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ON THE RELATION BETWEEN NON-HOMOGENEOUS

FRACTIONAL BURGERS EQUATIONS AND TIME-DEPENDENT

HARMONIC OSCILLATOR

P. ARTALE HARRIS, R. DROGHEI, R. GARRA, E. SALUSTI

Abstract. In this paper we discuss the relation between non-homogeneous
nonlinear fractional diffusive equations and the Schrödinger equation with
time-dependent harmonic potential. It is well known that the Cole-Hopf trans-

form allows to linearize non-homogeneous nonlinear diffusive equations (NHN-
DEs) into a Schrödinger-type equation with time-dependent potential. We
first discuss the utility of the results about time-dependent harmonic oscillator

to obtain explicit solutions for non-homogeneous nonlinear partial differential
equations. In particular, we recall that, starting from a trial polynomial solu-
tion of the NHNDE, it is possible to construct other solutions by using linear
invariants of the Schrödinger equation with time-dependent potential. Finally,

we apply these results to find explicit solutions to a novel non-homogeneous
fractional Burgers-type equation.

1. Introduction

One of the most known cases of linearizable nonlinear partial differential equa-
tions is the classical Burgers equation, firstly introduced by J.M Burgers in 1948 in
the framework of the theory of turbulence [1]. Several studies have been devoted
to the analysis of different generalizations of Burgers-type equations. In particu-
lar, two kind of generalizations have been widely studied in literature: the non-
homogeneous Burgers equation and the generalized Burgers equation with time-
dependent viscosity and drift. In the framework of non-homogeneous Burgers equa-
tions, Rao and Yadav [2] considered the following equation

∂u

∂t
+ u

∂u

∂x
− ∂2u

∂x2
=

kx

(2βt+ 1)2
, x ∈ R, t > 0, (1)

subject to some unbounded initial conditions. The solutions of (1) are expressed
in terms of the self-similar solutions of a linear partial differential equation with
variable coefficients. In this way the large time behavior of the solutions is obtained.
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A similar equation was considered by Eule and Friedrich [3] with a more general non-
homogeneous term, again linear in space. More recently, exact solutions for forced
Burgers equation with time-variable coefficients have been discussed by Buyukasik
and Pashaev in [4]. In [5], Darboux transformations have been applied to the time-
dependent non-homogeneous Burgers equation, in relation with the Schrödinger
equation. Finally an interesting relation between the Burgers equation with elastic
forcing and the Ornstein-Uhlenbeck process was pointed out in [6].
In the framework of generalized Burgers equation with time-dependent viscosity,
Rao and Satyanarayana in [7] discussed the large-time asymptotics for solutions of
Burgers equation with variable viscosity related to nonlinear acoustics. Vaganan
and Jeyalakshmi [8] considered the following more general Burgers equations with
linear damping and variable viscosity

∂u

∂t
+ u

∂u

∂x
− ∆(t)

2

∂2u

∂x2
+ αu = 0, α > 0, (2)

discussing its relation with several linear parabolic equations. In [8] the authors
study the conditions on the viscosity time-dependence ∆(t) for which (2) is lin-
earizable. In the recent paper [9], the authors consider a forced Burgers equation
with time-variable coefficients and solve the initial-boundary value problem on the
half-line with inhomogeneous Dirichlet boundary conditions. We finally refer to
the review paper [10] for an updated bibliography on generalizations of Burgers
equations.

Here we consider the following non-homogeneous nonlinear diffusive equation
(NHNDE)

∂u

∂t
+

(
∂u

∂x

)2

− ∂2u

∂x2
= V (x, t). (3)

This NHNDE is widely used in different fields of applied sciences. For example,
similar nonlinear diffusive equations arise in the analysis of the propagation of
nonlinear waves in porous media (see e.g. [11] and the references therein). It
is simple to prove that such equation is directly related to the non-homogeneous
Burgers equation. Indeed it suffices to differentiate both sides in (3) in order to
obtain

∂

∂t

∂u

∂x
+ 2

∂u

∂x

∂2u

∂x2
− ∂3u

∂x3
=
∂V (x, t)

∂x
, (4)

that coincides with the non-homogeneous Burgers equation for f(x, t) = ∂u/∂x.
For a suitable non-homogeneous term V (x, t) (see (12) behind), we discuss the
relation between NHNDE and time-dependent harmonic oscillator. In particular,
we underline the utility to apply known results about Hamiltonian invariants of
the time-dependent harmonic oscillator in order to construct exact solutions of
NHNDEs, starting from polynomial-type trial solutions. This approach can be
applied to handle more general NHNDE with variable viscosity of the form

∂u

∂t
+

(
∂u

∂x

)2

− 1

2m(t)

∂2u

∂x2
= V (x, t), (5)

under suitable conditions on the given functions V (x, t) and m(t).



126 P. ARTALE HARRIS, R. DROGHEI, R. GARRA, E. SALUSTI JFCA-2021/12(2)

The aim of this paper is to apply these results to solve a new class of non-
homogeneous nonlinear nonlocal diffusive equations, that is

∂u

∂t
+

∂α

∂xα

[(
∂1−αu

∂x1−α

)2

− ∂2

∂x2

∫ x

0

(x− x′)α−1

Γ(α)
u(x′)dx′

]
= −k(t)x

2−α

Γ(3− α)
, x ≥ 0 (6)

where ∫ x

0

(x− x′)α−1

Γ(α)
u(x′, t)dx′ = Jα

x u(x, t), (7)

is the Riemann-Liouville fractional integral of order α ∈ (0, 1] and

∂α

∂xα
u(x, t) =

1

Γ(1− α)

∫ x

0

(x− x′)−α ∂

∂x′
u(x′, t)dx′, (8)

is the Caputo fractional derivative with respect to x-variable (see e.g. [18, 19, 21]).
This is a slight modification of the Burgers equation considered by Miskinis in
[16, 17]. As far as we know, this is the unique case discussed in literature, where a
nonlinear nonlocal differential equation can be reduced to the linear heat equation
by means of a generalized Cole-Hopf transform. Even if this formulation of the
fractional Burgers equation seems to be in some way artificial, it has the great
advantage and interest to couple nonlinear and nonlocal effects in the dynamics.

The paper is organized as follows. In section 2 we discuss the relation between
non-homogeneous nonlinear diffusion equations and time-dependent harmonic oscil-
lator, showing the utility of invariant analysis to find explicit solutions. In section 3
we apply the discussed results to solve a non-homogeneous fractional Burgers-type
equation.

2. Relations between non-homogeneous nonlinear diffusion equations
and time-dependent harmonic oscillator

Let us consider the NHNDE

∂u

∂t
+

(
∂u

∂x

)2

− ∂2u

∂x2
= V (x, t). (9)

In order to linearize the previous equation, we use the Cole-Hopf transform

u(x, t) = − lnψ(x, t). (10)

By substituting (10) in (9), we obtain

∂ψ

∂t
− ∂2ψ

∂x2
= −V (x, t)ψ. (11)

From now on, we assume that

V (x, t) =
1

4
ω2k(t)~2x2, (12)

and with the transformation

τ = i~t,
ξ = i~√

2m
x, (13)

the Schrödinger equation with time-dependent harmonic potential is obtained

i~
∂ψ

∂τ
= − ~2

2m

∂2ψ

∂ξ2
+

1

2
mω2ξ2k(τ)ψ. (14)
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We will now follow the argument of Salusti and Zirilli in [12], where the authors
have proved that a trial solution for (14) of the form

ψ(ξ, τ) = exp

[
i

2~
(a(τ)ξ2 + 2b(τ)ξ + c(τ))

]
(15)

can be obtained. This leads to the following system
ȧ = − 1

ma
2 −mω2k,

ḃ = − 1
mab

ċ = i~
ma−

1
mb

2.

(16)

Going back to the original problem, i.e. by using the transformation (10), we obtain
a solution of the non-homogeneous nonlinear diffusion equation (9) in the form

u(ξ, τ) =
i

2~
(a(τ)ξ2 + 2b(τ)ξ + c(τ)), (17)

and finally, going back to the original variables (x, t), we have a polynomial solution
of equation (9). The existence of this kind of solutions with separate variables is
not surprising. Indeed, a similar relation can be obtained by using the Invariant
Subspace Method, introduced by Galaktionov [13], which allows to solve exactly
nonlinear equations by separation of variables.
We recall the main idea of this method: consider a scalar evolution equation

∂u

∂t
= F

[
u,
∂u

∂x
, . . .

]
, (18)

where u = u(x, t) and F [·] is a nonlinear differential operator. Given n linearly
independent functions

f1(x), f2(x), ...., fn(x),

we call Wn the n-dimensional linear space

Wn = ⟨f1(x), ...., fn(x)⟩.

This space is called invariant under the given operator F [·], if F [y] ∈ Wn for any
y ∈Wn. This means that there exist n functions Φ1,Φ2, ...,Φn such that

F [C1f1(x) + ......+ Cnfn(x)] = Φ1(C1, ...., Cn)f1(x) + ......+Φn(C1, ...., Cn)fn(x),

where C1, C2, ....., Cn are arbitrary constants.
Once the set of functions fi(x) that form the invariant subspace has been deter-
mined, we can find an explicit solution of (18) in the invariant subspace in the
form

u(x, t) =

n∑
i=1

ui(t)fi(x). (19)

where fi(x) ∈ Wn. In this way, we arrive to a system of ODEs. In many cases,
this problem is simpler than the original one and we can find an explicit solution
for the nonlinear problem by separation of variables (see [13]).
We can now show by direct calculations that (9) admitsW3 = ⟨1, x, x2⟩ as invariant
subspace. Indeed, in this case we have that

F

[
u,
∂u

∂x
, x, t

]
= −

(
∂u

∂x

)2

+
∂2u

∂x2
− 1

4
ω2k(t)~2x2, (20)
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so that

F [c1x
2 + c2x+ c3] = −4c21x

2 − c22 − 4c1c2x+ 2c1 −
1

4
ω2k(t)~2x2, (21)

as claimed.

2.1. Linear Invariants. In the algebraic approach, we want to find an operator
Â(t) such that, if ψ(x, t) is a solution of equation (11), also Âψ(x, t) is a solution.
Recalling that (14), is related to the Hamiltonian

Ĥ = − ~2

2m

∂2

∂ξ2
+

1

2
mω2k(t)ξ2, (22)

we want to determine an operator Â such that

i~
∂

∂t
Âψ(x, t) = ĤÂψ(x, t). (23)

The definition of invariants, according to (23), was firstly introduced by Lewis and
Riesenfeld in [14] and gave rise to a number of papers devoted to the analysis and
application of the Schrödinger equation with time-dependent harmonic potential.
This requirement leads to the following equation (see e.g. [12])

i~ ˙̂
A = [Ĥ, Â]. (24)

Salusti and Zirilli have shown that the Ansatz

Â = α(t)x+ β(t)
∂

∂x
+ γ(t) (25)

satisfies equation (24). This argument leads to the system
i~α̇ = −mω2kβ

i~β̇ = −~2

mα

γ̇ = 0.

(26)

We can decouple system (26) by deriving the second equation with respect to t and,
by substitution, we obtain

β̈ = −k(t)ω2β, (27)

that is a time-dependent harmonic oscillator.
We conclude that, once fixed the function k(t) in (14), we can solve equation (27)

and thus, by (26), we obtain the explicit form of the operator Â. Finally, we can
find other solutions to the non-homogeneous nonlinear equation (9). We remark
that this procedure can be applied in an iterative way to construct a family of exact
solutions starting from the simple polynomial one.
For instance by taking k(t) = t, we can find an explicit solution in terms of a
cumbersome combination of Airy functions, as can be seen by using simple mathe-
matical routines.

3. The non-homogeneous nonlinear fractional diffusive equation

As mentioned in the introduction, we now apply the results discussed in the pre-
vious sections in order to solve the following non-homogeneous nonlinear fractional
Burgers equation

∂u

∂t
+

∂α

∂xα

[(
∂1−αu

∂x1−α

)2

− ∂2

∂x2
Jα
x u

]
= −k(t)x

2−α

Γ(3− α)
, (28)
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where the fractional derivatives are in the sense of Caputo (see [18]) and α ∈ (0, 1].
Observe that for α = 1 this equation coincides with a particular case of the non-
homogeneous Burgers equation, i.e.

∂u

∂t
+
∂u2

∂x
− ∂2u

∂x2
= −k(t)x

2
, (29)

Here we study a class of explicit solutions of this equation, considering the problem
in the semi-line x ≥ 0, with an appropriate boundary condition in x = 0 that will
be discussed in what follows. Observe that in the right hand side term we can
write (see e.g. [20, 21, 22] for the main useful formulas and properties of fractional
derivatives)

k(t)

2

∂αx2

∂xα
=
k(t)x2−α

Γ(3− α)
(30)

so that equation (28) becomes

∂u

∂t
+

∂α

∂xα

[(
∂1−αu

∂x1−α

)2

− ∂2

∂x2
Jα
x u+

1

2
k(t)x2

]
= 0. (31)

We consider the following Cole-Hopf transoform

u(x, t) = − ∂α

∂xα
lnψ(x, t). (32)

We now observe that, by using Caputo fractional derivatives, the following equality
holds (see [20], pag.6 and pag.10)

∂1−α

∂x1−α

∂αu

∂xα
=
∂u

∂x
. (33)

Moreover, it can be proved that (see [20], pag. 7)

Jα
x

∂α

∂xα
u(x, t) = u(x, t)− u(0, t), α ∈ (0, 1], x > 0 (34)

Considering these preliminaries, we now assume that lnψ(x, t)

∣∣∣∣
x=0

= ∂x lnψ(x, t)

∣∣∣∣
x=0

=

0. This is equivalent to take u(0, t) = 0 as boundary condition. Under these as-
sumption, we have

∂α

∂xα

[
−∂tψ

ψ
+

(
∂xψ

ψ

)2

−
(
∂xψ

ψ

)2

+
∂xxψ

ψ

]
= −1

2
k(t)

∂αx2

∂xα
, (35)

thus,

∂α

∂xα

[
−∂tψ

ψ
+
∂xxψ

ψ
+

1

2
k(t)x2

]
= 0. (36)

This means that
∂tψ

ψ
− ∂xxψ

ψ
− 1

2
k(t)x2 = f(t). (37)

Now, suppose f(t) = 0, we arrive to the following equation

∂tψ

ψ
− ∂xxψ

ψ
=

1

2
k(t)x2 (38)

that is the analogous of equation (11). This means that we can apply exactly
the same reasoning discussed in the previous sections in order to construct exact
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solutions for the equation (28) starting from a polynomial trial solution. Indeed,
we can start again from the Gaussian ansatz

ψ(x, t) = exp[a(t)x2 + b(t)x+ c(t)], (39)

as a trial solution for (38). Then, by using (32) we obtain the following solution of
equation (31)

u(x, t) = − ∂α

∂xα
(a(t)x2 + b(t)x+ c(t))

= −
(
b(t)x1−α

Γ(2− α)
+

2a(t)x2−α

Γ(3− α)

)
, (40)

where a(t) and b(t) satsify the following system of differential equations

ȧ = 4a2 + k(t)
2 , (41)

ḃ = 4ab,

whose solutions clearly depend by the particular choice of k(t). Then, by using
again the relations with the time-dependent Schrödinger equation and the analysis
of invariants, it is possible to find other explicit solutions starting from (40).

We finally observe that the solution (40) corresponds to the fact that the equation
(28) admits as invariant subspace W2 = ⟨x1−α, x2−α⟩, for all α ∈ (0, 1].

3.1. The case k(t) = t. We solve the system of differential equations (41) consid-
ering the particular choice k(t) = t. The first equation of the system become:

ȧ = 4a2 +
t

2
(42)

that is a Special Riccati equation with solution

a(t) =
1

4

ϕ̇(t)

ϕ(t)
(43)

where

ϕ(t) =
√
t[C1J1/3(

2
√
2

3
t) + C2Y1/3(

2
√
2

3
t)], (44)

where Jν(t) and Yν(t) are the Bessel functions of the first and second kind, respec-
tively . From the second equation of the system and (43), we obtain

ḃ

b
=
ϕ̇

ϕ
, (45)

namely:

b(t) = ϕ(t) + C3. (46)
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4. Conclusions

In this paper we have discussed a conceptual link between the construction of
exact solutions to the Schrödinger equation with time-dependent harmonic potential
by means of the invariants of the related Hamiltonian and the problem to construct
exact solutions to nonlinear non homogeneous diffusive equations. Here we consider
for simplicity the construction of solutions by using linear invariants, but following
our ideas there is a bridge between the numerous results about Time-Dependent
Harmonic Oscillator and the solution of nonlinear diffusive equation with a fixed
non-homogeneous term.
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