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ON MILD SOLUTIONS OF VOLTERRA FRACTIONAL

DIFFERENTIAL EQUATIONS OF SOBOLEV TYPE WITH

FINITE DELAY

BANDITA ROY, SWAROOP NANDAN BORA

Abstract. This paper studies the existence of mild solutions for a class of
fractional differential equations of Sobolev type with finite delay. The prob-
lem is expressed in terms of Volterra integro-differential equation and nonlocal
condition. Several results are established by means of measure of noncompact-

ness and some familiar fixed point theorems.

1. Introduction

In the recent past, fractional differential equation has drawn reasonable attention
due to its use in growing number of applications in many areas of science, economics
and engineering [27]. It serves as an excellent and precise tool while describing
memory and hereditary properties of materials with varying properties and various
processes. It has been found that many physical phenomena can be modeled more
accurately by utilizing fractional integrals or derivatives rather than integer order
integrals or derivatives. Bonilla et al. [7] presented some fractional models involving
Riemann-Liouville fractional derivative with solutions that were almost impossible
to derive if the problems were modeled through classical differential equations.

There are several works that have generalized the notion of classical integer
order derivatives and integrals to ones with non-integer order. Another defini-
tion of fractional derivative through Caputo has an important advantage over the
Riemann-Liouville definition in the sense that it allows easy and simple interpreta-
tion of initial conditions such as x(0) = x0, x

′(0) = x1, etc. For detailed discussion
and description on the theory and applications in this area, the readers are referred
to some relevant books [14, 17, 24, 21] along with the references in them.

Equations of Sobolev type arise in a number of physical problems, namely, flow
of fluid through fissured rocks [5], propagation of long waves with small amplitudes
[6] and many more. The abstract Cauchy problem of Sobolev type is to find a
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function x which satisfies the following initial value problem:

d

dt
Bx(t) +Ax(t) = f(t, x(t)),

x(0) = x0,

under different conditions on A and B, where A and B are linear operators with
their domains and ranges contained, respectively, in a Banach spaceX and a Banach
space Y .

Brill [8] and Showalter [26] considered semilinear evolution equations of Sobolev
type in Banach spaces and established the existence of their solutions. Such frac-
tional models are found to be more appropriate compared to those through integer
order differential equations and hence has been considered by a good number of
researchers. For more details we refer the reader to the monographs by Carroll and
Showalter [9], Favini and Yagi [11], Kostić[18] and Sviridyuk and Fedorov [28].

Earlier works discussed problems of Sobolev type under the following conditions
on the operators A : D(A) ⊂ X → Y , B : D(B) ⊂ X → Y :
(1) D(B) ⊂ D(A), B is bijective, B−1 is compact, B−1A : X → D(B) is continuous
[3],
(2) D(B) ⊂ D(A), B is bijective, B−1 is compact [13],
(3) D(B) ⊂ D(A), B is bijective, B−1 is continuous [1].

In [12, 19, 23], the authors have considered different initial value problems with
various fractional derivatives when the operator B satisfies kerB ̸= {0}. The work
taken up here is different from some other similar works such as [20, 4] on two
counts : (i) ODE of integer order replaced by ODE of fractional order in our case,
(ii) Lipschitz condition was used in these works. Therefore, to fill the gap, we find it
pertinent to consider the following fractional differential equation of Sobolev type:

CDα
0+(Bx(t)) +Ax(t) = f

(
t, xt,

∫ t

0

h(t, s, xs)ds
)
, t ∈ J = [0, a], α ∈ (0, 1),

x0(ω) + (g(xt1 , xt2 , . . . , xtn))(ω) = ϕ(ω), ω ∈ [−d, 0],


(1)

where X,Y are Banach spaces, A : D(A) ⊆ X → Y and B : D(B) ⊆ X → Y are
linear operators, f : J × C ×X → Y , h : ∆× C → X, where C := C([−d, 0], X) and
∆ = {(t, s) ∈ R2|0 ≤ s ≤ t ≤ a}, are given functions. For x ∈ C([−d, a], X) and
each t ∈ [0, a], xt ∈ C is defined by

xt(ω) = x(t+ ω).

ϕ ∈ C, g : Cn → C with ϕ(0) ∈ D(B) and (g(xt1 , xt2 , . . . , xtn))(0) ∈ D(B) are given
functions.

In this paper, Section 2 describes some useful notations, definitions, lemmas and
theorems which are considered important for the proofs here. Section 3 presents
some sufficient conditions required for the existence of mild solution of problem (1).

2. Preliminaries

The following notations will be used throughout the present work:
X and Y are Banach spaces, respectively, with norms ∥.∥X and ∥.∥Y . B(Y ) is a
Banach space of all bounded linear operators on Y with the norm ∥.∥B(Y ). For a
linear operator Q in Y , ρ(Q) is the resolvent set of Q while R(λ : Q), with λ ∈ ρ(Q),
denotes the resolvent of Q.
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Let J be a closed interval and C(J,X) be the Banach space of all continuous
functions from J to X with respect to the supremum norm. Let C denote the space
C([−d, 0], X) with the norm ∥x∥C and D denote the space C([−d, a], X) with the
norm ∥.∥D.

Taking R+ = [0,∞) and J = [0, a], let Lp(J,X), 1 ≤ p ≤ ∞, denote the Banach
space of all measurable functions f : J → X endowed with the following norm:

∥f∥Lp =


(∫

J
∥f∥pXdt

) 1
p

, 1 ≤ p < ∞,

infµ(J̄)=0

{
supt∈J\J̄ ∥f(t)∥X

}
, p = ∞.

Theorem 1 [Hölder’s inequality][29] Assume that p, q ≥ 1 with 1/p+ 1/q = 1.
If f ∈ Lp(J,X) and g ∈ Lq(J,X), then for 1 ≤ p ≤ ∞, fg ∈ L1(J,X) and

∥fg∥L1 ≤ ∥f∥Lp∥g∥Lq .

Theorem 2 [Bochner’s theorem][29] A measurable function f : J → X is Bochner
integrable if ∥f∥ is Lebesgue integrable.

Definition 1 [Riemann-Liouville integral][10] The Riemann-Liouville fractional
integral of a function f of order α > 0 is defined as

Iα0+f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, t > 0,

provided that the right hand side above is point-wise defined on [0,∞) with Γ(.)
denoting the standard gamma function.

Definition 2 [Caputo derivative][10] The Caputo derivative of a function f of
order α is defined as follows:

CDα
0+f(t) =

1

Γ(n− α)

∫ t

0

(t− s)n−α−1f (n)(s)ds, t > 0,

= In−α
0+ f (n)(t),

where n is the least integer greater than or equal to α.

Taking f to be an abstract function with values in X, the integrals appearing in
the above two definitions are taken in Bochner’s sense.

Throughout this article, it is assumed that the operators A and B satisfy the
hypotheses as follows [1] :
(i) A and B are closed,
(ii) D(B) ⊂ D(A) and B is bijective,
(iii) B−1 : Y → D(B) is continuous,
(iv) For each t ∈ [0, a] and for some λ ∈ ρ(−AB−1), R(λ : −AB−1) is a compact
operator.

Hypotheses (i)-(ii) and the closed graph theorem together give the boundedness
of the linear operator AB−1 : Y → Y .
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Lemma 1[1] Let Q(t) be a uniformly continuous semigroup. If R(λ;Q) is com-
pact for every λ ∈ ρ(Q), then Q(t) is a compact semigroup.

It follows that a compact semigroup {T (t)}t≥0 in Y is generated by the opera-
tor −AB−1. It is further assumed that there exists a constant M > 1 such that
supt∈J ∥T (t)∥B(Y ) ≤ M.

Definition 3 [Mild solution][30] A mild solution of problem (1) means a function
x ∈ D which satisfies

x(t) = B−1Sα(t)B[ϕ(0)− (g(xt1 , xt2 , . . . , xtn))(0)]

+

∫ t

s=0

(t− s)α−1B−1Tα(t− s)f
(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)
ds,

t ∈ J = [0, a],

x0(ω) + (g(xt1 , xt2 , . . . , xtn))(ω) = ϕ(ω), ω ∈ [−d, 0],

where

Sα(t)x =

∫ ∞

0

ξα(ω)T (t
αω)xdω, Tα(t)x = α

∫ ∞

0

ωξα(ω)T (t
αω)xdω,

ξα(ω) =
1

α
ω−1− 1

α w̄α(ω
− 1

α ), w̄α(ω) =
1

π

∞∑
n=0

(−1)n−1ω−(αn+1)Γ(αn+ 1)

n!
sin(nπα),

with ξα(ω) being a probability density function on (0,+∞) satisfying

ξα(ω) ≥ 0,

∫ ∞

0

ξα(ω)dω = 1, ω ∈ (0,+∞).

Lemma 2 [30] The bounded linear operators Sα(t) and Tα(t) satisfy the follow-
ing properties :
(i) for any fixed t ≥ 0 and y ∈ Y ,

∥Sα(t)y∥Y ≤ M∥y∥Y and ∥Tα(t)y∥Y ≤ M
Γ(α)

∥y∥Y .

(ii) {Sα(t)}t≥0 and {Tα(t)}t≥0 are strongly continuous.
(iii) if {T (t)}t>0 is compact, then {Sα(t)}t>0 and {Tα(t)}t>0 are compact operators.

Lemma 3 [22] Assume that {Q(t)}t>0 is compact. Then {Q(t)}t>0 is equicon-
tinuous.

Theorem 3 [Krasnoselskii’s fixed point theorem][25] Let S be a bounded, closed
and convex subset of a Banach space X, and let P and Q map S into X such that
(i) for every pair x, y ∈ S, Px+Qy ∈ S,
(ii) P is a contraction,
(iii) Q is completely continuous.
Then there exists a fixed point of P +Q in S.

Let (Z, ∥.∥) be a Banach space and Zb be the set of all non-empty bounded
subsets of Z. Then we state the following definition:

Definition 4 [Measure of Noncompactness][16] A map γ : Zb → R+ satisfying

γ(co(O)) = γ(O), for every O ∈ Zb,
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where co(O) is the closure of the convex hull of O, is called the measure of non-
compactness in Z.

The measure of noncompactness γ is said to be [29]
(i) regular : if γ(O) = 0 ⇔ O is relatively compact set,
(ii) monotone: if O1 ⊂ O2 =⇒ γ(O1) ≤ γ(O2),
(iii) algebraically semi-additive : if γ({z} ∪O) = γ(O), for every z ∈ Z,
(iv) nonsingular : if γ(O1 +O2) ≤ γ(O1) + γ(O1).

It may be noted that Hausdorff measure of noncompactness β is one of the
important measures of noncompactness. It is defined for any O ∈ Zb as

β(O) = inf{r > 0|O ⊆ ∪n
i=1Or(zi) where zi ∈ Z},

with Or(zi) as closed balls of radius ≤ r with center at zi, i = 1, 2, . . . , n.

Lemma 4 [29] Let Ω ⊂ Z be bounded. Then for every ϵ > 0, there exists a
sequence {zn}∞n=1 ⊂ Ω such that

β(Ω) ≤ 2β
(
{zn}∞n=1

)
+ ϵ.

Lemma 5 [29] Let {zn}∞n=1 be a sequence of Bochner integrable functions from
J into Z with

∥zn(t)∥ ≤ u(t) for almost all t ∈ J and every n ∈ N,

where u ∈ L(J,R+). Then the function ϕ(t) = β
(
{zn}∞n=1

)
∈ L(J,R+) satisfies

β

({∫ t

0

zn(s)ds
∣∣∣n ∈ N

})
≤ 2

∫ t

0

ϕ(s)ds.

Lemma 6 [29] Let Ω ⊂ C(J,X) be equicontinuous and bounded. Then β(Ω(t))
is continuous on J , and

β(D) = sup
t∈J

β(Ω(t)).

Theorem 4 [Darbo-Sadovskii’s fixed point theorem][29] Let S be a bounded,
closed and convex subset of a Banach space X and the continuous mapping Q : S →
S be a γ-contraction. Then the mapping Q has at least one fixed point in S.

Definition 5 [γ-condensing map][16] A continuous map Q : Ω ⊆ Z → Z is
called γ-condensing if for any bounded set Ω0 ⊆ Ω with γ(Ω) > 0, we have
γ(Q(Ω0)) < γ(Ω0).

For γ, a monotone nonsingular measure of noncompactness in Z, the following
fixed point theorem can be stated [16, 2, 15]:

Lemma 7 Assume Ω to be a closed convex bounded subset of Z and Q : Ω → Ω a
γ-condensing map. Then the set of fixed points of Q forms a nonempty compact set.

Lemma 8 [30] For α ∈ (0, 1] and 0 < a ≤ b, we have |aα − bα| ≤ (b− a)α.

3. Main Results

Let Br, for each r > 0, denote the closed ball of radius r in D.
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Theorem 5 Assume that
[Hf1] for the function f : J × C ×X → Y , the following conditions hold:
(i) for each (ϕ, x) ∈ C ×X, the function t → f(t, ϕ, x) is strongly measurable.
(ii) f : J ×C ×X → Y is continuous and there exist a constant p1 ∈ (0, α) and two

functions f1, f2 ∈ L
1
p1 (J,R+) such that

∥f(t, ϕ1, x)− f(t, ϕ2, x2)∥Y ≤ f1(t)∥ϕ1 − ϕ2∥C + f2(t)∥x1 − x2∥X ,

for all ϕi ∈ C, xi ∈ X (i = 1, 2), a.e. t ∈ J = [0, a], and

Iα0+k ∈ C(J,R+), where k(t) := tf2(t), t ∈ J.

[Hh1] for a continuous function h : ∆×C → X and a constant H > 0, the following
is satisfied: ∫ t

0

∥h(t, s, xs)− h(t, s, ys)∥Xds ≤ H∥xs − ys∥C ,

for all xs, ys ∈ C and (t, s) ∈ ∆.
[Hg1] for a function g : Cn → C, a constant G > 0 exists such that

∥g(xt1 , . . . , xtn)− g(yt1 , . . . , ytn)∥C ≤ G∥x− y∥D,
for x, y ∈ D.

Then, problem (1) has a unique mild solution x ∈ D subject to

Θ := M∥B−1∥

[
∥B∥G+

1

Γ(α)

bα−p1(
α−p1

1−p1

)1−p1

(
∥f1∥

L
1
p1 (J,R+)

+H∥f2∥
L

1
p1 (J,R+)

)]
< 1.

Proof. Consider a map T defined on D by

(Tx)(t) =


B−1Sα(t)B[ϕ(0)− (g(xt1 , xt2 , . . . , xtn))(0)]

+
∫ t

s=0
(t− s)α−1B−1Tα(t− s)f

(
s, xs,

∫ s

0
h(s, τ, xτ )dτ

)
ds, t ∈ J = [0, a],

ϕ(t)− (g(xt1 , xt2 , . . . , xtn))(t), t ∈ [−d, 0].

To show that T is well-defined on Br, r > 0:
Define a function v ∈ D such that ∥v∥X ≡ 0 for each t ∈ [−d, a]. Then for any
r > 0 and x ∈ Br, the following can be obtained for t ∈ [0, a]:∫ t

s=0

∥∥∥(t− s)α−1B−1Tα(t− s)f
(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)∥∥∥

X
ds

≤
∫ t

s=0

∥∥∥(t− s)α−1B−1Tα(t− s)f
(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)∥∥∥

X
ds

≤ ∥B−1∥ M
Γ(α)

∫ t

s=0

(t− s)α−1
∥∥∥f(s, xs,

∫ s

0

h(s, τ, xτ )dτ
)∥∥∥

Y
ds.

Using [Hf1] and [Hh1], we have∥∥∥∥f(s, xs,

∫ s

0

h(s, τ, xτ )dτ
)∥∥∥∥

Y

≤ f1(s)∥xs − vs∥C + f2(s)

∥∥∥∥∫ s

0

h(s, τ, xτ )dτ

∥∥∥∥
X

+ ∥f(s, vs, 0)∥Y

≤ f1(s)r + f2(s)H∥xτ − vτ∥C + f2(s)H1

∫ s

0

dτ + F

≤ f1(s)r +Hrf2(s) +H1sf2(s) + F,

where ∥h(t, s, 0)∥X ≤ H1 ∀ (t, s) ∈ ∆ and ∥f(t, 0, 0)∥Y ≤ F ∀ t ∈ J .
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Therefore, by using Hölder’s inequality, the following can be obtained:∫ t

s=0

∥∥∥(t− s)α−1B−1Tα(t− s)f
(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)∥∥∥

X
ds

≤ ∥B−1∥ M
Γ(α)

[
r

∫ t

s=0

(t− s)α−1f1(s)ds+Hr

∫ t

s=0

(t− s)α−1f2(s)ds

+H1

∫ t

s=0

s(t− s)α−1f2(s)ds+ F

∫ t

s=0

(t− s)α−1ds

]
≤ ∥B−1∥ M

Γ(α)

[
r

bα−p1(
α−p1

1−p1

)1−p1

(
∥f1∥

L
1
p1 (J,R+)

+H∥f2∥
L

1
p1 (J,R+)

)

+H1b
1+α−p1

{
Γ
(

2−p1

1−p1

)
Γ
(

α−p1

1−p1

)
Γ
(

2+α−2p1

1−p1

) }1−p1

∥f2∥
L

1
p1 (J,R+)

+ F
bα

α

]
.

It means that
∥∥∥(t − s)α−1B−1Tα(t − s)f

(
s, xs,

∫ s

0
h(s, τ, xτ )

)∥∥∥
X

is Lebesgue in-

tegrable with respect to s ∈ [0, t] ∀ t ∈ [0, a]. Therefore, (t − s)α−1B−1Tα(t −
s)f

(
s, xs,

∫ s

0
h(s, τ, xτ )

)
is Bochner integrable with respect to s ∈ [0, t] for all

t ∈ [0, a]. Hence, (Tx)(.) is well-defined on [0, a] for any x ∈ Br.
Also, (Tx)(.) is well-defined on [−d, 0] for any x ∈ Br. Thus, T is well-defined

on Br ⊂ D.
To show that Tx ∈ D for x ∈ D:
Let x ∈ D and −d ≤ s1 < s2 ≤ 0. Then

∥(Tx)(s2)− (Tx)(s1)∥X ≤ ∥ϕ(s2)− ϕ(s1)∥X
+ ∥(g(xt1 , xt2 , . . . , xtn))(s2)− (g(xt1 , xt2 , . . . , xtn))(s1)∥X
−→ 0 as s2 → s1.

Let 0 < s1 < s2 ≤ a. Then

∥(Tx)(s2)− (Tx)(s1)∥X
≤

∥∥B−1Sα(s2)B[ϕ(0)− (g(xt1 , xt2 , . . . , xtn))(0)]

−B−1Sα(s1)B[ϕ(0)− (g(xt1 , xt2 , . . . , xtn))(0)]
∥∥
X

+

∥∥∥∥∫ s2

s=0

(s2 − s)α−1B−1Tα(s2 − s)f
(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)
ds

−
∫ s1

s=0

(s1 − s)α−1B−1Tα(s1 − s)f
(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)
ds

∥∥∥∥
X

.

Now, using Lemma 2(ii), we have∥∥B−1Sα(s2)B[ϕ(0)− (g(xt1 , xt2 , . . . , xtn))(0)]

−B−1Sα(s1)B[ϕ(0)− (g(xt1 , xt2 , . . . , xtn))(0)]
∥∥
X

≤ ∥B−1∥∥Sα(s2)B[ϕ(0)− (g(xt1 , xt2 , . . . , xtn))(0)]

− Sα(s1)B[ϕ(0)− (g(xt1 , xt2 , . . . , xtn))(0)]∥Y
−→ 0 as s2 → s1
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and∥∥∥∥∫ s2

s=0

(s2 − s)α−1B−1Tα(s2 − s)f
(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)
ds

−
∫ s1

s=0

(s1 − s)α−1B−1Tα(s1 − s)f
(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)
ds

∥∥∥∥
X

≤ ∥B−1∥ M
Γ(α)

∫ s2

s1

(s2 − s)α−1

∥∥∥∥f(s, xs,

∫ s

0

h(s, τ, xτ )dτ
)∥∥∥∥

Y

ds

+ ∥B−1∥
∫ s1

0

(s1 − s)α−1

∥∥∥∥[Tα(s2 − s)− Tα(s1 − s)
]
f
(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)∥∥∥∥

Y

ds

+

∥∥∥∥∫ s1

0

[
(s2 − s)α−1 − (s1 − s)α−1

]
B−1Tα(s2 − s)f

(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)
ds

∥∥∥∥
X

=: I1 + I2 + I3,
where

I1 = ∥B−1∥ M
Γ(α)

∫ s2

s1

(s2 − s)α−1

∥∥∥∥f(s, xs,

∫ s

0

h(s, τ, xτ )dτ
)∥∥∥∥

Y

ds,

I2 = ∥B−1∥
∫ s1

0

(s1 − s)α−1

∥∥∥∥[Tα(s2 − s)− Tα(s1 − s)
]
f
(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)∥∥∥∥

Y

ds,

I3 =

∥∥∥∥∫ s1

0

[
(s2 − s)α−1 − (s1 − s)α−1

]
B−1Tα(s2 − s)f

(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)
ds

∥∥∥∥
X

.

Now,

I1 ≤ ∥B−1∥ M
Γ(α)

[
∥x∥D

∫ s2

s1

(s2 − s)α−1f1(s)ds+H∥x∥D
∫ s2

s1

(s2 − s)α−1f2(s)ds

+H1

∫ s2

s1

(s2 − s)α−1sf2(s)ds+ F

∫ s2

s1

(s2 − s)α−1ds

]
≤ ∥B−1∥ M

Γ(α)

[
∥x∥D

(s2 − s1)
α−p1(

α−p1

1−p1

)1−p1

(
∥f1∥

L
1
p1 (J,R+)

+H∥f2∥
L

1
p1 (J,R+)

)
+ I ′

1

+ F
(s2 − s1)

α

α

]
,

where

I ′
1 = H1

∫ s2

s1

(s2 − s)α−1sf2(s)ds

≤ H1

∣∣∣∣ ∫ s2

0

(s2 − s)α−1sf2(s)ds−
∫ s1

0

(s1 − s)α−1sf2(s)ds

∣∣∣∣
+H1

∣∣∣∣ ∫ s1

0

[
(s1 − s)α−1 − (s2 − s)α−1

]
sf2(s)ds

∣∣∣∣
=: I11 + I12,

with

I11 := H1

∣∣∣∣ ∫ s2

0

(s2 − s)α−1sf2(s)ds−
∫ s1

0

(s1 − s)α−1sf2(s)ds

∣∣∣∣
−→ 0 as s2 → s1 (using [Hf1])
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and

I12 := H1

∣∣∣∣ ∫ s1

0

[
(s1 − s)α−1 − (s2 − s)α−1

]
sf2(s)ds

∣∣∣∣
≤ H1

∫ s1

0

[(s1 − s)α−1 − (s2 − s)α−1]sf2(s)ds.

Now we have [
(s1 − s)α−1 − (s2 − s)α−1

]
sf2(s) ≤ (s1 − s)α−1sf2(s)

and since
∫ s1
0

(s1 − s)α−1sf2(s)ds exists, therefore Lebesgue’s dominated conver-
gence theorem gives I12 → 0 as s2 → s1. Thus, I1 → 0 as s2 → s1.

I2 ≤ ∥B−1∥
∫ s1

0

(s1 − s)α−1∥Tα(s2 − s)− Tα(s1 − s)∥B(Y )

[
f1(s)∥x∥D +Hf2(s)∥x∥D

+H1f2(s)s+ F
]
ds

=: I21 + I22 + I23 + I24,

where

I21 = ∥B−1∥∥x∥D
∫ s1

0

(s1 − s)α−1∥Tα(s2 − s)− Tα(s1 − s)∥B(Y )f1(s)ds,

I22 = H∥B−1∥∥x∥D
∫ s1

0

(s1 − s)α−1∥Tα(s2 − s)− Tα(s1 − s)∥B(Y )f2(s)ds,

I23 = H1∥B−1∥
∫ s1

0

(s1 − s)α−1∥Tα(s2 − s)− Tα(s1 − s)∥B(Y )sf2(s)ds,

I24 = F∥B−1∥
∫ s1

0

(s1 − s)α−1∥Tα(s2 − s)− Tα(s1 − s)∥B(Y )ds.

Let us consider ϵ > 0 to be sufficiently small. Consequently,

I21 = ∥B−1∥∥x∥D
∫ s1−ϵ

0

(s1 − s)α−1f1(s)∥Tα(s2 − s)− Tα(s1 − s)∥B(Y )ds

+
∥∥B−1

∥∥∥x∥D ∫ s1

s1−ϵ

(s1 − s)α−1f1(s)∥Tα(s2 − s)− Tα(s1 − s)∥B(Y )ds

≤ ∥B−1∥∥x∥D
∫ s1

0

(s1 − s)α−1f1(s)ds sup
s∈[0,s1−ϵ]

∥Tα(s2 − s)− Tα(s1 − s)∥B(Y )ds

+ ∥B−1∥∥x∥D
2M

Γ(α)

∫ s1

s1−ϵ

(s1 − s)α−1f1(s)ds

≤ ∥B−1∥∥x∥D
∫ s1

0

(s1 − s)α−1f1(s)ds sup
s∈[0,s1−ϵ]

∥Tα(s2 − s)− Tα(s1 − s)∥B(Y )ds

+
ϵα−p1(

α−p1

1−p1

)1−p1
∥f1∥

L
1
p1 (J,R+)

.

As Tα(t) is known to be continuous in the uniform operator topology for t > 0, we
have I21 → 0 as s2 → s1, ϵ → 0. Similarly, it can be shown that I22, I23 and I24
also tend to zero as s2 → s1, ϵ → 0. Therefore, I2 → 0 as s2 → s1.
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Now

I3 ≤ ∥B−1∥ M
Γ(α)

∥x∥D
∫ s1

0

[
(s1 − s)α−1 − (s2 − s)α−1

]
f1(s)ds

+H∥B−1∥ M
Γ(α)

∥x∥D
∫ s1

0

[(s1 − s)α−1 − (s2 − s)α−1]f2(s)ds

+H1∥B−1∥ M
Γ(α)

∫ s1

0

[
(s1 − s)α−1 − (s2 − s)α−1

]
f(s)sds

+ F∥B−1∥ M
Γ(α)

∫ s1

0

[
(s1 − s)α−1 − (s2 − s)α−1

]
ds

=: I31 + I32 + I33 + I34.

We have

I31 = ∥B−1∥ M
Γ(α)

∥x∥D
∫ s1

0

[
(s1 − s)α−1 − (s2 − s)α−1

]
f1(s)ds

≤ ∥B−1∥ M
Γ(α)

∥x∥D
∥f1∥

L
1

α1 (J,R+)(
α−p1

1−p1

)1−p1
(s2 − s1)

α−p1

−→ 0 as s2 → s1.

Similarly, it can be shown that I32, I33 and I34 also tend to zero as s2 → s1.
Therefore, I3 → 0 as s2 → s1.

Thus, for 0 < s1 < s2 ≤ a,

∥(Tx)(s2)− (Tx)(s1)∥X −→ 0 as s2 → s1.

Therefore, Tx ∈ D for any x ∈ D.
In order to show that T has a unique fixed point on D, it needs to be established

that T has a unique fixed point on Br0 ⊂ D, where r0 satisfies

r0 ≥ M∥B∥∥B−1∥
(
∥ϕ∥C + ∥g(vt1 , vt2 , . . . , vtn)∥C

)
+Θr0

+H1b
1+α−p1

{
Γ
(

2−p1

1−p1

)
Γ
(

α−p1

1−p1

)
Γ
(

2+α−2p1

1−p1

) }1−p1

∥f2∥
L

1
p1 (J,R+)

+ F
bα

α
.

To show that T (Br0) ⊂ Br0 .

For x ∈ Br0 and t ∈ [0, a], the following is obtained:

∥(Tx)(t)∥X ≤
∥∥B−1Sα(t)B[ϕ(0)− (g(xt1 , xt2 , . . . , xtn))(0)]

∥∥
X

+

∥∥∥∥∫ t

s=0

(t− s)α−1B−1Tα(t− s)f
(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)
ds

∥∥∥∥
X

≤ M∥B∥∥B−1∥
(
∥ϕ∥C +Gr0 + ∥g(vt1 , vt2 , . . . , vtn)∥C

)
+ ∥B−1∥ M

Γ(α)

[
r0

bα−p1(
α−p1

1−p1

)1−p1

(
∥f1∥

L
1
p1 (J,R+)

+H∥f2∥
L

1
p1 (J,R+)

)

+H1b
1+α−p1

{
Γ
(

2−p1

1−p1

)
Γ
(

α−p1

1−p1

)
Γ
(

2+α−2p1

1−p1

) }1−α1

∥f2∥
L

1
p1 (J,R+)

+ F
bα

α

]
,
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and for t ∈ [−d, 0],

∥(Tx)(t)∥X ≤ ∥ϕ(t)∥X + ∥(g(xt1 , xt2 , . . . , xtn))(t)∥X
≤ ∥ϕ∥C +Gr0 + ∥g(vt1 , vt2 , . . . , vtn)∥C .

Thus, Tx ∈ Br0 for any x ∈ Br0 .
To show that T is a contraction on Br0 .

Let x, y ∈ Br0 . For t ∈ [0, a], using [Hf1], [Hh1] and [Hg1], we have

∥(Tx)(t)− (Ty)(t)∥X
≤

∥∥B−1Sα(t)B
[
(g(xt1 , xt2 , . . . , xtn))(0)− (g(yt1 , yt2 , . . . , ytn))(0)

]∥∥
X

+

∥∥∥∥∫ t

s=0

(t− s)α−1B−1Tα(t− s)
[
f
(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)

− f
(
s, ys,

∫ s

0

h(s, τ, yτ )dτ
)]

ds

∥∥∥∥
X

≤ M∥B∥
∥∥B−1

∥∥∥(g(xt1 , xt2 , . . . , xtn))(0)− (g(yt1 , yt2 , . . . , ytn))(0)∥X

+ ∥B−1∥ M
Γ(α)

∫ t

s=0

(t− s)α−1
∥∥∥f(s, xs,

∫ s

0

h(s, τ, xτ )dτ
)

− f
(
s, ys,

∫ s

0

h(s, τ, yτ )dτ
)∥∥∥

Y
ds

≤ MG∥B∥∥B−1∥∥x− y∥D + ∥B−1∥ M
Γ(α)

(∫ t

0

(t− s)α−1f1(s)ds
)
∥x− y∥D

+ ∥B−1∥ M
Γ(α)

∫ t

s=0

(t− s)α−1
(∫ s

0

∥h(s, τ, xτ )− h(s, τ, yτ )∥Xdτ
)
f2(s)ds

≤ Θ∥x− y∥D.

Also, for t ∈ [−d, 0],

∥(Tx)(t)− (Ty)(t)∥X ≤ G∥x− y∥D.

Therefore,
∥Tx− Ty∥D ≤ Θ∥x− y∥D.

Therefore, by means of Banach fixed point theorem, it is established that T has a
unique fixed point in D.

Theorem 6 Assume that
[Hf2] a function f : J × C ×X → Y is such that
(i) for a.e. t ∈ J , the function (ϕ, x) → f(t, ϕ, x) is continuous, and for each
(ϕ, x) ∈ C ×X, the function t → f(t, ϕ, x) is strongly measurable.

(ii) there exist a constant p1 ∈ (0, α) and positive functions f1, f2, f3 ∈ L
1
p1 (J,R+)

such that
∥f(t, ϕ, x)∥Y ≤ f1(t) + f2(t)∥ϕ∥C + f3(t)∥x∥X ,

for any ϕ ∈ C, x ∈ X and t ∈ J .
[Hh2] a function h : ∆× C → X is such that
(i) for each (t, s) ∈ ∆, the function h(t, s, .) : C → X is continuous, and for each
x ∈ X, the function h(., ., x) : ∆ → X is strongly measurable.
(ii) there exists a function H(t, s) ∈ C(∆,R+) such that

∥h(t, s, ϕ)∥X ≤ H(t, s)∥ϕ∥C , for (t, s) ∈ ∆, ϕ ∈ C
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and H∗ = supt∈J

∫ t

0
H(t, s)ds < ∞.

and [Hg1] holds. Then problem (1) admits a mild solution in D subject to

Σ := M∥B−1∥

[
∥B∥G+

1

Γ(α)

bα−p1(
α−p1

1−p1

)1−p1

(
∥f2∥

L
1
p1 (J,R+)

+H∗∥f3∥
L

1
p1 (J,R+)

)]
< 1.

Proof. Consider a map T defined on D by

(Tx)(t) =


B−1Sα(t)B[ϕ(0)− (g(xt1 , xt2 , . . . , xtn))(0)]

+
∫ t

s=0
(t− s)α−1B−1Tα(t− s)f

(
s, xs,

∫ s

0
h(s, τ, xτ )dτ

)
ds, t ∈ J = [0, a],

ϕ(t)− (g(xt1 , xt2 , . . . , xtn))(t), t ∈ [−d, 0].

Then under the given assumptions, it is clearly evident that the map T is well-
defined on Br for each r > 0.

Choose

r0 ≥ M∥B∥
∥∥B−1

∥∥(∥ϕ∥C + ∥g(vt1 , vt2 , . . . , vtn)∥C
)
+Σr0

+
∥∥B−1

∥∥ M
Γ(α)

bα−p1(
α−p1

1−p1

)1−p1
∥f1∥

L
1
p1 (J,R+)

and define two operators T1 and T2 on Br0 given by

(T1x)(t) =

{
B−1Sα(t)B[ϕ(0)− (g(xt1 , xt2 , . . . , xtn))(0)], t ∈ J = [0, a],

ϕ(t)− (g(xt1 , xt2 , . . . , xtn))(t), t ∈ [−d, 0],

and

(T2x)(t) =

{∫ t

s=0
(t− s)α−1B−1Tα(t− s)f

(
s, xs,

∫ s

0
h(s, τ, xτ )dτ

)
ds, t ∈ J = [0, a],

0, t ∈ [−d, 0].

Step 1 : To show that T1x+ T2y ∈ Br whenever x, y ∈ Br.
Proceeding in a similar manner as was followed in Theorem 3, it can be shown that
T1x, T2x ∈ D for any x ∈ Br0 . For x, y ∈ Br0 and t ∈ [−d, 0], the following can be
obtained:

∥(T1x)(t) + (T2x)(t)∥X ≤ ∥ϕ∥C +Gr0 + ∥g(vt1 , vt2 , . . . , vtn)∥C .
Now, for t ∈ [0, a],

∥(T1x)(t) + (T2x)(t)∥X

≤ ∥B−1Sα(t)B[ϕ(0)− (g(xt1 , xt2 , . . . , xtn))(0)]∥C +

∫ t

s=0

∥∥∥(t− s)α−1B−1Tα(t− s)

× f
(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)∥∥∥

X
ds

≤ M∥B∥∥B−1∥
(
∥ϕ∥C +Gr0 + ∥g(vt1 , vt2 , . . . , vtn)∥C

)
+ ∥B−1∥ M

Γ(α)

bα−p1(
α−p1

1−p1

)1−p1

×
(
∥f1∥

L
1
p1 (J,R+)

+ ∥f2∥
L

1
p1 (J,R+)

r0 +H∗∥f3∥
L

1
p1 (J,R+)

r0

)
.

Therefore, T1x+ T2y ∈ Br0 for any x, y ∈ Br0 .
Step 2 : To show that T1 is a contraction.
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For x, y ∈ Br0 and t ∈ [−d, a], we have ∥(T1x)(t)−(T1y)(t)∥X ≤ M∥B∥∥B−1∥G∥x−
y∥D, which shows that T1 is a contraction.
Step 3 : To show that T2 is completely continuous.
{T2x|x ∈ Br0} is uniformly bounded : It follows easily from Step 1 .
{T2x|x ∈ Br0} is equicontinuous : Let x ∈ Br0 and 0 ≤ s1 < s2 ≤ a. Then

∥(T2x)(s2)− (T2x)(s1)∥X

≤ ∥B−1∥ M
Γ(α)

∫ s2

s1

(s2 − s)α−1
∥∥∥f(s, xs,

∫ s

0

h(s, τ, xτ )dτ
)∥∥∥

Y
ds

+ ∥B−1∥ M
Γ(α)

∫ s1

0

[(s1 − s)α−1 − (s2 − s)α−1]
∥∥∥f(s, xs,

∫ s

0

h(s, τ, xτ )dτ
)∥∥∥

Y
ds

+ ∥B−1∥
∫ s1

0

(s1 − s)α−1∥[Tα(s2 − s)− Tα(s1 − s)]∥B(Y )

∥∥∥f(s, xs,

∫ s

0

h(s, τ, xτ )dτ
)∥∥∥

Y
ds

=: I1 + I2 + I3,
where

I1 = ∥B−1∥ M
Γ(α)

∫ s2

s1

(s2 − s)α−1
∥∥∥f(s, xs,

∫ s

0

h(s, τ, xτ )dτ
)∥∥∥

Y
ds,

I2 = ∥B−1∥ M
Γ(α)

∫ s1

0

[(s1 − s)α−1 − (s2 − s)α−1]
∥∥∥f(s, xs,

∫ s

0

h(s, τ, xτ )dτ
)∥∥∥

Y
ds,

I3 = ∥B−1∥
∫ s1

0

(s1 − s)α−1∥[Tα(s2 − s)− Tα(s1 − s)]∥B(Y )

∥∥∥f(s, xs,

∫ s

0

h(s, τ, xτ )dτ
)∥∥∥

Y
ds.

Now, using [Hf2],

I1 ≤ ∥B−1∥ M
Γ(α)

∫ s2

s1

(s2 − s)α−1

{
f1(s) + f2(s)∥xs∥C + f3(s)

∥∥∥∫ s

0

h(s, τ, xτ )dτ
∥∥∥
X

}
ds

≤ ∥B−1∥ M
Γ(α)

(s2 − s1)
α−p1(

α−p1

1−p1

)1−p1

[
∥f1∥

L
1
p1 (J,R+)

+ ∥x∥D∥f2∥
L

1
p1 (J,R+)

+H∗∥x∥D∥f3∥
L

1
p1 (J,R+)

]
−→ 0 as s2 → s1.

Again, using [Hf2],

I2 ≤ ∥B−1∥ M
Γ(α)

∫ s1

0

[(s1 − s)α−1 − (s2 − s)α−1
](

f1(s) + f2(s)∥xs∥C

+ f3(s)
∥∥∥∫ s

0

h(s, τ, xτ )dτ
∥∥∥
X

)
ds

≤ ∥B−1∥ M
Γ(α)

(
∥f1∥

L
1
p1 (J,R+)

+ ∥x∥D∥f2∥
L

1
p1 (J,R+)

+H∗∥x∥D∥f3∥
L

1
p1 (J,R+)

)
×
(∫ s1

0

([
(s1 − s)

α−1
1−p1 − (s1 − s)

α−1
1−p1

])
ds

)1−p1

≤ ∥B−1∥ M
Γ(α)

(s2 − s1)
α−p1(

α−p1

1−p1

)1−p1

[
∥f1∥

L
1
p1 (J,R+)

+ ∥x∥D∥f2∥
L

1
p1 (J,R+)

+H∗∥x∥D∥f3∥
L

1
p1 (J,R+)

]
−→ 0 as s2 → s1.



JFCA-2020/12(2) ON MILD SOLUTIONS OF VOLTERRA FDE 107

We further have

I3 ≤ ∥B−1∥
∫ s1

0

(s1 − s)α−1∥Tα(s2 − s)− Tα(s1 − s)∥B(Y )f1(s)ds

+ ∥x∥D∥B−1∥
∫ s1

0

(s1 − s)α−1∥Tα(s2 − s)− Tα(s1 − s)∥B(Y )f2(s)ds

+H∗∥x∥D∥B−1∥
∫ s1

0

(s1 − s)α−1∥Tα(s2 − s)− Tα(s1 − s)∥B(Y )f3(s)ds

=: I31 + I32 + I33,

where

I31 = ∥B−1∥
∫ s1

0

(s1 − s)α−1∥Tα(s2 − s)− Tα(s1 − s)∥B(Y )f1(s)ds,

I32 = ∥x∥D∥B−1∥
∫ s1

0

(s1 − s)α−1∥Tα(s2 − s)− Tα(s1 − s)∥B(Y )f2(s)ds,

I33 = H∗∥x∥D∥B−1∥
∫ s1

0

(s1 − s)α−1∥Tα(s2 − s)− Tα(s1 − s)∥B(Y )f3(s)ds.

For s1 = 0 and 0 < s2 ≤ a, I3 = 0. Therefore, for s1 > 0 and ϵ > 0 small enough,

I31 = ∥B−1∥
∫ s1−ϵ

0

(s1 − s)α−1∥Tα(s2 − s)− Tα(s1 − s)∥B(Y )f1(s)ds

+ ∥B−1∥
∫ s1

s1−ϵ

(s1 − s)α−1∥Tα(s2 − s)− Tα(s1 − s)∥B(Y )f1(s)ds.

Now, following similar arguments as in Theorem 3, it can be shown that I31, I32
and I33 tend to zero as s2 → s1, ϵ → 0. Thus, ∥(T2x)(s2) − (T2x)(s1)∥X → 0 as
s2 → s1 implying that {T2x|x ∈ Br0} is equicontinuous.
Step 4 : To show that T2 is continuous on Br0 :
Let (x(k)) ⊂ Br0 and x ∈ Br0 such that x(k) → x as k → ∞. Then, for t ∈ [0, a],
we have

∥(T2x
(k))(t)− (T2x)(t)∥X ≤ ∥B−1∥ M

Γ(α)

∫ t

s=0

(t− s)α−1
∥∥∥f(s, x(k)

s ,

∫ s

0

h(s, τ, x(k)
τ )dτ)

− f
(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)∥∥∥

Y
ds.

Using [Hh2] and Lebesgue’s dominated convergence theorem, we get∫ s

0

h(s, τ, x(k)
τ )dτ −→

∫ s

0

h(s, τ, xτ )dτ as k → ∞.

Consequently

f
(
s, x(k)

s ,

∫ s

0

h(s, τ, x(k)
τ )dτ

)
−→ f

(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)

as k → ∞.

Also, for each t ∈ J ,

(t− s)α−1
∥∥∥f(s, x(k)

s ,

∫ s

0

h(s, τ, x(k)
τ )dτ

)
− f

(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)∥∥∥

Y

≤ 2(t− s)α−1
[
f1(s) + r0f2(s) + r0H

∗f3(s)
]
,
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which is integrable for s ∈ [0, t) and t ∈ [0, a]. Hence, application of Lebesgue’s
dominated convergence theorem gives∫ t

s=0

(t− s)α−1
∥∥∥f(s, x(k)

s ,

∫ s

0

h(s, τ, x(k)
τ )dτ

)
− f

(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)∥∥∥

Y
ds

−→ 0 as k → ∞.

Therefore, T2 is continuous on Br0 .
Step 5 : To show that, for any t ∈ [−d, a], {(T2x)(t)|x ∈ Br0} is relatively
compact in X :
Let V (t) = {(T2x)(t)|x ∈ Br0}, t ∈ [−d, a]. For t ∈ [−d, 0], it is obvious that V (t)
is relatively compact in X. Now, let 0 < t ≤ a be fixed and ∀ ϵ ∈ (0, t) and ∀ θ > 0,

the following operator T ϵ,θ
2 is defined:

(T ϵ,θ
2 x)(t) = B−1

∫ t−ϵ

0

∫ ∞

θ

αω(t− s)α−1ξα(ω)T ((t− s)αω)f
(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)
dωds

= B−1T (ϵαθ)

∫ t−ϵ

0

∫ ∞

θ

αω(t− s)α−1ξα(ω)T ((t− s)αω − ϵαθ)

× f
(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)
dωds.

From the compactness of T (ϵαθ), (ϵαθ > 0), it is established that the set V ϵ,θ(t) =

{(T ϵ,θ
2 x)(t)|x ∈ Br0} is relatively compact in X ∀ ϵ ∈ (0, t) and ∀ θ > 0. Also, for

any x ∈ Br0 , the following holds:

∥(T2x)(t)− (T ϵ,θ
2 x)(t)∥X ≤ α∥B−1∥ M(

α−p1

1−p1

)1−p1

(
∥f1∥

L
1
p1 (J,R+)

+ r0∥f2∥
L

1
p1 (J,R+)

+ r0H
∗∥f3∥

L
1
p1 (J,R+)

)[
bα−p1

∫ θ

0

ωξα(ω)dω +
ϵα−p1

Γ(α+ 1)

]
−→ 0 as ϵ → 0, θ → 0.

Therefore, application of Arzelá-Ascoli theorem tells that {T2x|x ∈ Br0} is rel-
atively compact which in turn implies that T2 is completely continuous. Conse-
quently, Krasnoselskii’s fixed point theorem guarantees that T1 + T2 has a fixed
point on Br0 ⊂ D.

Theorem 7 Assume that earlier hypotheses [Hf2], [Hh2] and the following
condition hold:
[Hg2] g : Cn → C is completely continuous and there exist constants G1, G2 > 0
such that

∥g(xt1 , . . . , xtn)∥C ≤ G1∥x∥D +G2,

for all x ∈ D.
Then problem (1) admits a mild solution in D provided

χ := M∥B−1∥

[
∥B∥G1+

1

Γ(α)

bα−p1(
α−p1

1−p1

)1−p1

(
∥f2∥

L
1
p1 (J,R+)

+H∗∥f3∥
L

1
p1 (J,R+)

)]
< 1.

Proof. The proof can be accomplished in a similar manner like the one for
Theorem 3. Therefore, only the new steps in this proof are presented.



JFCA-2020/12(2) ON MILD SOLUTIONS OF VOLTERRA FDE 109

Consider a map T defined on D by

(Tx)(t) =


B−1Sα(t)B[ϕ(0)− (g(xt1 , xt2 , . . . , xtn))(0)]

+
∫ t

s=0
(t− s)α−1B−1Tα(t− s)f

(
s, xs,

∫ s

0
h(s, τ, xτ )dτ

)
ds, t ∈ J = [0, a],

ϕ(t)− (g(xt1 , xt2 , . . . , xtn))(t), t ∈ [−d, 0].

Then T is well-defined on Br for each r > 0 and T (Br0) ⊂ Br0 where r0 is chosen
such that

r0 ≥ M∥B∥∥B−1∥
(
∥ϕ∥C +G2

)
+ χr0 + ∥B−1∥ M

Γ(α)

bα−p1(
α−p1

1−p1

)1−p1
∥f1∥

L
1
p1 (J,R+)

.

The operator T is split into the following two operators T1 and T2 on Br0 :

(T1x)(t) =

{
B−1Sα(t)B[ϕ(0)− (g(xt1 , xt2 , . . . , xtn))(0)], t ∈ J = [0, a],

0, t ∈ [−d, 0],

and

(T2x)(t) =

{∫ t

s=0
(t− s)α−1B−1Tα(t− s)f

(
s, xs,

∫ s

0
h(s, τ, xτ )dτ

)
ds, t ∈ J = [0, a],

ϕ(t)− (g(xt1 , xt2 , . . . , xtn))(t), t ∈ [−d, 0].

In order to show that T has a unique fixed point on D, it is required to establish
that T is completely continuous on Br0 .

Obviously {Tx|x ∈ Br0} is uniformly bounded and that {Tx|x ∈ Br0} is equicon-
tinuous follows from Theorem 3 and Lemma 2. Further, [Hg2] gives that T is contin-
uous on Br0 . In order to establish that for any t ∈ [−d, a], {(Tx)(t)|x ∈ Br0} are rel-
atively compact in X, it is sufficient to show that for t ∈ [−d, 0], {(T1x)(t)|x ∈ Br0}
and {(T2x)(t)|x ∈ Br0} is relatively compact inX. The fact that {(T2x)(t)|x ∈ Br0}
for t ∈ [−d, a] are relatively compact in X easily follows from hypothesis [Hg2] and
Theorem 3.

Let V (t) = {(T1x)(t)|x ∈ Br0}, t ∈ [−d, a]. For t ∈ [−d, 0], it is obvious that
V (t) = {0} which is relatively compact in X.

Now, for 0 < t ≤ a fixed and ∀ θ > 0, an operator T θ
1 is defined by

(T θ
1 x)(t) = B−1

∫ ∞

θ

ξα(ω)T (t
αω)B[ϕ(0)− (g(xt1 , xt2 , . . . , xtn))(0)]dω

= B−1T (ϵαθ)

∫ ∞

θ

ξα(ω)T (t
αω − ϵαθ)B[ϕ(0)− (g(xt1 , xt2 , . . . , xtn))(0)]dω.

From the compactness of T (ϵαθ), (ϵαθ > 0), it is obtained that the set V θ(t) =
{(T θ

1 x)(t)|x ∈ Br0} is relatively compact in X ∀ θ > 0. Now, for any x ∈ Br0 , the
following holds:

∥(T1x)(t)− (T θ
1 x)(t)∥X ≤ M∥B∥∥B−1∥

[
∥ϕ∥C +G1r0 +G2

] ∫ θ

0

ξα(ω)dω

−→ 0 as ϵ → 0, θ → 0,

which gives {(T1x)(t)|x ∈ Br0} for t ∈ [−d, a] to be relatively compact in X. By
Arzelá-Ascoli theorem, is can be concluded that {Tx|x ∈ Br0} is relatively com-
pact. Therefore γ(T (Br0)) = 0 and subsequently, by Darbo-Sadovskii’s fixed point
theorem, it is established that T has a fixed point in Br0 ⊂ D which is the mild
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solution of problem (1).

For establishing the results of the next theorem, we consider βX , βC and βD to
be the Hausdorff measure of noncompactness in X, C and D, respectively.

Theorem 8 Assume that
[Hf3] f : J × C ×X → Y satisfies the following:
(i) for a.e. t ∈ J , the function (ϕ, x) → f(t, ϕ, x) is continuous, and for each
(ϕ, x) ∈ C ×X, the function t → f(t, ϕ, x) is strongly measurable.
(ii) there exist a function F ∈ L1(J,R+) and a monotone decreasing function
F : R+ → R+ such that

∥f(t, ϕ, x)∥Y ≤ F (t)F
(
∥ϕ∥C + ∥x∥X

)
,

for a.e. t ∈ J , ϕ ∈ C and x ∈ X, and

Iα0+F ∈ C(J,R+).

(iii) there exists a function N(t, s) ∈ C(∆,R+) such that

βX

(
B−1Tα(t− s)f(s, C̃,D)

)
≤ N(t, s)

[
sup

θ∈[−d,0]

βX(C̃(θ)) + βX(D)

]
,

for every bounded subsets C̃ ⊂ C and D ⊂ X.
[Hh3] h : ∆× C → X satisfies the following:
(i) for each (t, s) ∈ ∆, the function h(t, s, .) : C → X is continuous, and for each
x ∈ X, the function h(., ., x) : ∆ → X is strongly measurable.
(ii) there exist a function L(t, s) ∈ C(∆,R+) and a monotone nondecreasing con-
tinuous function L : R+ → R+ such that

∥h(t, s, ϕ)∥X ≤ L(t, s)L(∥ϕ∥C), for (t, s) ∈ ∆, ϕ ∈ C

and L∗ = supt∈J

∫ t

0
L(t, s)ds < ∞.

(iii) there exists a function H(t, s) ∈ C(∆,R+) such that for any bounded set

C̃ ⊂ C,
βX(h(t, s, C̃)) ≤ H(t, s) sup

θ∈[−d,0]

βX(C̃(θ))

and H∗ = supt∈J

∫ t

0
H(t, s)ds < ∞.

[Hg3] g : Cn → C is continuous and
(i) there exists a monotone nondecreasing continuous function G : R+ → R+ such
that

∥g(xt1 , . . . , xtn)∥C ≤ G(∥x∥D), for all x ∈ D.
(ii) there exists a constant G > 0 such that for any bounded subset Ω ⊂ D,

βC

(
g(Ωt1 , . . . ,Ωtn)

)
≤ GβD(Ω).

[Hr] there exists a constant r > 0 such that

M∥B−1∥∥B∥(∥ϕ∥C +G(r)) + F (r + L∗L(r))∥B−1∥MF ∗ ≤ r,

where F ∗ = supt∈J Iα0+F (t).
Then problem (1) has a mild solution in D provided

M∥B−1∥∥B∥G+ 4(1 + 2H∗) sup
t∈J

∫ t

0

(t− s)α−1N(t, s)ds < 1.
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Proof. Defining an operator T : D → D as in the previous theorem and then
proceeding in a similar manner and by using the given assumptions, it can be
shown that T is well-defined and continuous on Br, for every r > 0. Also, we have
T (Br) ⊆ Br, for r > 0, satisfying assumption [Hr].

Now, T is split into two parts T1 and T2 as follows:

(T1x)(t) =

{
B−1Sα(t)B[ϕ(0)− (g(xt1 , xt2 , . . . , xtn))(0)], t ∈ J = [0, a],

ϕ(t)− (g(xt1 , xt2 , . . . , xtn))(t), t ∈ [−d, 0],

and

(T2x)(t) =

{∫ t

s=0
(t− s)α−1B−1Tα(t− s)f

(
s, xs,

∫ s

0
h(s, τ, xτ )dτ

)
ds, t ∈ J = [0, a],

0, t ∈ [−d, 0].

Let Ω ⊆ Br be a bounded set. Then using the algebraically semi-additive property
of βD, we have

βD(T (Ω)) ≤ βD(T1(Ω)) + βD(T2(Ω)),

where

βD(T1(Ω)) ≤ M∥B−1∥∥B∥GβD(Ω).

Now, using Lemma 2, for ϵ > 0, we can choose {xn}∞n=1 ⊂ Ω such that

βD(T2(Ω)) ≤ 2βD
(
T2({xn}

)
+ ϵ.

Because T2(Br) is equicontinuous, by using Lemma 2, we obtain

βD
(
T2({xn})

)
= sup

t∈[−d,a]

βX(T2{xn}(t))

= sup
t∈[0,a]

βX

({∫ t

s=0

(t− s)α−1B−1Tα(t− s)

× f
(
s, (xn)s,

∫ s

0

h(s, τ, (xn)τ )dτ
)
ds

})
.

Now, using Lemma 2, [Hf3](iii), [Hh3](iii), we get

βX

({∫ t

s=0

(t− s)α−1B−1Tα(t− s)f
(
s, (xn)s,

∫ s

0

h(s, τ, (xn)τ )dτ
)
ds

})
≤ 2

∫ t

s=0

βX

({
(t− s)α−1B−1Tα(t− s)f

(
s, (xn)s,

∫ s

0

h(s, τ, (xn)τ )dτ
)})

ds

≤ 2

∫ t

s=0

(t− s)α−1N(t, s)

[
βC

{
(xn)s

}
+ βX

({∫ s

0

h(s, τ, (xn)τ )dτ

})]
ds

≤ 2(1 + 2H∗)βD(Ω) sup
t∈[0,b]

∫ t

0

(t− s)α−1N(t, s)ds.

Therefore,

βD(T2(Ω)) ≤
[
4(1 + 2H∗) sup

t∈J

∫ t

0

(t− s)α−1N(t, s)ds

]
βD(Ω),

since ϵ > 0 is arbitrary.
Thus

βD(T (Ω)) ≤
[
M∥B−1∥∥B∥G+ 4(1 + 2H∗) sup

t∈J

∫ t

0

(t− s)α−1K(t, s)ds

]
βD(Ω).
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By using Lemma 2, it can be concluded that T has a fixed point in D, which is the
required mild solution of our problem.

Conclusion

In this work, the existence and uniqueness of mild solutions of a class of fractional
differential equations of Sobolev type with finite delay is discussed. The problem is
expressed in terms of Volterra integro-differential equation and nonlocal condition.
The first three results are established by applying Banach fixed point theorem,
Krasnoselskii’s fixed point theorem and Darbo-Sadovskii’s fixed point theorem, re-
spectively. In the last result, we drop the compactness assumption on the nonlocal
function g and instead use measure of noncompactness to obtain some sufficient
conditions which ensure the existence of mild solutions.
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