CONVOLUTION PROPERTIES FOR CERTAIN SUBCLASSES OF MEROMORPHIC p-VALENT FUNCTIONS

S. KANT AND P. P. VYAS

Abstract

In the present paper we introduce two subclasses $\mathcal{M S}_{p, q}^{*}(b ; A, B)$ and $\mathcal{M} \mathcal{K}_{p, q}(b ; A, B)$ of meromorphic multivalent functions by using q-derivative operator defined in the punctured unit disc. Also, we derive several properties including convolution properties, the necessary and sufficient condition and coefficient estimates for these subclasses.

1. Introduction

Recently, the concept of q-calculus has magnitize a significant exertion of researchers due to its application in numerous branches of mathematics and physics. The q-calculus is an ordinary calculus without notion of limit point. Jackson [6, 7, 8] introduced and studied the q-derivative and q-integral. By making use of q-calculus various functions classes in Geometric Function Theory are introduced and investigated from different view points and perspectives (see [1], [11, [15], [16], [17], [19] and references therein). Purpose of this paper is to introduce and study two subclasses of p-valent meromorphic functions by applying q-derivative operators in conjuction with the principle of subordinations.

Let Σ_{p} denote the class of meromorphic functions of the form

$$
\begin{equation*}
f(z)=z^{-p}+\sum_{k=1}^{\infty} a_{k} z^{k-p} \quad(p \in \mathbb{N}) \tag{1}
\end{equation*}
$$

which are analytic and p-valent in the punctured unit disc $\mathbb{U}^{*}=\mathbb{U} \backslash\{0\}$, where $\mathbb{U}=\{z: z \in \mathbb{C},|z|<1\}$. Let g and f be two analytic functions in \mathbb{U}, then function g is said to be subordinate to f if there exists an analytic function w in the unit disk \mathbb{U} with $w(0)=0$ and $|w(z)|<1$ such that $g(z)=f(w(z)) \quad(z \in \mathbb{U})$. We denote this subordination by $g \prec f$. In particular, if the function f is univalent in \mathbb{U} the above subordination is equivalent to $g(0)=f(0)$ and $g(\mathbb{U}) \subseteq f(\mathbb{U})$.

For $0<q<1$, the q-derivative of a function f is defined by (see [5, 6, 7, 8])

$$
\begin{equation*}
D_{q} f(z)=\frac{f(q z)-f(z)}{(q-1) z} \quad(z \in \mathbb{U}) \tag{2}
\end{equation*}
$$

[^0]provided that $f^{\prime}(0)$ exists.
From (22), it can be easily obtain that
$$
D_{q} f(z)=\frac{-[p]_{q}}{q^{p} z^{p+1}}+\sum_{k=1}^{\infty}[k-p]_{q} a_{k} z^{k-p-1}
$$
where
$$
[k]_{q}=\frac{1-q^{k}}{1-q} .
$$

As q $\rightarrow 1^{-},[k]_{q} \rightarrow k$ and $\lim _{q \rightarrow 1^{-}} D_{q} f(z)=f^{\prime}(z)$. Also, we have

$$
\begin{gathered}
{[k+p]_{q}=[k]_{q}+q^{k}[p]_{q}=q^{p}[k]_{q}+[p]_{q}} \\
{[k-p]_{q}=q^{-p}[k]_{q}-q^{-p}[p]_{q}} \\
{[0]_{q}=0,[1]_{q}=1}
\end{gathered}
$$

For $f \in \Sigma_{p}$ given by (1) and $g \in \Sigma_{p}$ given by

$$
g(z)=z^{-p}+\sum_{k=1}^{\infty} b_{k} z^{k-p} \quad(p \in \mathbb{N})
$$

the Hadamard product (or convolution) of f and g is defined by

$$
(f * g)(z)=z^{-p}+\sum_{k=1}^{\infty} a_{k} b_{k} z^{k-p}=(g * f)(z)
$$

Motivated essentially due to the work of Aouf et al. 3], Seoudy [13, Seoudy and Aouf [14] and Srivastava and Zayed [18, we define the following two subclasses of Σ_{p} by using the q-derivative operator D_{q} and the principle of subordination between analytic functions:
Definition 1 Let $0<q<1,-1 \leq B<A \leq 1$ and $b \in \mathbb{C} \backslash\{0\}$. A function f belonging to Σ_{p} is said to be in the class $\mathcal{M S}_{p, q}^{*}(b ; A, B)$ if it satiesfies

$$
\begin{equation*}
1-\frac{1}{b}\left[\frac{z D_{q} f(z)}{f(z)}+\frac{[p]_{q}}{q^{p}}\right] \prec \frac{1+A z}{1+B z} . \tag{3}
\end{equation*}
$$

Definition 2 Let $0<q<1,-1 \leq B<A \leq 1$ and $b \in \mathbb{C} \backslash\{0\}$. A function f belonging to Σ_{p} is said to be in the class $\mathcal{M} \mathcal{K}_{p, q}(b ; A, B)$ if it satiesfies

$$
\begin{equation*}
1-\frac{1}{b}\left[\frac{D_{q}\left(z D_{q} f(z)\right)}{D_{q} f(z)}+\frac{[p]_{q}}{q^{p}}\right] \prec \frac{1+A z}{1+B z} \tag{4}
\end{equation*}
$$

We also verify from both above definitions that

$$
\begin{equation*}
f \in \mathcal{M K}_{p, q}(b ; A, B) \Leftrightarrow-\frac{q^{p}}{[p]_{q}} z D_{q} f \in \mathcal{M} \mathcal{S}_{p, q}^{*}(b ; A, B) \tag{5}
\end{equation*}
$$

It may be pointed out here that, these classes generalizes several previously studied function classes. We deem it proper to demonstrate briefly the relevant connections with some of the well-known classes. Indeed, we have
(i) $\lim _{q \rightarrow 1^{-}} \mathcal{M} \mathcal{S}_{1, q}^{*}(b ; 1,-1)=\Sigma \mathcal{S}(b)$ and $\lim _{q \rightarrow 1^{-}} \mathcal{M} \mathcal{K}_{1, q}(b ; 1,-1)=\Sigma \mathcal{K}(b)$ (see [2]);
(ii) $\lim _{q \rightarrow 1^{-}} \mathcal{M} \mathcal{S}_{1, q}^{*}(b ; A, B)=\Sigma \mathcal{S}_{0}^{*}(b ; A, B)$ and $\lim _{q \rightarrow 1^{-}} \mathcal{M} \mathcal{K}_{1, q}(b ; A, B)=\Sigma \mathcal{K}_{0}(b ; A, B)$ (see (3) ;
(iii) $\lim _{q \rightarrow 1^{-}} \mathcal{M} \mathcal{S}_{1, q}^{*}(b ; A, B)=\Sigma \mathcal{S}^{*}(b ; A, B)$ and $\lim _{q \rightarrow 1^{-}} \mathcal{M} \mathcal{K}_{1, q}(b ; A, B)=\Sigma \mathcal{K}(b ; A, B)$ (see (4);
(iv) $\lim _{q \rightarrow 1^{-}} \mathcal{M} \mathcal{S}_{1, q}^{*}\left[(1-\alpha) e^{-\iota \mu} \cos \mu ; 1,-1\right]=\Sigma \mathcal{S}_{1}^{\mu}(\alpha)$ and $\lim _{q \rightarrow 1^{-}} \mathcal{M} \mathcal{K}_{1, q}\left[(1-\alpha) e^{-\iota \mu} \cos \mu ; 1,-1\right]$
$=\Sigma \mathcal{K}_{1}^{\mu}(\alpha)\left(\mu \in \mathbb{R},|\mu|<\frac{\pi}{2}, 0 \leq \alpha<1\right)$ (see [12]).
In the present investigations, we derive several properties including convolution properties, the necessary and sufficient condition and coefficient estimates for functions belonging to the subclasses $\mathcal{M} \mathcal{S}_{p, q}^{*}(b ; A, B)$ and $\mathcal{M} \mathcal{K}_{p, q}(b ; A, B)$. The inspiration of this paper is to renovate and generalize already known results.

2. Main Results

Unless otherwise mentioned, we assume throughout this section that $0<q<1$, $-1 \leq B<A \leq 1, b \in \mathbb{C} \backslash\{0\}$ and $\theta \in[0,2 \pi)$.
Theorem 1 If $f \in \Sigma_{p}$, then $f \in \mathcal{M S}_{p, q}^{*}(b ; A, B)$ if and only if

$$
\begin{equation*}
z^{p}\left[f(z) * \frac{1+[M(\theta)-q] z}{z^{p}(1-z)(1-q z)}\right] \neq 0 \quad\left(z \in \mathbb{U}^{*}\right) \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
M(\theta)=\frac{e^{-\iota \theta}+B}{(A-B) b q^{p}} \tag{7}
\end{equation*}
$$

Proof. It is easy to verify that for any function $f \in \Sigma_{p}$

$$
\begin{equation*}
f(z) * \frac{1}{z^{p}(1-z)}=f(z) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
f(z) * \frac{1-\left(q+\frac{1}{[p]_{q}}\right) z}{z^{p}(1-z)(1-q z)}=-\frac{q^{p}}{[p]_{q}} z D_{q} f(z) \tag{9}
\end{equation*}
$$

First, if $f \in \mathcal{M S}_{p, q}^{*}(b ; A, B)$, in order to prove that (6) holds we will write (3) by using the definition of the subordination, that is

$$
-\frac{q^{p}}{[p]_{q}} \frac{z D_{q} f(z)}{f(z)}=\frac{1+\left[B+(A-B) b \frac{q^{p}}{[p]_{q}}\right] w(z)}{1+B w(z)} \quad\left(z \in \mathbb{U}^{*}\right)
$$

where w is a Schwarz function, hence

$$
\begin{equation*}
z^{p}\left[-q^{p}\left(1+B e^{\iota \theta}\right) z D_{q} f(z)-\left\{[p]_{q}+\left(B[p]_{q}+(A-B) b q^{p}\right) e^{\iota \theta}\right\} f(z)\right] \neq 0 \quad\left(z \in \mathbb{U}^{*}\right) \tag{10}
\end{equation*}
$$

Now from (8) and (9), we may write (10) as

$$
\begin{aligned}
& z^{p}\left[\left(1+B e^{\iota \theta}\right)\left(f(z) * \frac{\left\{1-\left(q+\frac{1}{[p]_{q}}\right) z\right\}[p]_{q}}{z^{p}(1-z)(1-q z)}\right)\right. \\
& \left.\quad-\left\{[p]_{q}+\left(B[p]_{q}+(A-B) b q^{p}\right) e^{\iota \theta}\right\}\left(f(z) * \frac{1}{z^{p}(1-z)}\right)\right] \neq 0 \quad\left(z \in \mathbb{U}^{*}\right)
\end{aligned}
$$

which is equivalent to

$$
z^{p}\left[f(z) * \frac{1+\left(-q+\frac{1+B e^{\iota \theta}}{(A-B) b q^{p} e^{\iota \theta}}\right) z}{z^{p}(1-z)(1-q z)}\left[-(A-B) b q^{p} e^{\iota \theta}\right]\right] \neq 0
$$

or

$$
z^{p}\left[f(z) * \frac{1+\left(\frac{e^{-\iota \theta}+B}{(A-B) b q^{p}}-q\right) z}{z^{p}(1-z)(1-q z)}\right] \neq 0 \quad\left(z \in \mathbb{U}^{*}\right)
$$

which leads to (6), which proves the necessary part of Theorem 1.
Reversely, suppose that $f \in \Sigma_{p}$ satisfy the condition (6). Since it was shown in the first part of the proof that assumption (6) is equivalent to 10 , we obtain that

$$
\begin{equation*}
-\frac{q^{p}}{[p]_{q}} \frac{z D_{q} f(z)}{f(z)} \neq \frac{1+\left[B+(A-B) b \frac{q^{p}}{[p]_{q}}\right] e^{\iota \theta}}{1+B e^{\iota \theta}} \quad\left(z \in \mathbb{U}^{*}\right) \tag{11}
\end{equation*}
$$

and let us assume that

$$
\varphi(z)=-\frac{q^{p}}{[p]_{q}} \frac{z D_{q} f(z)}{f(z)} \text { and } \psi(z)=\frac{1+\left[B+(A-B) b \frac{q^{p}}{[p]_{q}}\right] z}{1+B z}
$$

The relation (11) means that

$$
\varphi\left(\mathbb{U}^{*}\right) \cap \psi\left(\partial \mathbb{U}^{*}\right)=\emptyset
$$

Thus, the simply connected domain is included in a connected component of $\mathbb{C} \backslash \psi\left(\partial \mathbb{U}^{*}\right)$. Therefore, using the fact that $\varphi(0)=\psi(0)$ and the univalence of the function ψ, it follows that $\varphi(z) \prec \psi(z)$, which implies that $f \in \mathcal{M S}_{p, q}^{*}(b ; A, B)$. Thus, the proof of Theorem 1 is completed.
Theorem 2 If $f \in \Sigma_{p}$, then $f \in \mathcal{M} \mathcal{K}_{p, q}(b ; A, B)$ if and only if

$$
\begin{equation*}
z^{p}\left[f(z) * \frac{1-\left[\frac{1+M(\theta)}{[p]_{q}}-\left(M(\theta)-q-q^{2}\right)\right] z-(M(\theta)-q)\left(q+\frac{1}{[p]_{q}}\right) q z^{2}}{z^{p}(1-z)(1-q z)\left(1-q^{2} z\right)}\right] \neq 0 \quad\left(z \in \mathbb{U}^{*}\right) \tag{12}
\end{equation*}
$$

where $\mathrm{M}(\theta)$ is given by (7).
Proof. From (5) it follows that $f \in \mathcal{M} \mathcal{K}_{p, q}(b ; A, B)$ if and only if $-\frac{q^{p}}{[p]_{q}} z D_{q} f \in$ $\mathcal{M} \mathcal{S}_{p, q}^{*}(b ; A, B)$. Then from Theorem 1, the function $-\frac{q^{p}}{[p]_{q}} z D_{q} f \in \mathcal{M} \mathcal{S}_{p, q}^{*}(b ; A, B)$ if and only if

$$
\begin{equation*}
z^{p}\left[-\frac{q^{p}}{[p]_{q}} z D_{q} f * g(z)\right] \neq 0 \quad\left(z \in \mathbb{U}^{*}\right) \tag{13}
\end{equation*}
$$

where

$$
g(z)=\frac{1+[M(\theta)-q] z}{z^{p}(1-z)(1-q z)}
$$

On a basic computation we note that

$$
\begin{aligned}
& D_{q} g(z)=\frac{g(q z)-g(z)}{(q-1) z} \\
& \quad=\frac{-[p]_{q}+\left[1+M(\theta)-[p]_{q}\left(M(\theta)-q-q^{2}\right)\right] z+(M(\theta)-q)\left(q[p]_{q}+1\right) q z^{2}}{q^{p} z^{p+1}(1-z)(1-q z)\left(1-q^{2} z\right)}
\end{aligned}
$$

and therefore

$$
-\frac{q^{p}}{[p]_{q}} z D_{q} g(z)=\frac{1-\left[\frac{1+M(\theta)}{[p]_{q}}-\left(M(\theta)-q-q^{2}\right)\right] z-(M(\theta)-q)\left(q+\frac{1}{[p]_{q}}\right) q z^{2}}{z^{p}(1-z)(1-q z)\left(1-q^{2} z\right)} .
$$

Using the above relation and the identity

$$
\left(-\frac{q^{p}}{[p]_{q}} z D_{q} f(z)\right) * g(z)=f(z) *\left(-\frac{q^{p}}{[p]_{q}} z D_{q} g(z)\right)
$$

it is simple to check that 13 is identical to 12 . Thus, the proof of Theorem 2 is completed.

Theorem 3 A necessary and sufficient condition for the function f defined by (1) to be in the class $\mathcal{M S}_{p, q}^{*}(b ; A, B)$ is that

$$
\begin{equation*}
1+\sum_{k=1}^{\infty} \frac{\left(e^{-\iota \theta}+B\right)[k]_{q}+(A-B) b q^{p}}{(A-B) b q^{p}} a_{k} z^{k} \neq 0 \quad\left(z \in \mathbb{U}^{*}\right) \tag{14}
\end{equation*}
$$

Proof. From Theorem 1, we find that $f \in \mathcal{M} \mathcal{S}_{p, q}^{*}(b ; A, B)$ if and only if 6) holds. Since
$\frac{1}{z^{p}(1-z)(1-q z)}=\frac{1}{z^{p}}+(1+q) z^{1-p}+\left(1+q+q^{2}\right) z^{2-p}+\left(1+q+q^{2}+q^{3}\right) z^{3-p}+\cdots, \quad\left(z \in \mathbb{U}^{*}\right)$,
hence

$$
\frac{1+[M(\theta)-q] z}{z^{p}(1-z)(1-q z)}=\frac{1}{z^{p}}+\sum_{k=1}^{\infty}\left(1+M(\theta)[k]_{q}\right) z^{k-p}
$$

where $M(\theta)$ is given by (7).
Now a simple computation shows that (6) is identical to (14). Thus, the proof of Theorem 3 is completed.
Theorem 4 A necessary and sufficient condition for the function f defined by (1) to be in the class $\mathcal{M K}_{p, q}(b ; A, B)$ is that

$$
\begin{equation*}
1+\sum_{k=1}^{\infty} \frac{\left(e^{-\iota \theta}+B\right)[k]_{q}+(A-B) b q^{p}}{(A-B) b q^{p}}\left(1-\frac{[k]_{q}}{[p]_{q}}\right) a_{k} z^{k} \neq 0 \quad\left(z \in \mathbb{U}^{*}\right) \tag{15}
\end{equation*}
$$

Proof. From Theorem 2, we find that $f \in \mathcal{M}_{p, q}(b ; A, B)$ if and only if (12) holds.

Since

$$
\begin{aligned}
& \frac{1}{z^{p}(1-z)(1-q z)\left(1-q^{2} z\right)}=\frac{1}{z^{p}}+\left(1+q+q^{2}\right) z^{1-p}+\left(1+q+2 q^{2}+q^{3}+q^{4}\right) z^{2-p} \\
&+\left(1+q+2 q^{2}+2 q^{3}+2 q^{4}+q^{5}+q^{6}\right) z^{3-p}+\cdots, \quad\left(z \in \mathbb{U}^{*}\right)
\end{aligned}
$$

hence

$$
\begin{aligned}
\frac{1-\left[\frac{1+M(\theta)}{[p]_{q}}-\left(M(\theta)-q-q^{2}\right)\right] z-(M(\theta)-q)\left(q+\frac{1}{[p]_{q}}\right) q z^{2}}{z^{p}(1-z)(1-q z)\left(1-q^{2} z\right)} \\
=\frac{1}{z^{p}}+\sum_{k=1}^{\infty}\left(1+M(\theta)[k]_{q}\right)\left(1-\frac{[k]_{q}}{[p]_{q}}\right) z^{k-p} \quad\left(z \in \mathbb{U}^{*}\right),
\end{aligned}
$$

where $M(\theta)$ is given by (7).
Now a simple computation shows that $(12$ is identical to 15$)$. Thus, the proof of Theorem 4 is completed.
Theorem 5 If $f \in \Sigma_{p}$ satisfies the inequality

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left[[k]_{q}(1+|B|)+(A-B)|b| q^{p}\right]\left|a_{k}\right|<(A-B)|b| q^{p} \tag{16}
\end{equation*}
$$

then $f \in \mathcal{M S}_{p, q}^{*}(b ; A, B)$.
Proof. Since

$$
\left|1+\sum_{k=1}^{\infty} \frac{\left(e^{-\iota \theta}+B\right)[k]_{q}+(A-B) b q^{p}}{(A-B) b q^{p}} a_{k} z^{k}\right|
$$

$$
\begin{aligned}
& \geq 1-\left|\sum_{k=1}^{\infty} \frac{\left(e^{-\iota \theta}+B\right)[k]_{q}+(A-B) b q^{p}}{(A-B) b q^{p}} a_{k} z^{k}\right| \\
& \geq 1-\sum_{k=1}^{\infty} \frac{(1+|B|)[k]_{q}+(A-B)|b| q^{p}}{(A-B)|b| q^{p}}\left|a_{k}\right|>0 .
\end{aligned}
$$

Thus, the inequality 16 holds and our result follows from Theorem 3.
Using similar arguments to those in the proof of Theorem 5, we may also prove the next result.
Theorem 6 If $f \in \Sigma_{p}$ satisfies the inequality

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left[[k]_{q}(1+|B|)+(A-B)|b| q^{p}\right]\left(1-\frac{[k]_{q}}{[p]_{q}}\right)\left|a_{k}\right|<(A-B)|b| q^{p} \tag{17}
\end{equation*}
$$

then $f \in \mathcal{M K}_{p, q}(b ; A, B)$.
Remarks Note that the results obtained in the present paper provide us a lot of interesting particular cases by assigning different values to the involved parameters, some illustration are given here :
(i) Taking $p=1, q \rightarrow 1^{-}, b=1$ and $e^{\iota \theta}=x$ in Theorem 1 and 2 we get the results of Ponnusamy [10].
(ii) Taking $p=1, q \rightarrow 1^{-}, b=(1-\alpha) e^{-\iota \mu} \cos \mu\left(\mu \in \mathbb{R},|\mu|<\frac{\pi}{2}, 0 \leq \alpha<1\right), \mathrm{A}=1$, $\mathrm{B}=-1$ and $e^{\iota \theta}=x$ in Theorem 1 we get the result of Ravichandran et al. 12.
(iii) Taking $p=1$ in Theorem 1 and 2 our results matches with Mostafa et al. 9].
(iv) Taking $p=1$ and $q \rightarrow 1^{-}$in Theorem 1 and 2, our results matches with Aouf (3) and Bulboacă et al. 4.

References

[1] S. Agrawal and S.K. Sahoo, A generalization of starlike functions of order α, Hokkaido Math. J., 46, 15-27, 2017.
[2] M.K. Aouf, Coefficient results for some classes of meromorphic functions, J. Natur. Sci. Math., 27(2), 81-97, 1987.
[3] M.K. Aouf, A.O. Mostafa and H.M. Zayed, Convolution properties for some subclasses of meromorphic functions of complex order, Abstr. Appl. Anal., 6pages, Article ID 973613, 2015.
[4] T. Bulboacă, M.K. Aouf and R.M. El-Ashwah, Convolution properties for subclasses of meromorphic univalent functions of complex order, Filomat, 26(1), 153-163, 2012.
[5] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge: Cambridge University Press; 1990.
[6] F.H. Jackson, On q-functions and a certain difference operator, Trans. R. Soc. Edinb., 46(2), 253-281, 1909.
[7] F.H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41, 193-203, 1910.
[8] F.H. Jackson, q-difference equations, Amer. J. Math., 32, 305-314, 1910.
[9] A.O. Mostafa, M.K. Aouf, H.M. Zayed and T. Bulboacă, Convolution conditions for subclasses of meromorphic functions of complex order associated with bessel functions, J. Egyptian Math. Soc., 25, 286-290, 2017.
[10] S. Ponnusamy, Convolution properties of some classes of meromorphic univalent functions, Proc. Indian Acad. Sci. (Math. Sci.), 103(1), 73-89, 1993.
[11] S.D. Purohit and R.K. Raina, Certain subclasses of analytic functions associated with fractional q-calculus operators, Math. Scand., 109(1), 55-70, 2011.
[12] V. Ravichandran, S.S. Kumar and K.G. Subramanian, Convolution conditions for spirallikeness and convex spirallikenesss of certain meromorphic p-valent functions, J. Ineq. Pure Appl. Math., 5(1), 7pages, Article 11, 2004.
[13] T.M. Seoudy, Classes of analytic functions associated with certain integral operator, Electron. J. Math. Anal. Appl., 4(2), 254-258, 2016.
[14] T.M. Seoudy and M.K. Aouf, Convolution properties for certain classes of analytic functions defined by q-derivative operator, Abstr. Appl. Anal., 7pages, Article ID 846719, 2014.
[15] H. Shamsan and S. Latha, On generalized bounded mocanu variation related to q-derivative and conic regions, Annals of Pure and Applied Mathematics, 17(1), 67-83, 2018.
[16] H.M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A Sci., 44(1), 327-344, 2020.
[17] H.M. Srivastava and D. Bansal, Close-to-convexity of a certain family of q-Mittag-Leffler functions, J. Nonlinear Var. Anal., 1, 61-69, 2017.
[18] R. Srivastava and H.M. Zayed, Subclasses of analytic functions of complex order defined by q-derivative operator, Stud. Univ. Babeş-Bolyai Math., 64(1), 71-80, 2019.
[19] H.M. Zayed and M.K. Aouf, Subclasses of analytic functions of complex order associated with q-mittag leffler function, J. Egyptian Math. Soc., 26(2), 278-286, 2018.

Shashi Kant
Department of Mathematics, Government Dungar College, Bikaner-334001, INDIA
Email address: drskant.2007@yahoo.com
Prem Pratap Vyas
Department of Mathematics, Government Dungar College, Bikaner-334001, InDIA
Email address: prempratapvyas@gmail.com

[^0]: 2010 Mathematics Subject Classification. 30C45.
 Key words and phrases. Meromorphic p-Valent functions, Hadamard product (or convolution), Subordination between analytic functions, q-derivative operator.

 Submitted July 4, 2020. Revised Dec. 11, 2020.

