
Journal of Fractional Calculus and Applications

Vol. 12(2) July 2021, pp. 114-124

ISSN: 2090-5858.

http://math-frac.oreg/Journals/JFCA/

————————————————————————————————

BSDES DRIVEN BY BOTH STANDARD AND FRACTIONAL

BROWNIAN MOTIONS WITH NON-LIPSCHITZ CONDITIONS

SADIBOU AIDARA

Abstract. In this work, we deal with a backward stochastic differential equa-

tion driven by both standard and fractional Brownian motion with Hurst pa-

rameter H ≥ 1
2

whose generator satisfies the Mao’s condition in y and the

Lipschitz condition in z1 and z2. We establish existence and uniqueness of so-

lution in the case of non-Lipschitz condition on the generator. The stochastic
integral used throughout the paper is the divergence type integral.

1. Introduction

Backward stochastic differential equations (BSDEs in short) were first introduced
by Pardoux and Peng [9] with Lipschitz assumption under which they proved the
celebrated existence and uniqueness result. This pioneer work was extensively used
in many fields like stochastic interpretation of solutions of PDEs and financial
mathematics. Few years later, several authors investigated BSDEs with respect to
fractional Brownian motion

(
BHt
)
t≥0 with Hurst parameter H. This process is a

self-similar, i.e. BHat has the same law as aHBHt for any a > 0, it has a long range
dependence for H > 1

2 . For H = 1
2 we obtain a standard Wiener process, but for

H 6= 1
2 , this process is not a semimartingale. These properties make this process

a useful driving noise in models arising in physics, telecommunication networks,
finance and other fields.

Since BH is not a semimartingale when H 6= 1
2 , we cannot use the beautiful

classical theory of stochastic calculus to define the fractional stochastic integral. It
is a significant and challenging problem to extend the results in the classical sto-
chastic calculus to this fractional Brownian motion. Essentially, two different types
of integrals with respect to a fractional Brownian motion have been defined and
studied. The first one is the pathwise Riemann-Stieltjes integral (see Young [11]).
This integral has a proprieties of Stratonovich integral, which leads to difficulties
in applications. The second one, introduced in Decreusefond [5] is the divergence
operator (or Skorohod integral), defined as the adjoint of the derivative operator in
the framework of the Malliavin calculus. Since this stochastic integral satisfies the
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zero mean property and it can be expressed as the limit of Riemann sums defined
using Wick products, it was later developed by many authors.

Concerning the study of BSDEs in the fractional framework, the major problem
is the absence of a martingale representation type theorem with respect to the
fractional Brownian motion. Hu and Peng [8] overcame successfully this problem in
the case H > 1/2 by means of the quasi-conditional expectation. The authors prove
existence and uniqueness of the solution but with some restrictive assumptions on
the generator.

Recently, Fei et al [6] introduced the following type of BSDE driven by both
standard and fractional Brownian motions (SFBSDEs in short)

Yt = ξ +

∫ T

t

f(s, ηs, Ys, Z1,s, Z2,s)ds−
∫ T

t

Z1,sdBs −
∫ T

t

Z2,sdB
H
s , 0 ≤ t ≤ T

(1.1)
where (Bt)t≥0 is a standard Brownian motion,

(
BHt
)
t≥0 is a fractional Brownian

motion.
In [6], the authors abtained the existence and uniqueness of the solution of SFAB-
SDEs under Lipschitz assumption.

In this paper, inspired by the works of Fei et al [6] and Aidara and Sow [2],
we are interesting in extending this result with weak assumption on the drift. To
be precise, the generator function f satisfies |f(t, x, y, z1, z2)−f(t, x, y′, z′1, z

′
2)|2 ≤

ρ(t,|y−y′|2) + K(|z1 − z′1|2 + |z2 − z′2|2), where K is a positive constant and ρ is a
continuous nondecreasing concave function with additional properties. We establish
an existence and uniqueness result of solutions for this kind of BSDEs by a Picard-
type iteration, for which the well-known Bihari’s inequality played an important
role.

This paper is organized as follows. In section 2, we introduce some preliminaries.
In section 3, we prove existence and uniqueness of solutions of SFBSDEs under non-
Lipschitz condition.

2. Fractional Stochastic calculus

Let Ω be a non-empty set, F a σ−algebra of sets Ω, P a probability measure
defined on F and {Ft, t ∈ [0, T ]} a σ−algebra generated by both standard and
fractional Brownian motions. The triplet (Ω,F ,P) defines a probability space and
E the mathematical expectation with respect to the probability measure P.

The fractional Brownian motion
(
BHt
)
t≥0 with Hurst parameter H ∈ (0, 1) is a

zero mean Gaussian process with the covariance function

E[BHt B
H
s ] =

1

2

(
t2H + s2H − |t− s|2H

)
, t, s ≥ 0.

Suppose that the process
(
BHt
)
t≥0 is independent of the standard Brownian motion

(Bt)t≥0. Throughout this paper it is assumed that H ∈ (1/2, 1) is arbitrary but
fixed.

Denote φ(t, s) = H(2H − 1)|t− s|2H−2, (t, s) ∈ R2. Let ξ and η be measurable
functions on [0, T ]. Define

〈ξ, η〉t =

∫ t

0

∫ t

0

φ(u, v)ξ(u)η(v)dudv and ‖ξ‖2t = 〈ξ, ξ〉t.
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Note that, for any t ∈ [0, T ], 〈ξ, η〉t is a Hilbert scalar product. Let H be the
completion of the set of continuous functions under this Hilbert norm ‖·‖t and
(ξn)n be a sequence in H such that 〈ξi, ξj〉T = δij . Let PHT be the set of all

polynomials of fractional Brownian motion. Namely, PHT contains all elements of
the form

F (ω) = f

(∫ T

0

ξ1(t)dBHt ,

∫ T

0

ξ2(t)dBHt , . . . ,

∫ T

0

ξn(t)dBHt

)
where f is a polynomial function of n variables. The Malliavin derivative DH

t of F
is given by

DH
s F =

n∑
i=1

∂f

∂xi

(∫ T

0

ξ1(t)dBHt ,

∫ T

0

ξ2(t)dBHt , . . . ,

∫ T

0

ξn(t)dBHt

)
ξi(s) 0 ≤ s ≤ T.

Similarly, we can define the Malliavin derivative DtG of the Brownian functional

G(ω) = f

(∫ T

0

ξ1(t)dBt,

∫ T

0

ξ2(t)dBt, . . . ,

∫ T

0

ξn(t)dBt

)
.

The divergence operator DH is closable from L2(Ω, F,P) to L2(Ω, F,P, H).
Hence we can consider the space D1,2 is the completion of PHT with the norm

||F ||21,2 = E|F |2 + E||DH
s F ||2T .

Now we introduce the Malliavin φ-derivative DHt of F by

DHt F =

∫ T

0

φ(t, s)DH
s Fds.

We have the following (see[[7], Proposition 6.25]):

Theorem 2.1. Let F : (Ω,F ,P) −→ H be a stochastic processes such that

E

(
‖F‖2T +

∫ T

0

∫ T

0

|DHs Ft|2dsdt

)
< +∞.

Then, the Itô-Skorohod type stochastic integral denoted by
∫ T
0
FsdB

H
s exists in

L2 (Ω,F ,P) and satisfies

E

(∫ T

0

FsdB
H
s

)
= 0 and E

(∫ T

0

FsdB
H
s

)2

= E

(
‖F‖2T +

∫ T

0

∫ T

0

DHs FtDHt Fsdsdt

)
.

Let us recall the fractional Itô formula (see[[6], Theorem 3.1]).

Theorem 2.2. Let σ1 ∈ L2([0, T ]) and σ2 ∈ H be deterministic continuous func-
tions.
Assume that ‖σ2‖t is continuously differentiable as a function of t ∈ [0, T ]. Denote

Xt = X0 +

∫ t

0

α(s)ds+

∫ t

0

σ1(s)dBs +

∫ t

0

σ2(s)dBHs ,

where X0 is a constant, α(t) is a deterministic function with
∫ t
0
|α(s)|ds < +∞.

Let F (t, x) be continuously differentiable with respect to t and twice continuously
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differentiable with respect to x. Then

F (t,Xt) = F (0, X0) +

∫ t

0

∂F

∂s
(s,Xs)ds+

∫ t

0

∂F

∂x
(s,Xs)dXs

+
1

2

∫ t

0

∂2F

∂x2
(s,Xs)

[
σ2
1(s) +

d

ds
‖σ2‖2s

]
ds, 0 ≤ t ≤ T.

Let us finish this section by giving a fractional Itô chain rule (see[[6], Theorem
3.2]).

Theorem 2.3. Assume that for i = 1, 2, the processes µi, αi and ϑi, satisfy

E

[∫ T

0

µ2
i (s)ds+

∫ T

0

α2
i (s)ds+

∫ T

0

ϑ2i (s)ds

]
<∞.

Suppose that Dtαi(s) and DHt ϑi(s) are continuously differentiable with respect to
(s, t) ∈ [0, T ]2 for almost all ω ∈ Ω. Let Xt and Yt be two processes satisfying

Xt = X0 +

∫ t

0

µ1(s)ds+

∫ t

0

α1(s)dBs +

∫ t

0

ϑ1(s)dBHs , 0 ≤ t ≤ T,

Yt = Y0 +

∫ t

0

µ2(s)ds+

∫ t

0

α2(s)dBs +

∫ t

0

ϑ2(s)dBHs , 0 ≤ t ≤ T.

If for i = 1, 2, the following conditions hold:

E

[∫ T

0

|Dtαi(s)|2dsdt

]
< +∞, E

[∫ T

0

|DHt ϑi(s)|2dsdt

]
< +∞,

then

XtYt = X0Y0 +

∫ t

0

XsdYs +

∫ t

0

YsdXs

+

∫ t

0

[
α1(s)DsYs + α2(s)DsXs + ϑ1(s)DHs Ys + ϑ2(s)DHs Xs

]
ds,

which may be written formally as

d (XtYt) = XtdYt+YtdXt+
[
α1(t)DtYt + α2(t)DtXt + ϑ1(t)DHt Yt + ϑ2(t)DHt Xt

]
dt.

We are now in position to move on to study our main subject.

3. SFBSDEs with non-Lipschitz Conditions

In this section, our objective is to study the existence and uniqueness of the
solution to the following SFBSDE

Yt = ξ +

∫ T

t

f(s, ηs, Ys, Z1,s, Z2,s)ds−
∫ T

t

Z1,sdBs −
∫ T

t

Z2,sdB
H
s , 0 ≤ t ≤ T.

(3.1)
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3.1. Definitions and notations. Let us consider

ηt = η0 + b(t) +

∫ t

0

σ1(s)dBs +

∫ t

0

σ2(s)dBHs , 0 ≤ t ≤ T

where the coefficients η0, b, σ1 and σ2 satisfy:

• η0 is a given constant,
• b, σ1, σ2 : [0, T ]→ R are deterministic continuous functions, σ1 and σ2 are

differentiable and σ1(t) 6= 0, σ2(t) 6= 0 such that

|σ|2t =

∫ t

0

σ2
1(s)ds+ ‖σ2‖2t , 0 ≤ t ≤ T, (3.2)

where ‖σ2‖2t = H(2H−1)

∫ t

0

∫ t

0

|u−v|2H−2σ2(u)σ2(v)dudv.

Let σ̂2(t) =

∫ t

0

φ(t, v)σ2(v)dv, 0 ≤ t ≤ T.

The next Remark will be useful in the sequel.

Remark 3.1. The function |σ|2t defined by eq.(3.2) is continuously differentiable
with respect to t on [0, T ], and

a) d
dt |σ|

2
t = σ2

1(t) + d
dt ‖σ2‖

2
t = σ2

1(t) + σ2(t)σ̂2(t) > 0, 0 ≤ t ≤ T.
b) for a suitable constant C0 > 0, inf0≤t≤T

σ̂2(t)
σ2(t)

≥ C0.

Before giving the definition of the solution for the above equation, we introduce
the following sets:

• C1,2

pol
([0, T ]×R) is the space of all C1,2-functions over [0, T ] × R, which

together with their derivatives are of polynomial growth,

• V[0,T ] =
{
Y = ψ(·, η) : ψ ∈ C1,2

pol
([0, T ]×R), ∂ψ∂t is bounded, t ∈ [0, T ]

}
,

• V β[0,T ] the completion of V[0,T ] under the following norm (β > 0)

‖Y ‖β =

(∫ T

0

eβtE|Yt|2dt

)1/2

=

(∫ T

0

eβtE|ψ(t, ηt)|2dt

)1/2

.

Definition 3.2. A triplet of processes (Yt, Z1,t, Z2,t)0≤t≤T is called a solution to

SFBSDE (3.1), if (Yt, Z1,t, Z2,t)0≤t≤T ∈ V β[0,T ]×V
β
[0,T ]×V

β
[0,T ] and satisfies eq.(3.1).

We have the following (see [[6], Theorem 5.3])

Theorem 3.3. Assume that σ1 and σ2 are continuous and |σ|2t defined by eq.(3.2)
is a strictly increasing function of t. Let the SFBSDE (3.1) has a solution of the
form
(Yt = ψ(t, ηt), Z1,t = −ϕ1(t, ηt), Z2,t = −ϕ2(t, ηt)), where ψ ∈ C1,2([0, T ] × R).
Then

ϕ1(t, x) = σ1(t)ψ′x(t, x), ϕ2(t, x) = σ2(t)ψ′x(t, x).

The next proposition will be useful in the sequel.

Proposition 3.4. Let (Yt, Z1,t, Z2,t)0≤t≤T be a solution of the SFBSDE (3.1).
Then for almost t ∈ [0, T ],

DtYt = Z1,t, and DHt Yt =
σ̂2(t)

σ2(t)
Z2,t.
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Proof. Since (Yt, Z1,t, Z2,t) satisfies the SFBSDE (3.1) then we have Y = ψ(·, η)
where
ψ ∈ C1,2([0, T ]×R). From Theorem 3.3, we have

Z1,t = σ1(t)ψ′x(t, x), Z2,t = σ2(t)ψ′x(t, x).

Then we can write DtYt = σ1(t)ψ′x(t, x) = Z1,t and

DHt Yt =

∫ T

0

φ(t, s)DH
s ψ(t, ηt)ds = ψ′x(t, ηt)

∫ T

0

φ(t, s)σ2(s)ds

= σ̂2(t)ψ′x(t, ηt) =
σ̂2(t)

σ2(t)
Z2,t.

�

3.2. Existence and Uniqueness of solution. We say that the coefficient f sat-
isfies assumptions (H) if the following holds:

(H1) ξ = h(ηT ), where h : R→ R is a differentiable function and E
[
eβT |ξ|2

]
<

+∞.
(H2) f : [0, T ]×R×R×R×R→ R is a continuous function and there exists a

constantK>0 such that for all t ∈ [0, T ], x ∈ R, (y, y′) ∈ R2, (z1, z
′
1) ∈ R2,

(z2, z
′
2) ∈ R2,

|f(t, x, y, z1, z2)−f(t, x, y′, z′1, z
′
2)|2≤ ρ(t,|y−y′|2) +K(|z1 − z′1|2 + |z2 − z′2|2)

where ρ(t, ν) : [0, T ]×R+ → R+ satisfies

• For fixed t ∈ [0, T ], ρ(t, ·) is a continuous, concave and nondecreasing s.t.

ρ(t, 0) = 0, and ∀α > 0 αρ(t, ν) = ρ(t, αν).

• The ordinary differential equation

ν′(t) = −ρ(t, ν(t)), v(T ) = 0, (3.3)

has a unique solution ν(t) = 0, 0 ≤ t ≤ T .
• There exists a(·), b(·) : [0, T ]→ R+ such that

ρ(t, ν) ≤ a(t) + b(t)ν and

∫ T

0

[a(t) + b(t)]dt < +∞.

Let us mention that assumptions (H) are weaker than Lipschitz conditions re-
quired on the coefficient f in [6].

Example 3.5. If f(t, x, y, z1, z2) = y
4√t +K(x+ z1 + z2) and ρ(t, u) = 2u√

t
, then it

is easy to check that f satisfies (H2).

Let us recall the following result given in [[6], Theorem 5.5].

Proposition 3.6. Assume that f is Lipschitzian. Then eq.(3.1) has a unique

solution (Yt, Z1,t, Z2,t)0≤t≤T ∈ V β[0,T ] × V
β
[0,T ] × V

β
[0,T ].

The main result of this section is the following theorem:

Theorem 3.7. Let the assumption (H) be satisfied. Then the SFBSDE (3.1) has

a unique solution (Yt, Z1,t, Z2,t)0≤t≤T ∈ V β[0,T ] × V
β
[0,T ] × V

β
[0,T ].
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We can construct the Picard approximate sequence of eq.(3.1) as follows
Y 0
t = 0,

Y nt = ξ +

∫ T

t

f(s, ηs, Y
n−1
s , Zn1,s, Z

n
2,s)ds−

∫ T

t

Zn1,sdBs −
∫ T

t

Zn2,sdB
H
s , n ≥ 1.

(3.4)
Thanks to Proposition 3.6, this sequence is well defined. In order to prove Theorem
3.7, we need two lemmas.

Lemma 3.8. Let the assumption (H) be satisfied. There exists a constant C > 0
such that for all 0 ≤ t ≤ T, n,m ≥ 1, we have

E
[
eβt|Y n+mt − Y nt |2

]
≤ 1

C
eC(T−t)

∫ T

t

ρ
(
s,E

[
eβs|Y n+m−1s − Y n−1s |2

])
ds.

Proof. Let us define for a process δ ∈ {Y,Z1, Z2}, n,m ≥ 1, δ̄n,m = δn+m − δn
and the function

∆f (n,m)(s) = f(s, ηs, Y
n+m−1
s , Zn+m1,s , Zn+m2,s )− f(s, ηs, Y

n−1
s , Zn1,s, Z

n
2,s).

Then, it is obvious that (Ȳ n,m, Z̄n,m1 , Z̄n,m2 ) solves the SFBSDE

Ȳ n,mt =

∫ T

t

∆f (n,m)(s)ds−
∫ T

t

Z̄n,m2,s dBs −
∫ T

t

Z̄n,m2,s dB
H
s , 0 ≤ t ≤ T.

By the fractional Itô chain rule, we have

|Ȳ n,mt |2 = 2

∫ T

t

Ȳ n,ms ∆f (n,m)(s)ds− 2

∫ T

t

Z̄n,m1,s DsȲ
n,m
s ds− 2

∫ T

t

Z̄n,m2,s DHs Ȳ n,ms ds

− 2

∫ T

t

Ȳ n,ms Z̄n,m1,s dBs − 2

∫ T

t

Ȳ n,ms Z̄n,m2,s dB
H
s .

Applying Itô formula to eβt|Ȳ n,mt |2, we obtain that

eβt|Ȳ n,mt |2 = 2

∫ T

t

eβsȲ n,ms ∆f (n,m)(s)ds− 2

∫ T

t

eβsZ̄n,m1,s DsȲ
n,m
s ds− 2

∫ T

t

eβsZ̄n,m2,s DHs Ȳ n,ms ds

− 2

∫ T

t

eβsȲ n,ms Z̄n,m1,s dBs − 2

∫ T

t

eβsȲ n,ms Z̄n,m2,s dB
H
s − β

∫ T

t

eβs|Ȳ n,ms |2ds.

By Proposition 3.4, we have that

E
[
eβt|Ȳ n,mt |2

]
+ βE

∫ T

t

eβs|Ȳ n,ms |2ds+ 2E

∫ T

t

eβs|Z̄n,m1,s |2ds+ 2E

∫ T

t

eβs
σ̂2(s)

σ2(s)
|Z̄n,m2,s |2ds

= 2E

∫ T

t

eβsȲ n,ms ∆f (n,m)(s)ds.
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Using standard estimates, asumption (H2) and Remark 3.1, we obtain that

E
[
eβt|Ȳ n,mt |2

]
+ 2E

∫ T

t

eβs|Z̄n,m1,s |2ds+ 2C0E

∫ T

t

eβs|Z̄n,m2,s |2ds

≤ CE

∫ T

t

eβs|Ȳ n,ms |2ds+
1

C
E

∫ T

t

eβs|∆f (n,m)(s)|2ds

≤ CE

∫ T

t

eβs|Ȳ n,ms |2ds+
1

C
E

∫ T

t

ρ(s, eβs|Y n+m−1s − Y n−1s |2)ds

+
K

C
E

∫ T

t

eβs|Z̄n,m1,s |2ds+
K

C
E

∫ T

t

eβs|Z̄n,m2,s |2ds.

Choosing C such that min
{

2− K
C , 2C0 − K

C

}
≥ 1, we deduce that

E
[
eβt|Ȳ n,mt |2

]
+ E

∫ T

t

eβs|Z̄n,m1,s |2ds+ E

∫ T

t

eβs|Z̄n,m1,s |2ds (3.5)

≤ CE

∫ T

t

eβs|Ȳ n,ms |2ds+
1

C
E

∫ T

t

ρ(s, eβs|Y n+m−1s − Y n−1s |2)ds.

Applying Gronwalls lemma and Jensen inequality (since ρ(t, ) is concave), we
obtain

E
[
eβt|Y n+mt − Y nt |2

]
≤ 1

C
eC(T−t)

∫ T

t

ρ
(
s,E

[
eβs|Y n+m−1s − Y n−1s |2

])
ds, 0 ≤ t ≤ T.

�

Lemma 3.9. Let the assumption (H) be satisfied. Then there exists a constant
M ≥ 0 and 0 ≤ T1 < T not depending on ξ and such that

∀n ≥ 1, E
[
|Y nt |2

]
≤M, T1 ≤ t ≤ T.

Proof. Using the same method as in the proof of Lemma 3.8, we obtain that

E
[
eβt|Y nt |2

]
+ βE

∫ T

t

eβs|Y ns |2ds+ 2E

∫ T

t

eβs|Zn1,s|2ds+ 2E

∫ T

t

eβs
σ̂2(s)

σ2(s)
|Zn2,s|2ds

= E
[
eβT |ξ|2

]
+ 2E

∫ T

t

eβsY ns f(s, ηs, Y
n−1
s , Zn1,s, Z

n
2,s)ds.

The same computations as before imply

E
[
eβt|Y nt |2

]
≤ E

[
eβT |ξ|2

]
+ CE

∫ T

t

eβs|Y ns |2ds+
1

C
E

∫ T

t

eβs|f(s, ηs, 0, 0, 0)|2ds

+
1

C
E

∫ T

t

ρ(s, eβs|Y n−1s |2)ds

Applying once again Gronwall’s lemma and Jensen inequality, we deduce that

E
[
eβt|Y nt |2

]
≤ 1

C
e2C(T−t)

(
CE

[
eβT |ξ|2

]
+ E

∫ T

t

eβs|f(s, ηs, 0, 0, 0)|2ds

)

+
1

C
e2C(T−t)

∫ T

t

ρ(s,E[eβs|Y n−1s |2])ds.
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Let T̄1 = max
{
T − 1

2C ln(C), 0
}

, then we have

E
[
eβt|Y nt |2

]
≤ µt +

∫ T

t

ρ(s,E[eβs|Y n−1s |2])ds, T̄1 ≤ t ≤ T, (3.6)

where µt =
(
CE

[
eβT |ξ|2

]
+ E

∫ T
t
eβs|f(s, ηs, 0, 0, 0)|2ds

)
.

Let M = 2µ0 + 2

∫ T

0

a(s)ds ≥ 0.

(3.7)
Arguing as in [[10], Lemma 2], we choose T̄2 such that

µ0 +

∫ T

t

ρ(s,M)ds ≤M, T̄2 ≤ t ≤ T. (3.8)

Let T1 = max
{
T̄1, T̄2

}
, then by inequality (3.6) and (3.8), we have for T1 ≤ t ≤ T ,

E
[
eβt
∣∣Y 1
t

∣∣2] ≤ µt +

∫ T

t

ρ (s, 0) ds ≤ µ0 ≤M,

E
[
eβt
∣∣Y 2
t

∣∣2] ≤ µt +

∫ T

t

ρ
(
s,E[eβs|Y 1

s |2]
)
ds ≤ µ0 +

∫ T

t

ρ (s,M) ds ≤M,

E
[
eβt
∣∣Y 3
t

∣∣2] ≤ µt +

∫ T

t

ρ
(
s,E[eβs|Y 2

s |2]
)
ds ≤ µ0 +

∫ T

t

ρ (s,M) ds ≤M.

Hence by induction, one can prove that for all n ≥ 1,

E
[
|Y nt |2

]
≤M, T1 ≤ t ≤ T.

�

We are now in a position to give the proof of Theorem 3.7.

Proof. of Theorem 3.7
(i) Existence. Let use consider the sequence (ϕn)n≥1 given by

ϕ0(t) =

∫ T

t

ρ (s,M) ds, ϕn+1(t) =

∫ T

t

ρ (s, ϕn(s)) ds.

Then for all t ∈ [T1, T ], from the proof of Lemma 3.9, one can deduce that

ϕ0(t) =

∫ T

t

ρ (s,M) ds ≤M,

ϕ1(t) =

∫ T

t

ρ (s, ϕ0(s)) ds ≤
∫ T

t

ρ (s,M) ds = ϕ0(t) ≤M,

ϕ2(t) =

∫ T

t

ρ (s, ϕ1(s)) ds ≤
∫ T

t

ρ (s, ϕ0(s)) ds = ϕ1(t) ≤M.

By induction, one can prove that for all n ≥ 1, ϕn(t) satisfies

0 ≤ ϕn+1(t) ≤ ϕn(t) ≤ · · · ≤ ϕ1(t) ≤ ϕ0(t) ≤M.

Then {ϕn(t), t ∈ [T1, T ]}n≥1 is uniformly bounded. On the other hand, for all n ≥ 1

and t1, t2 ∈ [T1, T ], we obtain

|ϕn(t1)− ϕn(t2)| =
∣∣∣∣∫ t2

t1

ρ (s, ϕn−1(s)) ds

∣∣∣∣ ≤ ∣∣∣∣∫ t2

t1

ρ (s,M) ds

∣∣∣∣ .
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Since, for fixed v,
∫ T
0
ρ (s, v) ds < +∞. So

sup
n
|ϕn(t1)− ϕn(t2)| → 0 as |t1 − t2| → 0,

which means that {ϕn(t), t ∈ [T1, T ]}n≥1 is an equicontinuous family of function.

Therefore, by the Ascoli-Arzela theorem, we can define by ϕ(t) the limit function
of (ϕn(t))n≥1.

By (3.3), one knows that ϕ(t) = 0, t ∈ [T1, T ].
Now for all t ∈ [T1, T ], n,m ≥ 1, in view of Lemmas 3.8 and 3.9, we have

E
[
eβt |Y nt |

2
]
≤M,

E
[
eβt
∣∣Y 1+m
t − Y 1

t

∣∣2] ≤ ∫ T

t

ρ
(
s,E[eβs |Y ms |

2
]
)
ds ≤

∫ T

t

ρ (s,M) ds = ϕ0(t) ≤M,

E
[
eβt
∣∣Y 2+m
t − Y 2

t

∣∣2] ≤ ∫ T

t

ρ
(
s,E

[
eβs
∣∣Y 1+m
s − Y 1

s

∣∣2]) ds ≤ ϕ1(t) ≤M,

E
[
eβt
∣∣Y 3+m
t − Y 3

t

∣∣2] ≤ ∫ T

t

ρ
(
s,E

[
eβs
∣∣Y 2+m
s − Y 2

s

∣∣2]) ds ≤ ϕ2(t) ≤M.

By induction, we can derive that

m ≥ 1, E
[
eβt
∣∣Y n+mt − Y nt

∣∣2] ≤ ϕn−1(t), T1 ≤ t ≤ T.

Therefore we have

sup
T1≤t≤T

E
[
eβt
∣∣Y n+mt − Y nt

∣∣2] ≤ sup
T1≤t≤T

ϕn−1(t) = ϕn−1(T1)→ 0 n→∞.

We see immediately that {Y nt }n≥1 is a Cauchy sequence in V β[T1,T ]. We also know

from (3.5) that
{
Zn1,t

}
n≥1 and

{
Zn2,t

}
n≥1 are a Cauchy sequence in V β[T1,T ]. Then

there exists (Y,Z1, Z2) ∈ V β[T1,T ] × V
β
[T1,T ] × V

β
[T1,T ] being a limit of (Y n, Zn1 , Z

n
2 ).

Letting n→ +∞ in eq.(3.4), we obtain

Yt = ξ +

∫ T

t

f(s, ηs, Ys, Z1,s, Z2,s)ds−
∫ T

t

Z1,sdBs −
∫ T

t

Z2,sdB
H
s , T1 ≤ t ≤ T.

In other words, we have shown the existence of the solution to SFBSDE (3.1) on
[T1, T ]. Finally, by iteration, one can deduce the existence on [T − λ(T − T1), T ],
for each λ, and therefore the existence on the whole [0, T ].

(ii) Uniqueness. Let
(
Y it , Z

i
1,t, Z

i
2,t

)
0≤t≤T , i = 1, 2, be two solutions of SFBSDE

(3.1).
Using the same method as in the proof of Lemma (3.8), we have

E
[
eβt|Y 1

t − Y 2
t |2
]

+ E

∫ T

t

eβs|Z1
1,s − Z2

1,s|2ds+ E

∫ T

t

eβs|Z1
2,s − Z2

2,s|2ds

≤ CE

∫ T

t

eβs|Y 1
s − Y 2

s |2ds+
1

C

∫ T

t

ρ(s,E
[
eβs|Y 1

s − Y 2
s |2
]
)ds,

(3.9)

By virtue of the Gronwall inequality, we can derive that

E
[
eβt|Y 1

t − Y 2
t |2
]
≤ 1

C
eC(T−t)

∫ T

t

ρ(s,E
[
eβs|Y 1

s − Y 2
s |2
]
)ds, 0 ≤ t ≤ T.
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Define δ = 1
C ln(C) and N = [T/δ] + 1. If (tj)0≤j≤N denotes the uniform

subdivision of [0, T ] given by T0 = 0, Tj = T − (N − j)δ, j ≥ 1, we have

E
[
eβt|Y 1

t − Y 2
t |2
]
≤
∫ T

t

ρ(s,E
[
eβs|Y 1

s − Y 2
s |2
]
)ds, TN−1 ≤ t ≤ T.

From the comparison theorem of ODE, we know that E
[
eβt|Y 1

t − Y 2
t |2
]
≤ r(t),

where r(t) is the maximum of solution of (3.3) on [TN−1, T ]. As a consequence, we
have Y 1

t = Y 2
t for t ∈ [TN−1, T ]. From (3.9), we deduce

(
Z1
1,t, Z

1
2,t

)
=
(
Z2
1,t, Z

2
2,t

)
for t ∈ [TN−1, T ]. Then we can use the same argument to prove that uniqueness of
the solution also holds on [Tj , Tj+1], j = 0, . . . , N−2. This completes the proof. �
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E-mail address: sadibou.aidara.ugb@gmail.com


	1. Introduction
	2. Fractional Stochastic calculus
	3. SFBSDEs with non-Lipschitz Conditions
	3.1. Definitions and notations
	3.2. Existence and Uniqueness of solution

	References

