\prime}}{p z^{p-1}}\right)>\tau, \quad(0 \leq \tau<1 ; \Re(\sigma) \geq 0)
$$

then

$$
\Re\left(\frac{\left(\mathcal{J}_{p, n}^{\gamma, \ell}(a, c ; \mu) f(z)\right)^{\prime}}{p z^{p-1}}\right)>\frac{2(p+\ell) \tau+\gamma \Re(\sigma)}{2(p+\ell)+\gamma \Re(\sigma)}
$$

Remark 2.14. (i) Putting $a=c$ in Theorem 2.13, we obtain the result which was studied by Aouf et al. [4, Theorem 3].
(ii) Putting $a=c=0, \mu=1$ and $n=0$ in Theorem 2.11 or $a=c, n=0, \gamma=1$ and $\ell=0$ in Theorem 2.13, we obtain the result which was studied by Aouf et al. [4, Corollary 1].
Theorem 2.15. Let $\mathfrak{D}_{p, n}^{\gamma, \ell}(a, c ; \mu, \sigma) f(z)$ be defined by (1.5). If

$$
\Re\left(\frac{\left(\mathfrak{D}_{p, n}^{\gamma, \ell}(a, c ; \mu, \sigma) f(z)\right)^{\prime}}{p z^{p-1}}\right)<\tau, \quad(\tau>1 ; \Re(\sigma) \geq 0)
$$

then

$$
\Re\left(\frac{\left(\mathfrak{J}_{p, n}^{\gamma, \ell}(a, c ; \mu) f(z)\right)^{\prime}}{p z^{p-1}}\right)<\frac{2(a+\mu p) \tau+\mu \Re(\sigma)}{2(a+\mu p)+\mu \Re(\sigma)}
$$

Putting $n=0$ in Theorem 2.15, we obtain the following corollary:
Corollary 2.16. Let $\mathfrak{D}_{p}(a, c ; \mu, \sigma)(z)$ be defined by (1.7). If

$$
\Re\left(\frac{\left(\mathfrak{D}_{p}(a, c ; \mu, \sigma) f(z)\right)^{\prime}}{p z^{p-1}}\right)<\tau, \quad(\tau>1 ; \Re(\sigma) \geq 0)
$$

then

$$
\Re\left(\frac{\left(\mathfrak{J}_{p}(a, c, \mu) f(z)\right)^{\prime}}{p z^{p-1}}\right)<\frac{2(a+\mu p) \tau+\mu \Re(\sigma)}{2(a+\mu p)+\mu \Re(\sigma)} .
$$

Theorem 2.17. Let $\mathfrak{B}_{p, n}^{\gamma, \ell}(a, c ; \mu, \sigma) f(z)$ be defined by (1.6). If

$$
\Re\left(\frac{\left(\mathfrak{B}_{p, n}^{\gamma, \ell}(a, c ; \mu, \sigma) f(z)\right)^{\prime}}{p z^{p-1}}\right)<\tau, \quad(\tau>1 ; \Re(\sigma) \geq 0)
$$

then

$$
\Re\left(\frac{\left(\mathfrak{J}_{p, n}^{\gamma, \ell}(a, c ; \mu) f(z)\right)^{\prime}}{p z^{p-1}}\right)<\frac{2(p+\ell) \tau+\gamma \Re(\sigma)}{2(p+\ell)+\gamma \Re(\sigma)}
$$

Remark 2.18. (i) Putting $a=c$ in Theorem 2.17, we obtain the result which was studied by Aouf et al. [4, Theorem 4].
(ii) Putting $a=c=0, \mu=1$ and $n=0$ in Theorem 2.15 or $a=c, n=0, \gamma=1$ and $\ell=0$ in Theorem 2.17, we obtain the result which was studied by Aouf et al.
[4, Corollary 2$]$.

References

[1] F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Indian J. Math. Sci., 25-28 (2004), 1429-1436.
[2] M. K. Aouf and A. O. Mostafa, On a subclass of $n-p$-valent prestarlike functions, Comput. Math. Appl., 55 (2008), 851-861.
[3] M. K. Aouf, R. M. El-Ashwah and A. M. Abd-Eltawab, Some inclusion relationships of certain subclasses of p-valent functions associated with a family of integral operators, ISRN Mathematical Analysis, Art. ID 384170, (2013), 1-8.
[4] M. K. Aouf, R. M. El-Ashwah and S. M. El-Deeb, Some inequalities for certain p-valent functions involving extended multiplier transformations, Proc. Pakistan Acad. Sci., 46(4) (2009), 217-221.
[5] M. K. Aouf, A. O. Mostafa and R. M. El-Ashwah, Sandwich theorems for p-valent functions defined by a certain integral operator, Math. Comput. Modelling, 53 (2011), 1647-1653.
[6] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1969), 429-446.
[7] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15(4) (1984), 737-745.
[8] A. Catas, On certain classes of p-valent functions defined by multiplier transformations, In: Proc. Book of the International Symposium on Geometric Functions Theory and Applications, Istanbul, Tukey, 241-250, 2007.
[9] N. E. Cho and T. H. Kim, Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc., 40(3) (2003), 399-410.
[10] N. E. Cho and H. M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modelling, 37(1-2) (2003), 39-49.
[11] J. H. Choi, M. Saigo and H. M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl., 276 (2002), 432-445.
[12] R. M. El-Ashwah and M. K. Aouf, Some properties of new integral operator, Acta Univ. Apulensis, 24 (2010), 51-61.
[13] R. M. El-Ashwah and M. E. Drbuk, Subordination properties of p-valent functions defined by linear operators, Biritish J. Math. Comput. Sci., 4(21) (2014), 3000-3013.
[14] I. B. Jung, Y. C. Kim and H. M. Srivastava, The hardy space of analytic functions associated with certain parameter families of integral operators, J. Math. Anal. Appl., 176 (1993), 138-147.
[15] M. Kamali and H. Orhan, On a subclass of certain starlike functions with negative coefficients, Bull. Korean Math. Soc., 41 (2004), 53-71.
[16] V. Kiryakova, Generalized fractional Calculus and applications, Pitman Research Notes in Mathematics Series, John Willey and Sons, Inc. New York, 301, 1994.
[17] S. S. Kumar, H. C. Taneja and V. Ravichandran, Classes multivalent functions defined by Dziok-Srivastava linear operator and multiplier transformations, Kyungpook Math. J., 46 (2006), 97-109.
[18] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16 (1965), 755-758.
[19] J. L. Liu and S. Owa, Properties of certain integral operator, Int. J. Math. Sci., 3(1) (2004), 45-51.
[20] S. S. Miller and P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 289-305.
[21] K. I. Noor, On new classes of integral operators, J. Natural Geometry, 16 (1999), 71-80.
[22] H. Orhan and H. Kiziltunc, A generalization on subfamily of p-valent functions with negative coefficients, Appl. Math. Comput., 155 (2004), 521-530.
[23] J. Patel and P. Sahoo, Certain subclasses of multivalent analytic functions, Indian J. Pure Appl. Math., 34 (2003), 487-500.
[24] J. K. Prajapat, Subordination and superordination preserving properties for generalized multiplier transformation operator, Math. Comput. Modelling, 55 (2012), 1456-1465.
[25] S. Ruscheweyh, New criteria for univalent functions, Proceedings of the American Mathematical Society, 49 (1975), 109-115.
[26] G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Math. (Springer-Verlag), 1013 (1983), 362-372.
[27] H. M. Srivastava, M. K. Aouf and R. M. El-Ashwah, Some inclusion relationships associated with a certain class of integral operators, Asian European J. Math., 3(4) (2010), 667-684.
[28] H. M. Srivastava, K. B. Suchithra, A. Stephen and S. Sivasubramanian, Inclusion and neighborhood properties of certain subclasses of multivalent functions of complex order, J. Ineq. Pure Appl. Math., 7 (2006), 1-8.
R. M. El-Ashwah

Department of Mathematics, Faculty of Science, Damietta University, New Damietta
34517, EGYpt.
E-mail address: r_elashwah@yahoo.com
W. Y. Kota

Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt.

E-mail address: wafaa_kota@yahoo.com

[^0]: 2010 Mathematics Subject Classification. Primary 30C45, Secondary 30C80.
 Key words and phrases. Analytic functions; linear operators; multivalent function; extended multiplier transformations.

 Submitted July 23, 2020. Revised Aug. 11, 2020.

