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ON THE COMPOSITION OF ANALYTIC FUNCTIONS IN THE

UNIT DISC

C. GHOSH, S. K.DATTA, S. MONDAL

Abstract. In this article we proved some results on the composition of two

analytic functions defined in the unit disc in terms of their maximum modulus
and type. Also we introduced hyper exponent of convergence of zeros of such
analytic functions and studied some growth properties of hyper exponent of
convergence of zeros of composite analytic function in the unit disc.

1. Introduction

Let f (z) =
∞∑

n=0

anz
tn be an analytic in the unit disc D = {z ∈ C : |z| < 1} , {tn}

be a strictly increasing sequence of positive integers with t0 = 0 and an ̸= 0 for
n = 1, 2, 3, ... . The maximum modulus and maximum term of f (z) respectively
are M (r, f) = max

|z|=r
|f (z)| , 0 < r < 1 and µ (r, f) = max

n≥0
(|an| rn) .

In 1968 Sons [4] defined the order ρf and lower order λf of f as

ρf = lim sup
r→1−

log+ log+ M (r, f)

− log (1− r)

and

λf = lim inf
r→1−

log+ log+ M (r, f)

− log (1− r)
,

where log+ x = max {log x, 0} , 0 ≤ x ≤ ∞.
Then one can easily introduced the hyper order ρf and hyper lower order

λf of f as

ρf = lim sup
r→1−

log+ log+ log+ M (r, f)

− log (1− r)

and

λf = lim inf
r→1−

log+ log+ log+ M (r, f)

− log (1− r)
.
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Using the relation [3]

µ (r, f) ≤ M (r, f) ≤ R

R− r
µ (R, f)

for 0 ≤ r < R ≤ 1,we get the definition of ρf and λf in terms of µ (r, f) as

ρf = lim sup
r→1−

log+ log+ µ (r, f)

− log (1− r)

λf = lim inf
r→1−

log+ log+ µ (r, f)

− log (1− r)

and

ρf = lim sup
r→1−

log+ log+ log+ µ (r, f)

− log (1− r)

λf = lim inf
r→1−

log+ log+ log+ µ (r, f)

− log (1− r)
.

For 0 < ρf < ∞, the type σf and lower type τf of f are defined as

σf = lim sup
r→1−

log+ M (r, f)

(1− r)
−ρf

and

τf = lim inf
r→1−

log+ M (r, f)

(1− r)
−ρf

.

A number of results have been proved by several authors such as [1], [2], [4] etc.
Let f and g be two analytic functions in the unit disc D = {z ∈ C : |z| < 1} and
|g (z)| < 1. Then the composite function f ◦ g is defined by (f ◦ g) (z) = f(g(z)),∀z
∈ D.

The theory of distribution of values of entire function was studied by G. Valiron
in (1949) [5].The function N(r, f) is called enumerative function of f. It plays an

important role in the theory of entire function. The ratio N(r,f)
N(r,g) measures the

comparative growth of f with respect to g in terms of enumerative function.
Now we study some growth properties of hyper exponent of converges of zeros

of composite analytic function f ◦ g) in D. We introduce the defintion of hyper
exponent of converges of zeros of an analytic function f in the unit disc D.

Let f be an analytic functions in the unit disc D, the hyper-exponent of
convergence of zeros of f is denoted by ρ2(f) is defined by

ρ2(f) = lim sup
r→1−

log+ log+ N(r, 1
f )

− log (1− r)
,

where log[k] x = log(log[k−1] x), k = 1, 2, ...., log[0] x = x
In alternative notation

ρ2(f) = lim sup
r→1−

log+ log+ N(r, 0, f)

− log (1− r)

Similarly one may define the hyper-exponent of convergence of distinct zeros of
f denoted by

ρ2(f) = lim sup
r→1−

log+ log+ N(r, 0, f)

− log (1− r)
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Also replacing lim sup by lim inf we may define hyper lower exponent of conver-
gence of zeros of f and hyper lower exponent of convergence of distinct zeros of f
respectively by λ2(f) and λ2(f).

2. Main Results

Now we prove the following theorems.
Theorem 1 Let f and g be two analytic functions in the unit disc D =

{z ∈ C : |z| < 1} and |g (z)| < 1. Also 0 < λf◦g ≤ ρf◦g < ∞ and 0 < ρg < ∞.
Then for any positive number A,

i) lim inf
r→1−

log+ log+ M (r, f ◦ g)
log+ log+ M (rA, g)

≤ ρf◦g
Aρg

≤ lim sup
r→1−

log+ log+ M (r, f ◦ g)
log+ log+ M (rA, g)

.

Further if λg > 0, then

ii)
λf◦g

Aρg
≤ lim inf

r→1−

log+ log+ M (r, f ◦ g)
log+ log+ M (rA, g)

≤ λf◦g

Aλg
≤ lim sup

r→1−

log+ log+ M (r, f ◦ g)
log+ log+ M (rA, g)

≤ ρf◦g
Aλg

and

iii) lim inf
r→1−

log+ log+ M (r, f ◦ g)
log+ log+ M (rA, g)

≤ min

{
λf◦g

Aλg
,
ρf◦g
Aρg

}
≤ max

{
λf◦g

Aλg
,
ρf◦g
Aρg

}
≤ lim sup

r→1−

log+ log+ M (r, f ◦ g)
log+ log+ M (rA, g)

.

Proof. i) From the definition of order of f ◦ g and g, we have for ε > 0 and for
all values of r → 1−,

log+ log+ M (r, f ◦ g) ≤ − (ρf◦g + ε) log (1− r) . (1)

Also for a sequence of values of r → 1−,

log+ log+ M
(
rA, g

)
≥ −A (ρg − ε) log (1− r) . (2)

Combining (1) and (2) for a sequence of values of r → 1−,

log+ log+ M (r, f ◦ g)
log+ log+ M (rA, g)

≤ (ρf◦g + ε)

A (ρg − ε)
.

As ε > 0 is arbitrary, we obtain

lim inf
r→1

log+ log+ M (r, f ◦ g)
log+ log+ M (rA, g)

≤ ρf◦g
Aρg

. (3)

Again, for a sequence of values of r → 1−,

log+ log+ M (r, f ◦ g) ≥ − (ρf◦g − ε) log (1− r) . (4)

Also for all values of r → 1−,

log+ log+ M
(
rA, g

)
≤ −A (ρg + ε) log (1− r) . (5)

Combining (4) and (5) for a sequence of values of r → 1−,

log+ log+ M (r, f ◦ g)
log+ log+ M (rA, g)

≥ (ρf◦g − ε)

A (ρg + ε)
.

Since, ε > 0 is arbitrary, it follows from above

lim sup
r→1−

log+ log+ M (r, f ◦ g)
log+ log+ M (rA, g)

≥ ρf◦g
Aρg

. (6)
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Therefore from (3) and (6) we get

lim inf
r→1−

log+ log+ M (r, f ◦ g)
log+ log+ M (rA, g)

≤ ρf◦g
Aρg

≤ lim sup
r→1−

log+ log+ M (r, f ◦ g)
log+ log+ M (rA, g)

.

ii) From the definition of lower order, we have for ε > 0 and for all values of r → 1−,

log+ log+ M (r, f ◦ g) ≥ − (λf◦g − ε) log (1− r) . (7)

Combining (5) and (7) for all values of r → 1−,

log+ log+ M (r, f ◦ g)
log+ log+ M (rA, g)

≥ (λf◦g − ε)

A (ρg + ε)
.

As ε > 0 is arbitrary, we obtain

lim inf
r→1

log+ log+ M (r, f ◦ g)
log+ log+ M (rA, g)

≥ λf◦g

Aρg
. (8)

Again, for a sequence of values of r → 1−,

log+ log+ M (r, f ◦ g) ≤ − (λf◦g + ε) log (1− r) . (9)

Also for all values of r → 1−,

log+ log+ M
(
rA, g

)
≥ −A (λg − ε) log (1− r) . (10)

Combining (9) and (10) for a sequence of values of r → 1−,

log+ log+ M (r, f ◦ g)
log+ log+ M (rA, g)

≤ (λf◦g + ε)

A (λg − ε)
.

Since, ε > 0 is arbitrary, it follows from above

lim inf
r→1−

log+ log+ M (r, f ◦ g)
log+ log+ M (rA, g)

≤ λf◦g

Aλg
. (11)

Also, for a sequence of values of r → 1−,

log+ log+ M
(
rA, g

)
≤ −A (λg + ε) log (1− r) . (12)

Now from (7) and (12) we get for a sequence of values of r → 1−,

log+ log+ M (r, f ◦ g)
log+ log+ M (rA, g)

≥ (λf◦g + ε)

A (λg − ε)
.

As ε > 0 is arbitrary, we obtain from above that

lim sup
r→1−

log+ log+ M (r, f ◦ g)
log+ log+ M (rA, g)

≥ λf◦g

Aλg
. (13)

Again, from (1) and (10) , it follows for all values of r → 1−,

log+ log+ M (r, f ◦ g)
log+ log+ M (rA, g)

≤ (ρf◦g + ε)

A (λg − ε)
.

As ε > 0 is arbitrary, it follows

lim sup
r→1−

log+ log+ M (r, f ◦ g)
log+ log+ M (rA, g)

≤ ρf◦g
Aλg

. (14)

Therefore from (8) , (11) and (13) we get

λf◦g

Aρg
≤ lim inf

r→1−

log+ log+ M (r, f ◦ g)
log+ log+ M (rA, g)

≤ λf◦g

Aλg
≤ lim sup

r→1−

log+ log+ M (r, f ◦ g)
log+ log+ M (rA, g)

≤ ρf◦g
Aλg

.
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iii) Using (3) , (6) , (11) and (13) we conclude that

lim inf
r→1−

log+ log+ M (r, f ◦ g)
log+ log+ M (rA, g)

≤ min

{
λf◦g

Aλg
,
ρf◦g
Aρg

}
≤ max

{
λf◦g

Aλg
,
ρf◦g
Aρg

}
≤ lim sup

r→1−

log+ log+ M (r, f ◦ g)
log+ log+ M (rA, g)

.

This completes the proof.
Remark 1 TheTheorem 1 is also valid for maximum term of analytic functions

in the unit disc D = {z ∈ C : |z| < 1} in stead of maximum modulus.
The following theorem can also be deduced in the line of Theorem 1 by using

hyper order and hyper lower order.
Theorem 2 Let f and g be two analytic functions in the unit disc D =

{z ∈ C : |z| < 1} and |g (z)| < 1. Also 0 < λf◦g ≤ ρf◦g < ∞ and 0 < ρg < ∞.
Then for any positive number A,

i) lim inf
r→1−

log+ log+ log+ M (r, f ◦ g)
log+ log+ log+ M (rA, g)

≤
ρf◦g
Aρg

≤ lim sup
r→1−

log+ log+ log+ M (r, f ◦ g)
log+ log+ log+ M (rA, g)

.

Further if λg > 0, then

ii)
λf◦g

Aρg
≤ lim inf

r→1−

log+ log+ log+ M (r, f ◦ g)
log+ log+ log+ M (rA, g)

≤ λf◦g

Aλg

≤ lim sup
r→1−

log+ log+ log+ M (r, f ◦ g)
log+ log+ log+ M (rA, g)

≤
ρf◦g

Aλg

and

iii) lim inf
r→1−

log+ log+ log+ M (r, f ◦ g)
log+ log+ log+ M (rA, g)

≤ min

{
λf◦g

Aλg

,
ρf◦g
Aρg

}
≤ max

{
λf◦g

Aλg

,
ρf◦g
Aρg

}
≤ lim sup

r→1−

log+ log+ log+ M (r, f ◦ g)
log+ log+ log+ M (rA, g)

.

Theorem 3 If f and g are two analytic functions in the unit discD = {z ∈ C : |z| < 1}
and |g (z)| < 1. Also ρg < ∞ and ρf◦g = ∞. Then for every positive number A,

lim sup
r→1−

log+ log+ M (r, f ◦ g)
log+ log+ M (rA, g)

= ∞.

Proof. Let us assume that the conclusion of the theorem does not hold. Then
there exists a constant B > 0 such that for all values of r → 1−,

log+ log+ M (r, f ◦ g) ≤ B log+ log+ M
(
rA, g

)
. (15)

Again from the definition of ρg, for all values of r → 1−, it follows that

log+ log+ M
(
rA, g

)
≤ −A (ρg + ε) log (1− r) . (16)

Combining (15) and (16) for a sequence of values of r → 1−,

log+ log+ M (r, f ◦ g) ≤ −AB (ρg + ε) log (1− r) . (17)

From (17) , it follows that ρf◦g < ∞. So we arrive at a contradiction that ρf◦g = ∞.
Hence the theorem follows.
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Remark 2 If we take ρf < ∞ instead of ρg < ∞ in Theorem 3 and the other
condition remains the same then theorem also holds.

Remark 3 TheTheorem 3 is also valid for maximum term of analytic functions
in the unit disc D = {z ∈ C : |z| < 1} in stead of maximum modulus.

Remark 4 The condition ρg < ∞ and ρf◦g = ∞ are necessary in Theorem 3.
Here we give two examples.

Example 1 Let us consider two analytic functions in the unit discD = {z ∈ C : |z| < 1}
as f(z) = z and g(z) = z2 then f ◦ g = z2.

Therefore, ρg = ρf◦g = ∞.
We take A = 1, then we have

lim sup
r→1−

log+ log+ M (r, f ◦ g)
log+ log+ M (r, g)

= 1.

So we conclude that the condition ρg < ∞ is essential.
Example 2 Let us consider two analytic functions in the unit discD = {z ∈ C : |z| < 1}

as f(z) = z and g(z) = ee
z

then f ◦ g = ee
z

.
Therefore, ρg = ρf◦g = 0.
We take A = 1, then we have

lim sup
r→1−

log+ log+ ee
r

log+ log+ eer
= 1.

So we conclude that the condition ρf◦g = ∞ is essential.
Theorem 4 Let f and g be two analytic functions in the unit disc D =

{z ∈ C : |z| < 1} and |g (z)| < 1. Also
i) 0 < ρg < ∞
ii) 0 < σg < ∞
iii) ρf◦g = ρg
iv) 0 < σf◦g < ∞ . Then

lim inf
r→1−

logM(r, f ◦ g)
logM(r, g)

≤ σf◦g

σg
≤ lim sup

r→1−

logM(r, f ◦ g)
logM(r, g)

.

Proof. From the definition of type of a composite function we have for arbitrary
ϵ > 0 and for all values of r → 1−.

log+ M(r, f ◦ g) ≤ (σf◦g + ϵ) (1− r)
−ρf◦g (18)

Also for a sequence of values of r tending to 1− ,

log+ M(r, g) ≥ (σg − ϵ) (1− r)
−ρg (19)

So combining (18) and (19) and using the condition (iii) it follows, for a sequence
of values of r → 1− ,

log+ M(r, f ◦ g)
log+ M(r, g)

≤ σf◦g + ϵ

σg − ϵ

Since ϵ > 0 is arbitrary, it follows from above that,

lim inf
r→1−

log+ M(r, f ◦ g)
log+ M(r, g)

≤ σf◦g

σg
(20)

Again for a sequence of values r → 1−,

log+ M(r, f ◦ g) ≤ (σf◦g − ϵ) (1− r)
−ρf◦g (21)
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and also for all values of r → 1−,

log+ M(r, g) ≥ (σg + ϵ) (1− r)
−ρg (22)

So by condition (iii) , we obtain from (21) and (22) , for a sequence of values of r
→ 1−

log+ M(r, f ◦ g)
log+ M(r, g)

≤ σf◦g − ϵ

σg + ϵ

Since ϵ > 0 is arbitrary , we get from above

lim sup
r→1−

log+ M(r, f ◦ g)
log+ M(r, g)

≥ σf◦g

σg
(23)

Thus the theorem follows from (20) and (23) .
Remark 5 The sign ”≤” in the above theorem can not be replaced by ”<”.

This is shown in the following example.
Example 3 Let us consider two analytic functions f(z) and g(z) in the unit

disc D = {z ∈ C : |z| < 1} as f(z) = z and g(z) = ez then f ◦ g = ez. Now,

ρg = lim sup
r→1−

log+ log+ er

− log(1−r) = ρf◦g and σg = lim sup
r→1−

log+ er

(1−r)−ρg = σf◦g.Then we conclude

that ”≤” can not be replaced by ”<”.
Theorem 5 Let f and g be two analytic functions in the unit disc D =

{z ∈ C : |z| < 1} and |g (z)| < 1. Also 0 < λ2(f ◦ g) ≤ ρ2(f ◦ g) < ∞ and
0 < λ2(g) ≤ ρ2(g) < ∞. Then for any positive number A,

λ2(f ◦ g)
Aρ2(g)

≤ lim inf
r→1−

log+ log+ N(r, 0, f ◦ g)
log+ log+ N(rA, 0, g)

≤ λ2(f ◦ g)
Aλ2(g)

≤ lim sup
r→1−

log+ log+ N(r, 0, f ◦ g)
log+ log+ N(rA, 0, g)

≤ ρ2(f ◦ g)
Aρ2(g)

.

Proof. From the definition of hyper exponent and hyper lower exponent of
convergence of zeros of an analytic function f we have for arbitrary ϵ > 0 and for
all values of r → 1−,

log+ log+ N(r, 0, f ◦ g) ≥ −(λ2(f ◦ g)− ϵ) log (1− r) (24)

log+ log+ N(r, 0, g) ≥ −A(ρ2(g) + ϵ) log (1− r) (25)

Now from (24) and (25) it follows that for all values of r → 1−,

log+ log+ N(r, 0, f ◦ g)
log+ log+ N(rA, 0, g)

≥ λ2(f ◦ g)− ϵ

A(ρ2(g) + ϵ)

As ϵ > 0 is arbitrary then,

lim inf
r→∞

log+ log+ N(r, 0, f ◦ g)
log+ log+ N(rA, 0, g)

≥ λ2(f ◦ g)
Aρ2(g)

. (26)

Again for a sequence of values of r → 1−,

log+ log+ N(r, 0, f ◦ g) ≤ −(λ2(f ◦ g)− ϵ) log (1− r) (27)

and for values of r → 1−,

log+ log+ N(rA, 0, g) ≥ −A(λ2(g)− ϵ) log (1− r) (28)
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Now from (27) and (28) it follows, for a sequence of values of r → 1− , we get

log+ log+ N(r, 0, f ◦ g)
log+ log+ N(rA, 0, g)

≤ λ2(f ◦ g)
Aλ2(g)

. (29)

Also for a sequence of values of r → 1−, we may write

log+ log+ N(rA, 0, g) ≤ −A(λ2(g) + ϵ) log (1− r) . (30)

Combining (24) and (30), it follows that for a sequence of values of r → 1−

log+ log+ N(r, 0, f ◦ g)
log+ log+ N(rA, 0, g)

≤ λ2(f ◦ g)− ϵ

A(λ2(g) + ϵ)

Since ϵ > 0 is arbitrary,

lim sup
r→1−

log+ log+ N(r, 0, f ◦ g)
log+ log+ N(rA, 0, g)

≥ λ2(f ◦ g)
Aλ2(g)

. (31)

Also for all values of r → 1−,

log+ log+ N(r, 0, f ◦ g) ≤ −(ρ2(f ◦ g) + ϵ) log (1− r) (32)

Combining (28) and (32), we obtain for all values of r → 1−,

log+ log+ N(r, 0, f ◦ g)
log+ log+ N(rA, 0, g)

≤ ρ2(f ◦ g) + ϵ

A(λ2(g)− ϵ)

Since ϵ > 0 is arbitrary ,

lim sup
r→∞

log+ log+ N(r, 0, f ◦ g)
log+ log+ N(rA, 0, g)

≤ ρ2(f ◦ g)
Aλ2(g)

. (33)

Thus the theorem follows from (26) , (29) , (31) and (33) .
Remark 6 The Theorem 5 is still valid for the different zeros of f and g

respectively with ρ2(f ◦ g), λ2(f ◦ g), λ2(g), ρ2(f ◦ g) etc is replaced by λ2(f ◦
g), λ2(g), ρ2(g), ρ(f ◦ g) respectively.

Theorem 6 Let f and g be two analytic functions in the unit disc D =
{z ∈ C : |z| < 1} and |g (z)| < 1. Also 0 < λ2(f ◦ g) ≤ ρ2(f ◦ g) < ∞ and 0 <
ρ2(g) < ∞ . Then for any positive no A,

lim inf
r→1−

log+ log+ N(r, 0, f ◦ g)
log+ log+ N(rA, 0, g)

≤ ρ2(f ◦ g)
Aρ2(g)

≤ lim sup
r→1−

log+ log+ N(r, 0, f ◦ g)
log+ log+ N(rA, 0, g)

Proof. Let ϵ > 0 be arbitrary, then from the definition we have for a sequence
of values of r → 1−

log+ log+ N(r, 0, f ◦ g) ≥ −(ρ(f ◦ g)− ϵ) log (1− r) . (34)

log+ log+ N(rA, 0, g) ≥ −A(ρ(g)− ϵ) log (1− r) . (35)

Again for all values of r → 1−,

log+ log+ N(r, 0, f ◦ g) ≤ −(ρ(f ◦ g) + ϵ) log (1− r) . (36)

log+ log+ N(rA, 0, g) ≤ −A(ρ(g) + ϵ) log (1− r) . (37)

Again combining (36) and (35), it follows for sequence of values of r → 1− ,

log+ log+ N(r, 0, f ◦ g)
log+ log+ N(rA, 0, g)

≤ ρ(f ◦ g) + ϵ

A(ρ(g)− ϵ)
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Since ϵ > 0 is arbitrary,

lim inf
r→1−

log+ log+ N(r, 0, f ◦ g)
log+ log+ N(rA, 0, g)

≤ ρ(f ◦ g)
Aρ(g)

. (38)

Again combining (37) and (34), it follows for sequence of values of r → 1− ,

lim sup
r→1−

log+ log+ N(r, 0, f ◦ g)
log+ log+ N(rA, 0, g)

≤ ρ(f ◦ g)− ϵ

A(ρ(g) + ϵ)

Since ϵ > 0 arbitrary,

lim sup
r→1−

log+ log+ N(r, 0, f ◦ g)
log+ log+ N(rA, 0, g)

≥ ρ(f ◦ g)
Aρ(g)

. (39)

Thus from (38) and (39), the theorem follows.
Remark 7 The Theorem 6 is also valid for the distinct zeros of f and g with

the same replacement as in the above remark.
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