FIXED POINT THEOREMS OF GENERALIZED $(\Psi, \Phi)_{s}$-RATIONAL TYPE CONTRACTIVE MAPPINGS IN QUASI b-METRIC SPACES

J. UMA MAHESWARI, M. RAVICHANDRAN, A. ANBARASAN LAKSHMI NARAYAN MISHRA AND VISHNU NARAYAN MISHRA

Abstract

In this paper, we consider the setting of quasi b-metric spaces to establish results regarding the fixed point theorems with help of new notion $(\Psi, \Phi)_{s}$-rational type quasi b-metric spaces with application. An example is presented to support our results comparing with existing ones.

1. Introduction

The classical Banach contraction principle [1] is one of the most popular fundamental tool in fixed point theory. There are lots of generalizations and extensions in many directions by many researchers. Berinde in $[2,3]$ introduced the concept of almost contractions and proved several attracting results for a Ciric strong almost contraction. The concept of b-metric spaces was introduced by Czerwik (1993) [4]. Shah and Hussain [5] initiated the concept of quasi b-metric spaces and proved some fixed point results in quasi b-metric spaces. Also, in recent years several papers have been published in new results that are connected with the fixed point results of various classes of b-metric spaces (refer some similar works on, $[6,7,8,9,10]$). The aim of this paper is to prove common fixed point theorems for generalized $(\Psi, \Phi)_{s}$-rational type contraction mappings satisfying an ordered quasi b-metric spaces.

2. Preliminaries

Definition 1 The function $\Phi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is said to be an altering distance function if the following conditions are satisfied:
(i) Φ is continuous and increasing
(ii) $\Phi(a)=0$ if and only if $a=0$

[^0]Definition 2 Let \mathcal{B} be a nonvoid set and $s \geq 1$ be a given real number. A function $q_{b}: \mathcal{B} \times \mathcal{B} \rightarrow \mathbb{R}^{+}$is called quasi b-metric space if for all $\eta, \lambda, \kappa \in X$, the following condition hold:
(i) $q_{b}(\eta, \lambda)=0$ if and only if $\eta=\lambda$
(ii) $q_{b}(\eta, \lambda)=q_{b}(\lambda, \eta)$
(iii) $q_{b}(\eta, \lambda) \preceq s\left[q_{b}(\eta, \kappa)+q_{b}(\kappa, \lambda)\right]$.

In this case, the pair $\left(\mathcal{B}, q_{b}\right)$ is called a quasi b-metric space.
It should be noted that, the class of quasi b-metric spaces is effectively large than the class of metric space, since a quasi b-metric is a metric, when $s=1$.
Definition 3 Let \mathcal{B} be a non void set. Then $\left(\mathcal{B}, q_{b}, \preceq\right)$ is called an ordered quasi $b-$ metric space iff:
(i) $\left(\mathcal{B}, q_{b}\right)$ is a quasi b-metric space,
(ii) (\mathcal{B}, \preceq) is partial ordered

Definition 4 Let ($\mathcal{B}, q_{b}, \preceq$) is partial ordered set. $\eta, \lambda \in \mathcal{B}$ are called comparable if $\eta \preceq \lambda$ or $\lambda \preceq \eta$ holds.
Definition 5 Let (\mathcal{B}, \preceq) partially ordered set. A mapping $T: \mathcal{B} \rightarrow \mathcal{B}$ is said to be strictly weakly increasing if $\eta_{0} \preceq T \eta_{0}$, for all $\eta_{0} \in \mathcal{B}$.
Definition 6 Let $\left(\mathcal{B}, q_{b}\right)$ be a quasi b-metric space. Then a sequence $\left\{\eta_{n}\right\}$ is called:
(i) quasi b-convergent if and only if there exists $\eta \in \mathcal{B}$ such that $q_{b}\left(\eta_{n}, \eta\right) \rightarrow 0$, as $n \rightarrow \infty$. In this case, we write $\lim _{n \rightarrow \infty} \eta_{n}=\eta$.
(ii) quasi b-Cauchy if and only if $\lim _{n, m \rightarrow \infty} q_{b}\left(\eta_{n}, \eta_{m}\right)=0$ as $m, n \rightarrow \infty$.

Proposition 1 In a quasi b-metric space $\left(\mathcal{B}, q_{b}\right)$ the following assertions hold:
$\left(p_{1}\right)$ A quasi b-convergent sequence has a unique limit.
$\left(p_{2}\right)$ Each quasi $b-$ convergent sequence is quasi $b-$ Cauchy.
$\left(p_{3}\right)$ In general, a quasi b-metric is not continuous.
Definition 7 The quasi b-metric space $\left(\mathcal{B}, q_{b}\right)$ is quasi b-complete if every quasi b-Cauchy sequence in \mathcal{B} quasi b-converges.
Khan, Swaleh, and Sessa [11] introduced the concept of an altering distance functions and established some fixed point theorems in self-maps of a complete metric spaces. Several authors have studied fixed point results which are based on alerting distance functions. Here we introduce new notion of generalized $(\Psi, \Phi)_{s}-$ rational type quasi b-metric spaces where Ψ and Φ are the altering distance functions.

3. Main theorems

In this section, we give our main results.
Definition 8 Let $\left(\mathcal{B}, \preceq, q_{b}\right)$ be an ordered quasi b-metric space. Let Ψ and Φ be altering distance functions. Then the mapping $T: \mathcal{B} \rightarrow \mathcal{B}$ is a generalized $(\Psi, \Phi)_{s}$-rational contraction mapping if there exists $C \geq 0$ and two altering distance functions Ψ and Φ such that

$$
\begin{equation*}
\Psi\left(s q_{b}(T \eta, T \lambda)\right) \preceq \Psi\left(E_{s}(\eta, \lambda)\right)-\Phi\left(E_{s}(\eta, \lambda)\right)+C \Psi(F(\eta, \lambda)) \tag{1}
\end{equation*}
$$

where

$$
E_{s}(\eta, \lambda)=\max \left\{q_{b}(\eta, \lambda), q_{b}(\lambda, T \lambda), \frac{q_{b}(\eta, T \lambda) q_{b}(\lambda, T \lambda)}{s\left(1+q_{b}(\eta, \lambda)+q_{b}(\lambda, T \lambda)\right)}\right\}
$$

and

$$
F(\eta, \lambda)=\min \left\{\frac{q_{b}(\eta, T \eta) q_{b}(\lambda, T \eta)}{1+q_{b}(\eta, \lambda)}, \frac{q_{b}(\eta, T \lambda) q_{b}(\lambda, T \eta)}{1+q_{b}(\eta, \lambda)}\right\}
$$

for all comparable $\eta, \lambda \in \mathcal{B}$.
Lemma 1 Let $\left(\mathcal{B}, q_{b}\right)$ be a quasi b-metric space with $s \geq 1$, and suppose that $\left\{\eta_{n}\right\}$ and $\left\{\lambda_{n}\right\}$ quasi b-converge to η, λ respectively. Then, we have

$$
\frac{1}{s^{2}} q_{b}(\eta, \lambda) \leq \lim _{n \rightarrow \infty} \inf q_{b}\left(\eta_{n}, \lambda_{n}\right) \leq \lim _{n \rightarrow \infty} \sup q_{b}\left(\eta_{n}, \lambda_{n}\right) \leq s^{2} q_{b}(\eta, \lambda)
$$

In particular, if $\eta=\lambda$, then, $\lim _{n, m \rightarrow \infty} q_{b}\left(\eta_{n}, \lambda_{m}\right)=0$. Moreover, for each $\kappa \in X$ we have

$$
\frac{1}{s} q_{b}(\eta, \kappa) \leq \lim _{n \rightarrow \infty} \inf q_{b}\left(\eta_{n}, \kappa\right) \leq \lim _{n \rightarrow \infty} \sup q_{b}\left(\eta_{n}, \kappa\right) \leq s q_{b}(\eta, \lambda)
$$

Proof Suppose assume that $\left\{\eta_{n}\right\}$ and $\left\{\lambda_{n}\right\}$ are quasi b-convergent sequence, then using triangle inequality we may write

$$
\begin{align*}
q_{b}(\eta, \lambda) & \leq s q_{b}\left(\eta, \eta_{n}\right)+s q_{b}\left(\eta_{n}, \lambda\right) \\
& =s q_{b}\left(\eta, \eta_{n}\right)+s^{2} q_{b}\left(\eta_{n}, \lambda_{n}\right)+s^{2} q_{b}\left(\lambda_{n}, \lambda\right) \tag{2}
\end{align*}
$$

and

$$
\begin{align*}
q_{b}\left(\eta_{n}, \lambda_{n}\right) & \leq s q_{b}\left(\eta_{n}, \eta\right)+s q_{b}\left(\eta, \lambda_{n}\right) \\
& =s q_{b}\left(\eta_{n}, \eta\right)+s^{2} q_{b}(\eta, \lambda)+s^{2} q_{b}\left(\lambda, \lambda_{n}\right) \tag{3}
\end{align*}
$$

Letting the lower limit as n approaches to infinity in (2) and upper limit as n approaches to infinity in (3) we wish the first inequality. Similarly, using again the same argument the second inequality follows.
Theorem 1 Let (\mathcal{B}, \preceq) be a partially ordered set and suppose that there exists a quasi b-metric q_{b} on \mathcal{B} such that $\left(\mathcal{B}, q_{b}\right)$ is a quasi b-complete b-metric space. Let $T: \mathcal{B} \rightarrow \mathcal{B}$ be an increasing continuous mapping with respect to \preceq. Suppose that T is an (Ψ, Φ)-rational contractive mapping for all comparable $\eta, \lambda \in \mathcal{B}$, there exits $\eta_{0} \in \mathcal{B}$ such that $\eta_{0} \preceq T \eta_{0}$, then T has a fixed point.
Proof To prove that T is a fixed point.
Let η_{0} be an arbitrary point in \mathcal{B}. We define a sequence $\left\{\eta_{n}\right\}$ in \mathcal{B} such that $\eta_{n+1}=T \eta_{n}$ for all $n \geq 0$. Since $\eta_{0} \preceq T \eta_{0}=\eta_{1}=T \eta_{0} \preceq \eta_{2}=T \eta_{1} T$, is an increasing sequence. Again, as $\eta_{1} \preceq \eta_{2}$ and T is an increasing, we have $\eta_{2}=T \eta_{1} \preceq \eta_{3}=T \eta_{2}$. By induction, we have

$$
\eta_{0} \preceq \eta_{1} \preceq \ldots . . \preceq \eta_{n} \preceq \eta_{n+1} \preceq \ldots
$$

If $\eta_{n}=\eta_{n+1}$ for some $n \in \mathbb{N}$, then $\eta_{n}=T \eta_{n}$ and hence η_{n} is a fixed point of T. Consider $\eta_{n} \neq \eta_{n+1}$ for every $n \in \mathbb{N}$. By equation (1), we have

$$
\begin{align*}
\Psi\left(q_{b}\left(\eta_{n}, \eta_{n+1}\right)\right) & \preceq \Psi\left(s q_{b}\left(\eta_{n}, \eta_{n+1}\right)\right) \\
& =\Psi\left(s q_{b}\left(T \eta_{n-1}, T \eta_{n}\right)\right) \tag{4}\\
& \preceq \Psi\left(E_{s}\left(\eta_{n-1}, \eta_{n}\right)\right)-\Phi\left(E_{s}\left(\eta_{n-1}, \eta_{n}\right)\right)+C \Psi\left(F\left(\eta_{n-1}, \eta_{n}\right)\right)
\end{align*}
$$

where

$$
\begin{align*}
& E_{s}\left(\eta_{n-1}, \eta_{n}\right) \\
& \quad=\max \left\{q_{b}\left(\eta_{n-1}, \eta_{n}\right), q_{b}\left(\eta_{n}, T \eta_{n}\right), \frac{q_{b}\left(\eta_{n-1}, T \eta_{n}\right) q_{b}\left(\eta_{n}, T \eta_{n}\right)}{s\left(1+q_{b}\left(\eta_{n-1}, \eta_{n}\right)+q_{b}\left(\eta_{n}, T \eta_{n}\right)\right)}\right\} \\
& \quad \preceq \max \left\{q_{b}\left(\eta_{n-1}, \eta_{n}\right), q_{b}\left(\eta_{n}, \eta_{n+1}\right), \frac{q_{b}\left(\eta_{n-1}, \eta_{n+1}\right) q_{b}\left(\eta_{n}, \eta_{n+1}\right)}{s\left(1+q_{b}\left(\eta_{n-1}, \eta_{n}\right)+q_{b}\left(\eta_{n}, \eta_{n+1}\right)\right)}\right\} \\
& \quad \preceq \max \left\{q_{b}\left(\eta_{n-1}, \eta_{n}\right), q_{b}\left(\eta_{n}, \eta_{n+1}\right), \frac{\left(s q_{b}\left(\eta_{n-1}, \eta_{n}\right)+s q_{b}\left(\eta_{n}, \eta_{n+1}\right)\right) q_{b}\left(\eta_{n}, \eta_{n+1}\right)}{s\left(1+q_{b}\left(\eta_{n-1}, \eta_{n}\right)+q_{b}\left(\eta_{n}, \eta_{n+1}\right)\right)}\right\} \\
& \quad=\max \left\{q_{b}\left(\eta_{n-1}, \eta_{n}\right), q_{b}\left(\eta_{n}, \eta_{n+1}\right)\right\} \tag{5}
\end{align*}
$$

Since $\left|1+q_{b}\left(\eta_{n-1}, \eta_{n}\right)+q_{b}\left(\eta_{n}, \eta_{n+1}\right)\right|>\left|q_{b}\left(\eta_{n-1}, \eta_{n}\right)+q_{b}\left(\eta_{n}, \eta_{n+1}\right)\right|$.
Now, let us take,

$$
F\left(\eta_{n-1}, \eta_{n}\right)
$$

$$
=\min \left\{\frac{q_{b}\left(\eta_{n-1}, T \eta_{n}\right) q_{b}\left(\eta_{n}, T \eta_{n-1}\right)}{1+q_{b}\left(\eta_{n-1}, \eta_{n}\right)}, \frac{q_{b}\left(\eta_{n-1}, T \eta_{n}\right) q_{b}\left(\eta_{n}, T \eta_{n-1}\right)}{1+q_{b}\left(\eta_{n-1}, \eta_{n}\right)}\right\}
$$

$$
\begin{equation*}
\preceq \min \left\{\frac{q_{b}\left(\eta_{n-1}, \eta_{n+1}\right) q_{b}\left(\eta_{n}, \eta_{n}\right)}{1+q_{b}\left(\eta_{n-1}, \eta_{n}\right)}, \frac{q_{b}\left(\eta_{n-1}, \eta_{n+1}\right) q_{b}\left(\eta_{n}, \eta_{n}\right)}{1+q_{b}\left(\eta_{n-1}, \eta_{n}\right)}\right\}=0 . \tag{6}
\end{equation*}
$$

Taking (4) and (6) into account, (4) yields

$$
\begin{align*}
& \Psi\left(q_{b}\left(\eta_{n}, \eta_{n+1}\right)\right) \preceq \Psi\left(\max \left\{q_{b}\left(\eta_{n-1},, \eta_{n}\right), s q_{b}\left(\eta_{n}, \eta_{n+1}\right)\right\}\right) \\
&-\Phi\left(\max \left\{q_{b}\left(\eta_{n-1}, \eta_{n}\right), s q_{b}\left(\eta_{n}, \eta_{n+1}\right)\right\}\right) \tag{7}\\
& \prec \Psi\left(\max \left\{q_{b}\left(\eta_{n-1}, \eta_{n}\right), s q_{b}\left(\eta_{n}, \eta_{n+1}\right)\right\}\right) .
\end{align*}
$$

Suppose

$$
\max \left\{q_{b}\left(\eta_{n-1}, \eta_{n}\right), q_{b}\left(\eta_{n}, \eta_{n+1}\right)\right\}=q_{b}\left(\eta_{n}, \eta_{n+1}\right)
$$

then (7) becomes,

$$
\Psi\left(q_{b}\left(\eta_{n}, \eta_{n+1}\right)\right) \preceq \Psi\left(\max \left\{q_{b}\left(\eta_{n-1}, \eta_{n}\right), q_{b}\left(\eta_{n}, \eta_{n+1}\right)\right\}\right)<\Psi q_{b}\left(\eta_{n}, \eta_{n+1}\right)
$$

which gives a contradiction. Therefore,

$$
\max \left\{q_{b}\left(\eta_{n-1}, \eta_{n}\right), q_{b}\left(\eta_{n}, \eta_{n+1}\right)\right\}=q_{b}\left(\eta_{n-1}, \eta_{n}\right)
$$

Thus, inequality (7) becomes

$$
\begin{equation*}
\Psi\left(q_{b}\left(\eta_{n}, \eta_{n+1}\right)\right) \preceq \Psi\left(q_{b}\left(\eta_{n-1}, \eta_{n}\right)\right)-\Phi\left(q_{b}\left(\eta_{n-1}, \eta_{n}\right)\right) \prec \Psi\left(q_{b}\left(\eta_{n-1}, \eta_{n}\right)\right) \tag{8}
\end{equation*}
$$

Since Ψ is an increasing mapping, therefore $\left\{q_{b}\left(\eta_{n}, \eta_{n+1}\right): n \in \mathbb{N} \cup\{0\}\right\}$ is an increasing sequence of positive numbers. So, there exists $\tau \geq 0$ such that

$$
\lim _{n \rightarrow \infty} q_{b}\left(\eta_{n}, \eta_{n+1}\right)=\tau
$$

Letting n approaches to infinity in (8), we get

$$
\Psi(\tau) \leq \Psi(\tau)-\Phi(\tau)<\Psi(\tau)
$$

Therefore $\Phi(\tau)=0$, hence, $\tau=0$. Thus, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} q_{b}\left(\eta_{n}, \eta_{n+1}\right)=0 \tag{9}
\end{equation*}
$$

Now, we show that $\left\{\eta_{n}\right\}$ is a quasi b-Cauchy sequence in \mathcal{B}. Suppose conversely assume that $\left\{\eta_{n}\right\}$ is not a quasi b-Cauchy sequence. Then there exists $\gamma>0$ for
which we find that two subsequence's $\left\{\eta_{u_{i}}\right\}$ and $\left\{\eta_{v_{i}}\right\}$ of the sequence η_{n} such that v_{i} is the smallest index for which

$$
\begin{equation*}
v_{i} \succ u_{i} \succ i, \quad q_{b}\left(\eta_{u_{i}}, \eta_{v_{i}}\right) \succeq \gamma . \tag{10}
\end{equation*}
$$

which shows that

$$
\begin{equation*}
q_{b}\left(\eta_{u_{i}}, \eta_{v_{i}-1}\right) \prec \gamma . \tag{11}
\end{equation*}
$$

From (10) and (11) implies that

$$
\begin{aligned}
\gamma & \preceq q_{b}\left(\eta_{u_{i}}, \eta_{v_{i}}\right) \\
& \preceq s q_{b}\left(\eta_{u_{i}}, \eta_{u_{i}-1}\right)+s q_{b}\left(\eta_{u_{i}-1}, \eta_{v_{i}}\right) \\
& \preceq s q_{b}\left(\eta_{u_{i}}, \eta_{u_{i}-1}\right)+s^{2} q_{b}\left(\eta_{u_{i}-1}, \eta_{v_{i}-1}\right)+s^{2} q_{b}\left(\eta_{v_{i}-1}, \eta_{v_{i}}\right)
\end{aligned}
$$

Using (9) and taking the upper limit as i approaches to infinity, we get

$$
\frac{\gamma}{s^{2}} \preceq \lim _{i \rightarrow \infty} \sup q_{b}\left(\eta_{u_{i}-1}, \eta_{v_{i}-1}\right) .
$$

On the other hand, we have

$$
q_{b}\left(\eta_{u_{i}-1}, \eta_{v_{i}-1}\right) \preceq s q_{b}\left(\eta_{u_{i}-1}, \eta_{v_{i}}\right)+s q_{b}\left(\eta_{u_{i}}, \eta_{v_{i}-1}\right)
$$

Using (9), (11) and taking the upper limit as i tends to infinity, we get

$$
\lim _{i \rightarrow \infty} q_{b}\left(\eta_{u_{i}-1}, \eta_{v_{i}-1}\right) \preceq \gamma s .
$$

So, we have

$$
\begin{equation*}
\frac{\gamma}{s^{2}} \preceq \lim _{i \rightarrow \infty} \sup q_{b}\left(\eta_{u_{i}-1}, \eta_{v_{i}-1}\right) \preceq \gamma s . \tag{12}
\end{equation*}
$$

Again, using the triangular inequality, we have

$$
\begin{array}{r}
q_{b}\left(\eta_{u_{i}-1}, \eta_{v_{i}}\right) \preceq s q_{b}\left(\eta_{u_{i}-1}, \eta_{v_{i}-1}\right)+s q_{b}\left(\eta_{v_{i}}, \eta_{v_{i}}\right), \\
\gamma \preceq q_{b}\left(\eta_{u_{i}}, \eta_{v_{i}}\right) \preceq s q_{b}\left(\eta_{u_{i}}, \eta_{v_{i}-1}\right)+s q_{b}\left(\eta_{u_{i}-1}, \eta_{v_{i}}\right)
\end{array}
$$

and

$$
\gamma \preceq q_{b}\left(\eta_{u_{i}}, \eta_{v_{i}}\right) \preceq s q_{b}\left(\eta_{u_{i}}, \eta_{v_{i}-1}\right)+s q_{b}\left(\eta_{v_{i}-1}, \eta_{v_{i}}\right) .
$$

Taking the upper limits as i approaches to infinity in the first and second inequalities above, and using (9) and (12) we get

$$
\begin{equation*}
\frac{\gamma}{s} \preceq \lim _{i \rightarrow \infty} \sup q_{b}\left(\eta_{u_{i}-1}, \eta_{v_{i}}\right) \preceq \gamma s^{2} . \tag{13}
\end{equation*}
$$

Likewise, taking the upper limit as i approaches to infinity in the third inequality above, and using (9) and (11) we get

$$
\begin{equation*}
\frac{\gamma}{s} \preceq \lim _{i \rightarrow \infty} q_{b}\left(\eta_{u_{i}}, \eta_{v_{i}-1}\right) \preceq \gamma . \tag{14}
\end{equation*}
$$

From (1), $(\Psi, \Phi)_{s}$-rational contraction mapping, we have

$$
\begin{align*}
\Psi\left(s q_{b}\left(\eta_{u_{i}}, \eta_{v_{i}}\right)\right)= & \Psi\left(s q_{b}\left(T \eta_{u_{i}-1}, T \eta_{v_{i}-1}\right)\right) \\
\leq & \Psi\left(E_{s}\left(\eta_{u_{i}-1}, \eta_{v_{i}-1}\right)\right)-\Phi\left(E_{s}\left(\eta_{u_{i}-1}, \eta_{v_{i}-1}\right)\right) \\
& +C \Psi\left(F\left(\eta_{u_{i}-1}, \eta_{v_{i}-1}\right)\right) \tag{15}
\end{align*}
$$

where

$$
\begin{align*}
& E_{s}\left(\eta_{u_{i}-1}, \eta_{v_{i}-1}\right) \\
& =\max \left\{q_{b}\left(\eta_{u_{i}-1}, \eta_{v_{i}-1}\right), q_{b}\left(\eta_{v_{i}-1}, T \eta_{v_{i}-1}\right)\right. \\
& \left.\qquad \frac{q_{b}\left(\eta_{u_{i}-1}, T \eta_{v_{i}-1}\right) q_{b}\left(\eta_{v_{i}-1}, T \eta_{v_{i}-1}\right)}{s\left(1+q_{b}\left(\eta_{u_{i}-1}, \eta_{v_{i}-1}\right)+q_{b}\left(\eta_{v_{i}-1}, T \eta_{v_{i}-1}\right)\right)}\right\} \\
& \quad=\max \left\{q_{b}\left(\eta_{u_{i}-1}, \eta_{v_{i}-1}\right), q_{b}\left(\eta_{v_{i}-1}, \eta_{v_{i}}\right), \frac{q_{b}\left(\eta_{u_{i}-1}, \eta_{v_{i}}\right) q_{b}\left(\eta_{v_{i}-1}, \eta_{v_{i}}\right)}{s\left(1+q_{b}\left(\eta_{u_{i}-1}, \eta_{v_{i}-1}\right)+q_{b}\left(\eta_{v_{i}-1}, \eta_{v_{i}}\right)\right)}\right\} \tag{16}
\end{align*}
$$

and

$$
\begin{gather*}
F\left(\eta_{u_{i}-1}, \eta_{v_{i}-1}\right)=\min \left\{\frac{q_{b}\left(\eta_{u_{i}-1}, T \eta_{u_{i}-1}\right) q_{b}\left(\eta_{v_{i}-1}, T \eta_{u_{i}-1}\right)}{1+q_{b}\left(\eta_{u_{i}-1}, \eta_{v_{i}-1}\right)}\right. \\
=\min \left\{\frac{q_{b}\left(\eta_{u_{i}-1}, T \eta_{v_{i}-1}\right) q_{b}\left(\eta_{v_{i}-1}, T \eta_{u_{i}-1}\right)}{1+q_{b}\left(\eta_{u_{i}-1}, \eta_{v_{i}-1}\right)}\right\} \\
\\
=\frac{\left.q_{u_{i}-1}, \eta_{u_{i}}\right) q_{b}\left(\eta_{v_{i}-1}, \eta_{u_{i}}\right)}{1+q_{b}\left(\eta_{u_{i}-1}, \eta_{v_{i}-1}\right)}, \tag{17}\\
\left.\frac{q_{b}\left(\eta_{u_{i}-1}, \eta_{v_{i}}\right) q_{b}\left(\eta_{v_{i}-1}, \eta_{u_{i}}\right)}{1+q_{b}\left(\eta_{u_{i}-1}, \eta_{v_{i}-1}\right)}\right\}
\end{gather*}
$$

Taking the upper limit as i approaches to infinity in (16) and (17) and using (9), (12), (13) and (14), we get

$$
\begin{aligned}
\frac{\gamma}{s^{2}} & =\min \left\{\frac{\gamma}{s^{2}}, 0\right\} \\
& \preceq \lim _{i \rightarrow \infty} \sup E_{s}\left(q_{b}\left(\eta_{u_{i}-1}, \eta_{v_{i}-1}\right)\right) \\
& =\max \left\{\lim _{i \rightarrow \infty} \sup q_{b}\left(\eta_{u_{i}-1}, \eta_{v_{i}-1}\right), 0,\right\} \\
& \preceq \max \{\gamma s, 0\} \\
& =\gamma s
\end{aligned}
$$

So, we have

$$
\begin{equation*}
\frac{\gamma}{s^{2}} \preceq \lim _{i \rightarrow \infty} \sup E_{s}\left(q_{b}\left(\eta_{u_{i}-1}, \eta_{v_{i}-1}\right)\right) \preceq \gamma s . \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{i \rightarrow \infty} F\left(\eta_{u_{i}-1}, \eta_{v_{i}-1}\right)=0 \tag{19}
\end{equation*}
$$

Likewise, we can obtain

$$
\begin{equation*}
\frac{\gamma}{s^{2}} \preceq \lim _{i \rightarrow \infty} \inf E_{s}\left(q_{b}\left(\eta_{u_{i}-1}, \eta_{v_{i}-1}\right)\right) \preceq \gamma s . \tag{20}
\end{equation*}
$$

Now, taking the upper limit as i approaches to infinity in (15) and (10), (18) and (19), we have

$$
\begin{aligned}
\Psi(\gamma s) & =\Psi\left(s \lim _{i \rightarrow \infty} \sup q_{b}\left(T \eta_{u_{i}}, T \eta_{v_{i}}\right)\right) \\
& \leq \Psi\left(\lim _{i \rightarrow \infty} \sup E_{s}\left(\eta_{u_{i}-1}, \eta_{v_{i}-1}\right)\right)-\lim _{i \rightarrow \infty} \inf \Phi\left(E_{s}\left(\eta_{u_{i}-1}, \eta_{v_{i}-1}\right)\right) \\
& \leq \Psi(\gamma s)-\Phi\left(\lim _{i \rightarrow \infty} \inf E_{s}\left(\eta_{u_{i}-1}, \eta_{v_{i}-1}\right)\right)
\end{aligned}
$$

which further implies that

$$
\Phi\left(\lim _{i \rightarrow \infty} \inf E_{s}\left(\eta_{u_{i}-1}, \eta_{v_{i}-1}\right)\right)=0
$$

So, $\lim _{i \rightarrow \infty} \inf E_{s}\left(\eta_{u_{i}-1}, \eta_{v_{i}-1}\right)=0$, which is contradiction to (20). Thus $\eta_{n+1}=$ $T \eta_{n}$ is a quasi b-Cauchy sequence in \mathcal{B}. As \mathcal{B} is a quasi b-complete space, there exists $v \in \mathcal{B}$ such that $\eta_{n} \rightarrow v$ as $n \rightarrow \infty$, and

$$
\lim _{n \rightarrow \infty} \eta_{n+1}=\lim _{n \rightarrow \infty} T \eta_{n}=v
$$

Now, If T is continuous. Using the triangular inequality, we get

$$
q_{b}(v, T v) \preceq s q_{b}\left(v, T \eta_{n}\right)+s q_{b}\left(T \eta_{n}, T v\right) .
$$

Letting n approaches to infinity, we get

$$
q_{b}(v, T v) \preceq s \lim _{n \rightarrow \infty} q_{b}\left(v, T \eta_{n}\right)+s \lim _{n \rightarrow \infty} q_{b}\left(T \eta_{n}, T v\right)=0 .
$$

So, we have $T v=v$. Hence, v is fixed point.
Without assuming the continuous the Theorem 1 we have the following fixed point theorem.
Theorem 2 Let (\mathcal{B}, \preceq) be a partially ordered quasi b-metric spaces such that the quasi b-metric is quasi b-complete. Let $T: \mathcal{B} \rightarrow \mathcal{B}$ be an increasing mapping with respect to \preceq. Suppose that T is an $(\Psi, \Phi)_{s}$-rational contractive mapping for all comparable elements $\eta, \lambda \in \mathcal{B}$. Assume that whenever η_{n} is an increasing sequence in \mathcal{B} such that $\eta_{n} \rightarrow \eta \in \mathcal{B}$ implies $\eta_{n} \preceq \eta$ for all $n \in \mathbb{N}$, then T has a fixed point. proof The similar argument followed from the Theorem 1, we construct an increasing sequence $\left\{\eta_{n}\right\}$ in \mathcal{B} such that $\eta_{n} \rightarrow v$ for some $v \in \mathcal{B}$. Using the assumption of \mathcal{B}, we have $\eta_{n} \preceq v$ for all $n \in \mathbb{N}$. Now, it is enough to show that T has a fixed point. By $(\Psi, \Phi)_{s}$-rational contraction mapping, we have

$$
\begin{align*}
\Psi\left(s q_{b}\left(\eta_{n+1}, T v\right)\right) & =\Psi\left(s q_{b}\left(T \eta_{n}, T v\right)\right) \\
& \leq \Psi\left(E_{s}\left(\eta_{n}, v\right)\right)-\Phi\left(E_{s}\left(\eta_{n}, v\right)\right)+C \Psi\left(F\left(\eta_{n}, v\right)\right) \tag{21}
\end{align*}
$$

where

$$
\begin{equation*}
E_{s}\left(\eta_{n}, v\right)=\max \left\{q_{b}\left(\eta_{n}, v\right), q_{b}(v, T v), \frac{q_{b}\left(\eta_{n}, T v\right) q_{b}(v, T v)}{s\left(1+q_{b}\left(\eta_{n}, v\right)+q_{b}(v, T v)\right)}\right\} \tag{22}
\end{equation*}
$$

and

$$
\begin{align*}
F\left(\eta_{n}, v\right) & =\min \left\{\frac{q_{b}\left(\eta_{n}, T \eta_{n}\right) q_{b}\left(v, T \eta_{n}\right)}{1+q_{b}\left(\eta_{n}, v\right)}, \frac{q_{b}\left(\eta_{n}, T v\right) q_{b}\left(v, T \eta_{n}\right)}{1+q_{b}\left(\eta_{n}, v\right)}\right\} \\
& =\min \left\{\frac{q_{b}\left(\eta_{n}, \eta_{n+1}\right) q_{b}\left(v, \eta_{n+1}\right)}{1+q_{b}\left(\eta_{n}, v\right)}, \frac{q_{b}\left(\eta_{n}, T v\right) q_{b}\left(v, \eta_{n+1}\right)}{1+q_{b}\left(\eta_{n}, v\right)}\right\} . \tag{23}
\end{align*}
$$

Letting n approaches to infinity in (22) and (23) and using Lemma 1, we get

$$
\begin{align*}
0 & =\min \left\{0, q_{b}(v, T v)\right\} \\
& \preceq \sup \lim _{n \rightarrow \infty} E_{s}\left(\eta_{n}, v\right) \\
& \preceq \max \left\{0, q_{b}(v, T v)\right\} \\
& =q_{b}(v, T v) . \tag{24}
\end{align*}
$$

and

$$
F\left(\eta_{n}, v\right)=0
$$

Likewise, we can obtain

$$
\begin{equation*}
E_{s}\left(\eta_{n}, v\right)=\lim _{n \rightarrow \infty} \inf E_{s}\left(\eta_{n}, v\right) \preceq q_{b}(v, T v) \tag{25}
\end{equation*}
$$

Again, taking the upper limit as n approaches to infinity in (21) and using Lemma 1 and (24) we get

$$
\begin{aligned}
\Psi\left(q_{b}(v, T v)\right) & \preceq \Psi\left(s \frac{1}{s} q_{b}(v, T v)\right) \preceq \Psi\left(s \lim _{n \rightarrow \infty} \sup q_{b}\left(\eta_{n+1}, T v\right)\right. \\
& \preceq \Psi\left(\lim _{n \rightarrow \infty} \sup E_{s}(\eta, v)-\lim _{n \rightarrow \infty} \inf \Phi\left(s q_{b}\left(\eta_{n+1}, T v\right)\right.\right. \\
& \preceq \Psi\left(q_{b}(v, T v)\right)-\Phi\left(\lim _{n \rightarrow \infty} \inf E_{s}(\eta, v)\right) .
\end{aligned}
$$

Therefore $\Phi\left(\lim _{n \rightarrow \infty} \inf E_{s}\left(\eta_{n}, v\right)\right) \leq 0$, equally, $\left.\lim _{n \rightarrow \infty} \inf E_{s}\left(\eta_{n}, v\right)\right)=0$. Thus, from (25) we get $v=T v$ and hence v is a fixed point of T.

Corollary 1 Let (\mathcal{B}, \preceq) be a partially ordered quasi b-metric spaces such that the quasi b-metric is b-complete. Let $T: \mathcal{B} \rightarrow \mathcal{B}$ be an increasing continuous mapping with respect to \preceq. Suppose that $r \in[0,1)$ and $C \geq 0$ such that

$$
\begin{aligned}
q_{b}(T \eta, T \lambda) \leq & \frac{r}{s} \max \left\{q_{b}(\eta, \lambda), q_{b}(\lambda, T \lambda), \frac{q_{b}(\eta, T \lambda) q_{b}(\lambda, T \lambda)}{s\left(1+q_{b}(\eta, \lambda)+q_{b}(\lambda, T \lambda)\right)}\right\} \\
& +\frac{C}{s} \min \left\{\frac{q_{b}(\eta, T \eta) q_{b}(\lambda, T \eta)}{1+q_{b}(\eta, \lambda)}, \frac{q_{b}(\eta, T \lambda) q_{b}(\lambda, T \eta)}{1+q_{b}(\eta, \lambda)}\right\}
\end{aligned}
$$

for all comparable elements $\eta, \lambda \in \mathcal{B}$. Suppose there exist $\eta_{0} \in \mathcal{B}$ such that $\eta_{0} \preceq T \eta_{0}$ then T has a fixed point.
Proof It follows from the Theorem 1 let us consider $\Psi(t)=t$ and $\Phi(t)=(1-r) t$ for every $t \in \mathbb{R}^{+}$and noticing that T is generalized $(\Psi, \Phi)_{s}$-rational contraction mapping and hence it shows that T has a fixed point.
Without assuming continuity of T in the corollary 1.
Corollary 2 Let (\mathcal{B}, \preceq) be a partially ordered quasi b-metric spaces such that the quasi b-metric is quasi $b-$ complete. Let $T: \mathcal{B} \rightarrow \mathcal{B}$ be an increasing continuous mapping with respect to \preceq. Suppose that $r \in[0,1)$ and $C \geq 0$ such that

$$
\begin{aligned}
q_{b}(T \eta, T \lambda) \leq & \frac{r}{s} \max \left\{q_{b}(\eta, \lambda), q_{b}(\lambda, T \lambda), \frac{q_{b}(\eta, T \lambda) q_{b}(\lambda, T \lambda)}{s\left(1+q_{b}(\eta, \lambda)+q_{b}(\lambda, T \lambda)\right)}\right\} \\
& +\frac{C}{s} \min \left\{\frac{q_{b}(\eta, T \eta) q_{b}(\lambda, T \eta)}{1+q_{b}(\eta, \lambda)}, \frac{q_{b}(\eta, T \lambda) q_{b}(\lambda, T \eta)}{1+q_{b}(\eta, \lambda)}\right\}
\end{aligned}
$$

for all comparable elements $\eta, \lambda \in \mathcal{B}$, and assume that η_{n} is increasing sequence in \mathcal{B} such that $\eta_{n} \rightarrow \eta \in \mathcal{B}$ implies $\eta_{n} \preceq \eta$ for all $n \in \mathbb{N}$, then T has a fixed point.

Proof It follows from the Theorem 2 let us consider $\Psi(t)=t$ and $\Phi(t)=(1-r) t$ for every $t \in \mathbb{R}^{+}$hence it shows that T has a fixed point.
Example 1 Let $\mathcal{B}=\{0,1,2\}$ be furnish with the quasi b-metric. Define q_{b} : $\mathcal{B} \times \mathcal{B} \rightarrow \mathbb{R}^{+}$such that

$$
q_{b}(\eta, \lambda)= \begin{cases}0, & \eta=\lambda \\ \left|2 \eta-\frac{\lambda}{3}\right|^{2}, & \text { otherwise }\end{cases}
$$

Note that $q_{b}(\eta, \lambda)=0$ for all $k, l \in \mathcal{B}$ and $q_{b}(\eta, \lambda)=0$ iff $\eta=\lambda$. we also note it $q_{b}(\eta, \lambda)=q_{b}(\lambda, \eta)$ iff $\eta=\lambda$ so it is not symmetric.
If $\eta=0, \lambda=1, \kappa=2$ then

$$
q_{b}(\eta, \kappa)=\frac{4}{9}, q_{b}(\eta, \lambda)=\frac{1}{9}, q_{b}(\lambda, \kappa)=\frac{16}{9} .
$$

So that the usual triangle inequality not satisfied. Therefore the metric is a quasi b-metric on \mathcal{B}. Thus $\left(\mathcal{B}, \preceq, q_{b}\right)$ is a partially ordered quasi b-metric space with costant $s \geq 2$.

4. Applications

Let Ω be the set of all functions $\Phi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$satisfying in the following hypotheses:
(i) Every $\Phi \in \Omega$ is a Lebesgue integrable function on each compact subset of \mathbb{R}^{+},
(ii) For all $\Phi \in \Omega$ and $\omega>0$.

$$
\int_{0}^{\omega} \Phi(t) d t>0
$$

Let the function $\Psi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be defined by

$$
\Psi(\tau)=\int_{0}^{\tau} \Phi(t) d t>0
$$

is an altering distance functions. Therefore, we consider the following result. Corollary 1 Let (\mathcal{B}, \preceq) be a partially ordered quasi b-metric spaces such that the quasi b-metric is b-complete. Let $T: \mathcal{B} \rightarrow \mathcal{B}$ be an increasing continuous mapping with respect to \preceq. Suppose that $r \in[0,1)$ and $C \geq 0$ such that

$$
\begin{aligned}
\int_{0}^{q_{b}(T \eta, T \lambda)} \Phi(t) d t & \leq \frac{r}{s} \int_{0}^{\max \left\{q_{b}(\eta, \lambda), q_{b}(\lambda, T \lambda), \frac{q_{b}(\eta, T \lambda) q_{b}(\lambda, T \lambda)}{s\left(1+q_{b}(\eta, \lambda)+q_{b}(\lambda, T \lambda)\right)}\right\}} \Phi(t) d t \\
& +\frac{C}{s} \int_{0}^{\min \left\{\frac{q_{b}\left(\eta, T \eta q_{b}(\lambda, T \eta)\right.}{1+q_{b}(\eta, \lambda)}, \frac{q_{b}(\eta, T \lambda) q_{b}(\lambda, T \eta)}{1+q_{b}(\eta, \lambda)}\right\}} \Phi(t) d t
\end{aligned}
$$

for all comparable elements $\eta, \lambda \in \mathcal{B}$. Suppose there exists $\eta_{0} \in \mathcal{B}$ such that $\eta_{0} \preceq T \eta_{0}$, then T has a fixed point.
Proof It follows from the Theorem 1 by taking

$$
\Psi(\tau)=\int_{0}^{\tau} \Phi(t) d t
$$

and $\Phi(\tau)=(1-r) \tau$, for all $\tau \in \mathbb{R}^{+}$.

References

[1] Banach, S.: Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fundamenta Mathematicae 1922, 3, 133-181.
[2] Berinde, V.: Some remarks on a fixed point theorem for Ciric-type almost contractions. Carpath. J. Math. 2009, 25, 157-162.
[3] Berinde, V.: General contractive fixed point theorems for Ciric-type almost contraction in metric spaces. Carpath. J. Math. 2008, 24, $10-19$.
[4] Czerwick, S.: Contraction mappings in b-metric spaces. Acta Mathematica et Informatica Universitatis Ostraviensis. vol. 1, pp. 5-11, 1993.
[5] Shah, M. N., Hussian, N.: Nonlinear contractions in partially ordered quasi $b-$ metric spaces. Commun. Korean Math. Soc. 27 (1), 117 - 128, 2012.
[6] Bakhtin, I. A.: The contraction mappings principle in quasi $b-$ metric spaces. Functional Analysis. vol. 30, pp. $26-37,1989$, (Russian).
[7] Boriceanu, M.: Strict fixed theorems for multivalued operators in b-metric spaces. Int. J. Mod. Math. 4 (3), 285 - 301, 2009.
[8] Aydi, H., Bota, M-F., Karapinar, E., and Moradi, S.: A common fixed point for weak ϕ-contractions on b-metric spaces. Fixed point theory. 13 (2), 337-346, 2012.
[9] Roshan, J. R., Shobkolaei, N., Sedghi, S., and Abbas, M.: Common fixed point of four maps in b-metric spaces. Hacet. J. Math. Stat. 43 (4), 2014(4), 613 - 624.
[10] Aghajani, A., Abbas. M., and Roshan, J. R.: Common fixed point of four maps in $b-$ metric spaces. Math. Slovaca. 64, (2014), No. 4, 941 - 960.
[11] Khan, M. S., Swaleh, M., and Sessa, S.: Fixed point theorems by altering distances between the points. Bull Aust math. 30, $1-9,1984$.

Department of Mathematics, St. Joseph's College(Autonomous), Tiruchirappalli-620 002, India

E-mail address: umasjc@gmail.com, mravichandran77@gmail.com, anbumaths23@gmail.com

Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology (VIT) University, Vellore 632 014, Tamil Nadu, India.

E-mail address: lakshminarayanmishra04@gmail.com, lakshminarayan.mishra@vit.ac.in

Department of Mathematics, Indira Gandhi National Tribal University, Laipur, Amarkantak, Anuppur, Madhya Pradesh, India 484887.

E-mail address: vnm@igntu.ac.in, vishnunarayanmishra@gmail.com

[^0]: 2010 Mathematics Subject Classification. 33E20.
 Key words and phrases. fixed point theorem, partially ordered, quasi $b-$ metric spaces, altering distance function, generalized contractions.

 Submitted Feb. 2021.

