Journal of Plant Production

Journal homepage & Available online at: www.jpp.journals.ekb.eg

Impact of Planting Distances and Natural Plant Extracts on Vegetative Growth, Chemical Constituents and Oil Productivity on Thyme Plant

Mai S. Refaay^{1*}; Y. F. Y. Mohamed¹; A. A. Dewidar² and Safaa M. Mohamed¹

¹ Horticulture Dept., Fac. of Agric., Benha University, Egypt.

² Medicinal and Aromatic plant Res. Dep., Hort. Res.Institute, Agric. Res.Center, Dokki, Cairo, Egypt.

ABSTRACT

This study was carried during the two successive seasons 2017 and 2018, at the Experimental Farm of Hortic. Dep., Faculty of Agric., Benha University, Egypt to study the effects of different planting distances (20*20 and 30*30cm) with some natural extracts (licorice and aloe extracts) and their interactions on thyme plant. the results showed that the combined treatment between planting distances (20*20) cm, and F5 (Aloe 50%) gained the superiority, followed by descending order by the combination treatment of planting distances (20*20cm) and F3 (Licorice 50%) in two cuts and the two seasons. Furthermore, the combination between planting distances and fertilizations treatments enhanced the chemical compositions particularly planting distance at (30*30cm), and F3 (Licorice 50%) during the in general .However, essential oil percentage of thyme plant was increased by using the combined treatment of planting distances at (30*30 cm) and F5 (Aloe extract at 50%). GLC analysis of of thyme included 12 compounds were identified, the main component was β -cymene. Consequently, it is preferable to use the planting distance (30*30cm), and F5 (Aloe extract at 50%), for improving all studied traits of thyme plant.

Keywords: Thymus vulgaris, planting distance, plant extracts, and Volatile oil .

INTRODUCTION

Thyme (Thymus vulgaris L.) belongs to the Lamiaceae family. Thyme is a medicinal plant use as in food, its products such as extracts, oils, and powder, have antidiabetic, antioxidant, antilipidemic, antitumor and antimicrobial actions attributed to active constituents of thyme are thymol and carvacrol in combination with other biological constituents (Khafaji 2018). The main constituents for oil of thyme were thymol, carvacrol, linalool, and p-cymene, which have already been proven to have antibacterial properties. The essential oil of thyme is the most effective, and it has antimicrobial and antioxidant properties due to its phenolic constituents (Yasuj et al. 2022). Also, the planting spacing is a factor that effects the nutrient absorption and photosynthesis process, which led to the growth of plant. Planting at a specific distance is high related to the nutrition and sunlight which are environmental parameters that effects productivity and biomass. The wider planting distance, the more circulation that bring nutrients to plant which increase the growth. (Aslin et al., 2019; El-Ghawwas et.al., 2011) on Artemisia annua they illustrated that the planting distance (60 x 40cm) improved the vegetative growth of plant, (Tadesse 2019) on Lavandula anguistifolia and Rosmarinus officinalis, and Mengistu et al. (2021) on Nigella sativa. In research has shown that extracts of plants can be used as a natural alternate to chemical fertilizers and growth stimulants. Also, Mohamed and Ghatas (2020) stated that using safety growth stimulants gave the best growth on Salvia hispanica L.

The licorice extracts (*Glycyrrhiza glabra*) contains some substances that have effect to promoters' growth such as minerals, (Al-Ajeeli, 2005 and Sabry *et al.*, 2009), (Fe, Zn, Ca, P, K, Mg),vitamins (B₁, B₂ and B₆), amino acids (lysine, alanine, arginine), as well as glucose and nitrogen. Also, it contains mevalonic acid which is a precursor for creating gibberellins (Saleem and Saeid, 2023). Also, reported that using aloe extracts can be used as a natural plants growth regulator due to contains some of the auxins (Dong Zhi, *et al.*, 2004). Moreover, it contains some vitamins, enzymes and amino acids (Josias, 2008 and Khater *et al.*, 2020). This study aims to evaluate the effects of planting distances and some natural extracts beside the combination between them on thyme plant.

Cross Mark

MATERIALS AND METHODS

This study was carried out during 2017 and 2018 seasons at the Experimental Farm of Hort. Department, Fac. of Agric., Benha University, Egypt to study the effect of different plant distances (20*20 and 30*30cm) with plant extracts as (licorice and aloe) on vegetative growth characters, chemical constituents and oil productivity of (*Thymus vulgaris* L.).

Extracts preparation:

Aloe plant extract it was prepared as described by (Wilfred *et al.* 1990), weigh 100 grams of (*Aloe vera* gel) and mix in the mixer, then filter the resulting mixture, then take (100 ml) of the extract and fill it with distilled water to (1000 ml).

Licorice extract the aqueous extract of licorice roots (*Glycyrrhiza glabra*), were soaking licorice roots in water at a rate: (100 and 50 g /L) of tap water. As suggested by Abd El-Azim *et al.* (2017). Then filtering of the solution by wringing using a cloth. The treatments was arranged as follow:

- 1- Control (Tap of water)
- 2- Licorice extract at 100%
- 3- Licorice extract at 50%
- 4- Aloe extract at 100%
- 5- Aloe extract at 50%

Cutting was obtained from Floriculture Farm, Hortic. Department, Faculty of Agric., Benha University, in the two seasons. The cuttings (5-7 cm) were planted in polyethylene bags as a mixture of (1 of clay: 1 of sand) on December 5th after seedling were planted on March 21st in both seasons. Mechanical and chemical analyses of the experimental soils are presented in Table :(1). Mechanical analysis was carried out according to Jackson (1973). Whereas chemical analysis was estimated according to Black *et al.* (1982).

Table 1. Physical and chemical analysis of the experimental soil.

Parameters	Val	ues	Parameters	Va	lues			
A. Mecha	nical proj	perties	B. Chemical analysis					
(2017)	(2018)		(2017)	(2018)				
Coarse sand	7.12 %	6.55 %	Organic matter	1.80%	1.75 %			
Fine sand	11.88 %	12.99 %	CaCO ₃	1.09%	1.17%			
Silt	24.77 %	26.24 %	Available nitrogen	0.88%	0.96 %			
Clay	56.23 %	54.22 %	Available phosphorus	0.25%	0.33 %			
Textural class	Clay loam	Clay loam	Available potassium	0.62 %	0.69%			
			pН	7.44	7.66			
			EC (dS/m)	0.86	0.84			

Experimental layout.

The layout of this experiment was factorial experiment in Randomized Complete Block Design (RCBD) with two factors the first two planting distances (20*20 and 30*30cm) with five plant extracts. All 10 treatments were replicated three times and each replicate contain three plots area and each plot (1*1m) contained of 6 plants with spacing (20*20cm), and 4 plants with spacing (30*30cm) The plants received normal agricultural Practices whenever needed.

The second factor was natural plant extracts: The plants were treated with foliar spraying of licorice and aloe extract was applied in the early morning by spraying leaves, at intervals of three weeks between one spray and the other, and the first spray was after one month of planting, in both seasons. Licorice extract concentration (50 and 100 g / L tap water) and aloe (50 and 100 ml/L tap water).

Harvesting time

During both seasons thyme plants were harvested throughout both cuts in each harvest. The first cut was done on 30th June. While the second cut was on 30th September of both seasons 2017 & 2018.

Data recorded.

Vegetative growth:

Plant height (cm), herb fresh weight per plant (g), herb dry weight per plant (g) and number of branches were determined at the end of experiment

Chemical composition

Chlorophyll (A and B) were determined calorimetrically in leaves of thyme according to A.O.A.C. (1990) and calculated as mg/100g fresh weight.

Nitrogen, phosphorus, potassium and total carbohydrates were tested in thyme herbs according to (Horneck and Miller, 1998; Hucker and Catroux, 1980; Horneck and Hanson, 1998 and Herbert *et al.* 1971).

Micronutrients Fe, Mn, and Zn (%) were tested in the samples by atomic absorption as described by Chapman and Paratt, (1961).

Essential oil characters

Essential oil (%): was determined according to British Pharmacopeia (1963).

-GLC (analysis of the volatile oil constituents): The gas liquid chromatography analysis was carried out at the

medicinal and Aromatic plant laboratory. Dokki, Giza, Egypt. By Bunzen *et al.* (1969) and Hoftman (1967).

Statistical analysis

The means of each obtained results from the studied factors were analyzed for variance (ANOVA) as factorial experiments in a complete randomized block design). The differences between the mean values of various treatments were compared by using the least significant differences (L. S. D.) at 0.05 %, as given by Snedecor and Cochran (1989) using MSTAT-C statistical software package.

RESULTS AND DISCUSSION

Effects of planting distances and some plant extracts and their interactions treatments on vegetative growth of *Thymus vulgaris* L. plants during 2017 and 2018 seasons.

Tables (2 and 3) indicate that, the characteristics of vegetative growth i.e. plant height (cm), number of branches per plant, herb fresh and dry weights (g/ plant), and herb fresh weight (Kg/Fed)of thyme were increased using the planting distances (30*30 cm) in two cuts and in both seasons, compared to the planting distances (20*20). On the other side, these parameters mentioned afore were affected by all the different extract treatments with the superiority of F5 (aloe extract at 50 %), followed by F3 (Licorice at 50%). Moreover, the effect of combining planting distances and extracts treatments, the data showed that all combinations between planting distances and plant extracts treatments led to an increase in the parameter of the thyme plant. However, the greatest values were recorded that using the combination treatment of planting distance at (20 * 20) cm) and F5, followed by descending the co-treatment between planting distances (20 * 20cm), and F3 in the two cuts and the two seasons. The lowest values for these parameters were recorded between planting distances (30 * 30 cm) and F1 in the two plots and in both seasons. Also, the abovementioned results on the vegetative growth agreement with those recorded by Khater et al. (2020) on Carum Carvi the finest qualities, such as vegetative growth and seed production, were generated using Aloe vera extract. Wilson (2020) on Solanum melongena aqueous extracts of Aloe vera were the highest on the growth and development of eggplant seedlings. It can be using as a growth stimulant. El-Gohary et al. (2021) on Cynara cardunculus extracts of licorice roots had positive effects on growth and yield, Abdel-Mola et al. (2022) on Pelargonium graveolens concerning liquorice extract treatments, on vegetative growth were augmented due to aqueous LRE, Saleem and Saeid (2023) on Brassica oleracea led the foliar spraying of Licorice roots extract to increase of the attributes vegetative growth, The abovementioned results on the planting distance are met with those recorded by (Mohamed et al. 2023) on Artemisia annua, the best was applying the planting spacing (40*40 cm), to improve the vegetative growth and Nurzyńska-Wierdak et al. (2023) on Melissa officinalis, they stated that planting distance (40 x 40cm) improved the vegetative growth, a better planting than (30 x 30cm).

Effect of planting distances and some medicinal plant extracts (licorice and aloe extracts) and their interactions treatments on Chemical composition of *Thymus vulgaris* L. plants during 2017 and 2018 seasons.

Nitrogen, phosphorus, potassium and total carbohydrates percentage.

Results presented in Tables (4 and 5), declared that nitrogen, phosphorus and potassium percentage contents/

plant of (*Thymus vulgaris*, L.) plant was increased by using planting distances (20*20cm) in the first cut in both seasons

and (30*30 cm) in the second cut in both seasons.

 Table 2. Effects of planting distances and some natural plant extracts and their interaction on plant height (cm) and number of branches per plant of *Thymus vulgaris* L. plants during 2017-2018 and 2018-2019 seasons.

Parameters		Plant heig						Nun	iber of b	ranches /j		
Cutting		1 st cut			2 nd cut			1 st cut			2 nd cut	
Plant distance(A)	Plan	t distance	e (A)	Plan	t distance	e (A)	Plan	t distance	e (A)	Plan	t distance	e (A)
Extracts Treatments(B)	20*20	30*30	Mean	20*20	30*30	Mean	20*20	30*30	Mean	20*20	30*30	Mean
	1 st season											
F_1	16.13	13.43	14.78	21.600	18.167	19.883	3.000	6.000	4.500	5.600	8.267	6.933
F_2	24.40	21.30	22.85	28.100	26.700	27.400	6.200	8.233	7.217	8.800	12.967	10.883
F ₃	26.80	24.43	25.62	33.367	28.700	31.033	8.233	9.667	8.950	10.633	14.800	12.717
F_4	26.00	22.77	24.38	29.067	27.867	28.467	6.767	8.700	7.733	9.900	13.667	11.783
F5	28.03	26.60	27.32	35.933	30.167	33.050	8.767	10.500	9.633	11.733	15.767	13.750
Mean	24.27	21.71		29.613	26.320		6.593	8.620		9.333	13.093	
L.S.D at 0.05 for	A=0	.484 B=	0.765	A=0	.460 B=	0.727	A=0	.127 B=	0.312	A=0	.384 B=	0.608
L.S.D at 0.05 101	A	XB=1.08	2	А	XB = 1.02	28	A	XB=0.44	-1	A	XB=0.85	9
					2 nd seas	on						
F1	17.400	13.467	15.433	20.333	19.267	19.800	4.000	6.000	5.000	5.667	8.400	7.033
F_2	25.900	23.233	24.567	29.167	28.633	28.900	7.000	9.500	8.250	10.133	13.267	11.700
F ₃	28.767	26.500	27.633	34.800	31.067	32.933	10.267	11.200	10.733	13.067	15.133	14.100
F_4	27.767	24.633	26.200	30.000	30.100	30.050	9.233	10.067	9.650	11.133	14.000	12.567
F5	30.133	28.833	29.483	36.833	32.267	34.550	11.933	12.267	12.100	14.033	16.433	15.233
Mean	25.993	23.333		30.227	28.267		8.487	9.807		10.807	13.447	
L.S.D at 0.05 for	A=0	.499 B=	0.789	A=0.	A=0.633 B=1.001		A=0.283 B=0.447			A=0.306 B=0.484		
L.S.D at 0.05 101	А	XB = 1.11	6	A	XB=1.41	.6	А	XB=0.63	33	AXB=0.684		

F1:Control, F2: Licorice at 100 %, F3: Licorice at 50 %, F4: Aloe at 100 %, F5: Aloe at 50%.

Table 3. Effects of planting distances and some natural plant extracts and their interaction on herb fresh and dry weights (g/ plant) of *Thymus yulgaris* L, plants during 2017-2018 and 2018-2019 seasons.

Parameters		He	rb fresh v	veight (g/	olant)			Her	b dry wei	ight (g/ pl	ant)	
Cutting		1 st cut			2 nd cut			1 st cut			2 nd cut	
Plant distance(A)	Plan	t distance	e (A)	Plar	nt distance	(A)	Plan	t distance	e (A)	Plant distance (A)		
Extracts Treatments(B)	20*20	30*30	Mean	20*20	30*30	Mean	20*20	30*30	Mean	20*20	30*30	Mean
					1 st sea	son						
F1	20.367	8.933	14.650	46.533	52.233	49.383	6.800	8.933	7.867	15.533	17.433	16.483
F ₂	41.600	14.967	28.283	79.667	87.800	83.733	13.833	14.967	14.400	26.600	29.267	27.933
F ₃	49.700	17.800	33.750	91.300	95.867	93.583	16.533	17.800	17.167	30.400	31.933	31.167
F ₄	44.267	16.600	30.433	86.600	90.500	88.550	14.733	16.600	15.667	28.867	30.133	29.500
F5	54.867	19.333	37.100	100.867	104.600	102.733	18.333	19.333	18.833	33.633	34.867	34.250
Mean	42.160	15.527		80.993	86.200		14.047	15.527		27.007	28.727	
L.S.D at 0.05 for	A=1.	.075 B=	1.700	A= 1	.931 B=3	3.053	A=0	.722 B=	1.142	A=0.	646 B=	1.021
L.S.D at 0.05 101	А	XB = 2.40)5	A	XB = 4.31	8	A	XB=1.61	5	A	XB=1.44	4
					2nd sea	ason						
F1	29.300	44.200	36.750	46.567	50.833	48.700	9.733	14.600	12.167	15.567	16.933	16.250
F ₂	45.367	62.500	53.933	88.300	90.367	89.333	15.100	21.400	18.250	29.433	30.233	29.833
F ₃	54.300	70.767	62.533	98.333	102.367	100.350	18.100	23.533	20.817	32.767	34.100	33.433
F ₄	50.400	67.400	58.900	90.467	94.600	92.533	16.833	22.400	19.617	30.167	31.500	30.833
F5	56.133	75.767	65.950	110.233	125.	117.633	18.667	25.033	21.850	36.767	41.700	39.233
Mean	47.100	64.127		86.780	92.640		15.687	21.393		28.940	30.893	
LCD at 0.05 for	A=1.496	B=2.36	55 AXB=	A=2	.989 B=4	4.727	A=0.475 B=0.751			A=1.002 B=1.585		
L.S.D at 0.05 for		3.344		1	AXB=6.684	4	А	XB=1.06	52	A	XB=2.24	1

F1:Control, F2: Licorice at 100 %, F3: Licorice at 50 %, F4: Aloe at 100 %, F5: Aloe at 50%.

In table (4) Data showed that nitrogen (%) greatly affected by all different extracts with superiorly of F3 (Licorice at 50 %), followed by F2 (Licorice at 100 %) in the two cuts in both seasons. the greatest values was recorded by using the combination treatment of planting distances (30*30 cm) and F3, followed descending by the combination treatment of planting distances (30*30cm) and F2 in the two cuts and seasons . Also, data showed that Phosphorus (%) greatly affected by all different extract's treatments with superiorly with superiorly F2 (Licorice at 100 %), followed by F4 (aloe extract at 100 %) in the second cut and in the second season. the greatest values was by using the combination treatment of planting distances at (20*20 cm) and F1 in the two cuts and first season. Except, (20*20 cm) and F5 in first

cut in the second season and (30*30 cm) and F2 in the second cut in second season. Data shown in table (5)indicated that Potassium(%) greatly affected by all different extract's treatments, superiorly F3 (Licorice at 50 %) followed by F5 (aloe at 50 %) in first cut in both seasons. while in the second cuts and in both season with superiorly F5 (aloe at 50 %), followed by F3 (liquorices at 50 %). the highest values was recorded by using the combination treatment of planting distances (20*20cm) and F3 in the first cut in both seasons.

In tables (5) declared that total carbohydrates percentage of dry weight of thyme (*Thymus vulgaris* L.) plant was increased by using planting distances (30*30 cm) in the two cuts and in both seasons. data showed that total

carbohydrates percentage of dry weight highly affected by all different extract's treatments in both cuts and in both seasons with superiorly of F3 (Licorice at 50 %), followed by F2 (Licorice extract at 100 %) in the first cuts in both seasons. And the greatest values was recorded by using the combination treatment of planting distances (30*30 cm) and F3, followed descendingly by the combination treatment of planting distances (20*20cm) and F3 in first cut in two seasons, except in second cut in the two seasons the greatest values was (30*30 cm) and F3 followed descendingly by (20*20 cm) and F2. While nitrogen, phosphorus , potassium and total carbohydrates percentage the lowest values of these parameters by planting distances (20*20 cm) and F1 in two cuts and in second seasons. Also, the abovementioned data on Chemical composition are met with those attained by Khater *et al.* (2020) on caraway plant, found that aloe extract produced the highest All, Chemical constituents, (Abdel-Mola *et al.* 2022) on *Pelargonium Graveolens*, found that total carbohydrate, NPK increased with licorice extracts LRE. Hasan and Kader (2022) on *Punica granatum* interaction between NPK, and Licorice extracts led to significant increase, and gave the highest value of leaves content of nitrogen, phosphor and potassium. Furthermore, (Mohamed *et al.* 2023) on *Artemisia annua* L., Nurzyńska-Wierdak *et al.* (2023) on *Melissa officinalis*, Plant spacing seemed, to be the optimum for plant.

 Table 4. Effects of planting distances and some natural plant extracts and their interaction on nitrogen and phosphorus percentage /plant of *Thymus vulgaris* L. plants during 2017-2018 and 2018-2019 seasons.

N (%)					P (%)					
	1 st cut			2 nd cut			1 st cut			2 nd cut	
Plan	t distance	(A)	Plan	t distance	e (A)	Plan	t distance	e (A)	Plan	t distance	e (A)
20*20	30*30	Mean	20*20	30*30	Mean	20*20	30*30	Mean	20*20	30*30	Mean
				1st seas	son						
0.960	1.067	1.013	0.860	0.980	0.920	1.210	0.097	0.654	1.016	1.022	1.019
1.980	2.333	2.157	1.823	2.393	2.108	0.420	0.343	0.382	0.375	0.419	0.397
2.523	2.267	2.395	2.227	2.790	2.508	0.450	0.273	0.362	0.382	0.244	0.313
2.147	1.333	1.740	1.110	1.967	1.538	0.300	0.443	0.372	0.298	0.335	0.317
2.643	1.940	2.292	1.137	1.967	1.552	0.963	0.377	0.670	0.403	0.363	0.383
2.051	1.788		1.431	2.019		0.669	0.307		0.495	0.477	
A=0.0)015 B=0	0.0024	A = 0.002	B = 0.00	3 AXB=	A=0.0	006 B=	0.0009	A=0.0	006 B=	0.0009
A	XB = 0.003	34		0.004		A	XB=0.00	13	A	XB=0.00	13
				2nd sea	son						
1.407	1.180	1.293	0.970	1.240	1.105	0.140	0.260	0.200	0.220	0.212	0.216
2.877	2.650	2.763	2.210	2.877	2.543	0.537	0.413	0.475	0.410	0.455	0.433
2.940	2.727	2.833	2.880	3.163	3.022	0.570	0.363	0.467	0.418	0.263	0.341
2.213	1.987	2.100	1.550	2.207	1.878	0.367	0.543	0.455	0.430	0.388	0.409
2.647	2.210	2.428	1.770	2.207	1.988	1.017	0.460	0.738	0.337	0.374	0.356
2.417	2.151		1.876	2.339		0.526	0.408		0.363	0.338	
A=0.0	015 B=	0.0024	A=0	.034 B=0	0.054	A=0.	002 B=	0.003	A=0.0	015 B=	0.0024
A	XB=0.003	34	A	XB=0.07	7	A	XB=0.00)4	AXB=0.0034		
	$\begin{array}{c} \textbf{20*20} \\ \hline 0.960 \\ 1.980 \\ 2.523 \\ 2.147 \\ 2.643 \\ 2.051 \\ \hline \textbf{A}=0.0 \\ \textbf{A} \\ \hline 1.407 \\ 2.877 \\ 2.940 \\ 2.213 \\ 2.647 \\ 2.417 \\ \hline \textbf{A}=0.0 \\ \textbf{A} \\ \end{array}$	Plant distance 20*20 30*30 0.960 1.067 1.980 2.333 2.523 2.267 2.147 1.333 2.643 1.940 2.051 1.788 A=0.0015 B=0 AXB=0.003 1.407 1.407 1.180 2.877 2.650 2.940 2.727 2.213 1.987 2.647 2.210 2.417 2.151 A=0.0015 B=0 AXB=0.003 AXB=0.003	Ist cut Plant distance (A) 20*20 30*30 Mean 0.960 1.067 1.013 1.980 2.333 2.157 2.523 2.267 2.395 2.147 1.333 1.740 2.643 1.940 2.292 2.051 1.788 A=0.0015 B=0.0024 AXB=0.0034 XB=0.0034 1.407 1.180 1.293 2.877 2.650 2.763 2.940 2.727 2.833 2.213 1.987 2.100 2.647 2.210 2.428 2.417 2.151 A=0.0015 A=0.0015 B=0.0024 AXB=0.0034	1st cut Plant distance (A) Plant 20*20 30*30 Mean 20*20 0.960 1.067 1.013 0.860 1.980 2.333 2.157 1.823 2.523 2.267 2.395 2.227 2.147 1.333 1.740 1.110 2.643 1.940 2.292 1.137 2.051 1.788 1.431 A=0.0015 B=0.0024 A=0.002 AXB=0.0034 A=0.002 2.877 2.650 2.763 2.210 2.940 2.727 2.833 2.880 2.213 1.987 2.100 1.550 2.647 2.210 2.428 1.770 2.417 2.151 1.876 A=0.0015 B=0.0024 A=0 AXB=0.0034 A=0	1st cut 2nd cut Plant distance (A) Plant distance 20*20 30*30 Mean 20*20 30*30 1st seas 0.960 1.067 1.013 0.860 0.980 1.980 2.333 2.157 1.823 2.393 2.523 2.267 2.395 2.227 2.790 2.147 1.333 1.740 1.110 1.967 2.643 1.940 2.292 1.137 1.967 2.051 1.788 1.431 2.019 A=0.0015 B=0.0024 A=0.002 B=0.004 AXB=0.0034 0.970 1.240 2.04 2.877 2.650 2.763 2.210 2.877 2.940 2.727 2.833 2.880 3.163 2.213 1.987 2.100 1.550 2.207 2.647 2.210 2.428 1.770 2.207 2.417 2.151 1.876 2.339 A=0.0015 B=0.0024	1st cut 2^{nd} cutPlant distance (A)Plant distance (A)20*20 $30*30$ Mean $20*20$ $30*30$ Mean 0.960 1.067 1.013 0.860 0.980 0.920 1.980 2.333 2.157 1.823 2.393 2.108 2.523 2.267 2.395 2.227 2.790 2.508 2.147 1.333 1.740 1.110 1.967 1.538 2.643 1.940 2.292 1.137 1.967 1.552 2.051 1.788 1.431 2.019 $A=0.0015$ $B=0.0024$ $A=0.0015$ $B=0.0024$ $A=0.002$ $B=0.003$ $AXB=$ $AXB=0.0034$ 0.970 1.240 1.105 2.877 2.650 2.763 2.210 2.877 2.543 2.940 2.727 2.833 2.880 3.163 3.022 2.213 1.987 2.100 1.550 2.207 1.878 2.647 2.210 2.428 1.770 2.207 1.988 2.417 2.151 1.876 2.339 $A=0.034$ $B=0.054$ $AXB=0.0015$ $B=0.0024$ $A=0.034$ $B=0.054$ $AXB=0.077$	1st cut 2^{nd} cutPlant distance (A)Plant distance (A)Plant20*20 $30*30$ Mean $20*20$ $30*30$ Mean $20*20$ 0.9601.0671.0130.8600.9800.9201.2101.9802.3332.1571.8232.3932.1080.4202.5232.2672.3952.2272.7902.5080.4502.1471.3331.7401.1101.9671.5380.3002.6431.9402.2921.1371.9671.5520.9632.0511.7881.4312.0190.669A=0.0015B=0.0024A=0.002B=0.003AXB=A=0.0AXB=0.00340.9701.2401.1050.1402.8772.6502.7632.2102.8772.5430.5372.9402.7272.8332.8803.1633.0220.5702.2131.9872.1001.5502.2071.8780.3672.6472.2102.4281.7702.2071.9881.0172.4172.1511.8762.3390.526A=0.0015B=0.0024A=0.034B=0.054A=0.0AXB=0.0034AXB=0.077AA	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ist cut 2^{nd} cutIst cutPlant distance (A)Plant distance (A)Plant distance (A)Plant distance (A)20*20 $30*30$ Mean $20*20$ $30*30$ Mean $20*20$ $30*30$ Mean0.9601.0671.0130.8600.9800.9201.2100.0970.6541.9802.3332.1571.8232.3932.1080.4200.3430.3822.5232.2672.3952.2272.7902.5080.4500.2730.3622.1471.3331.7401.1101.9671.5380.3000.4430.3722.6431.9402.2921.1371.9671.5520.9630.3770.6702.0511.7881.4312.0190.6690.3070.670A=0.0015B=0.0024A=0.002B=0.003AXB=0.0013AXB=0.00131.4071.1801.2930.9701.2401.1050.1400.2600.2002.8772.6502.7632.2102.8772.5430.5370.4130.4752.9402.7272.8332.8803.1633.0220.5700.3630.4672.2131.9872.1001.5502.2071.8780.3670.5430.4552.6472.2102.4281.7702.2071.9881.0170.4600.7382.4172.1511.8762.3390.5260.408A<=0.002	1st cut2nd cut1st cutPlant distance (A)Plant distance (A)Plant distance (A)Plant distance (A)Plant distance (A)20*2030*30Mean20*2030*30Mean20*200.9601.0671.0130.8600.9800.9201.2100.0970.6541.0161.9802.3332.1571.8232.3932.1080.4200.3430.3820.3752.5232.2672.3952.2272.7902.5080.4500.2730.3620.3822.1471.3331.7401.1101.9671.5380.3000.4430.3720.2982.6431.9402.2921.1371.9671.5520.9630.3770.6700.4032.0511.7881.4312.0190.6690.3070.495A=0.0015B=0.0024A=0.002B=0.003AXB=A=0.0006B=0.0009A=0.0AXB=0.00340.9701.2401.1050.1400.2600.2000.2202.8772.6502.7632.2102.8772.5430.5370.4130.4750.4102.9402.7272.8332.8803.1633.0220.5700.3630.4670.4182.2131.9872.1001.5502.2071.8780.3670.5430.4550.4302.6472.2102.4281.7702.2071.9881.0170.4600.7380.3372.417 <td< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

F1:Control, F2: Licorice at 100 %, F3: Licorice at 50 %, F4: Aloe at 100 %, F5: Aloe at 50%.

 Table 5. Effects of planting distances and some natural plant extracts and their interaction on potassium and total carbohydrates percentage /plant of *Thymus vulgaris* L. plants during 2017-2018 and 2018-2019 seasons.

Parameters			K((%)				Total car	bohydrat	es(%of dr	y weight)		
Cutting		1 st cut			2 nd cut			1 st cut		2 nd cut			
Plant distance(A)	Plan	t distance	e (A)	Plan	t distance	e (A)	Plan	nt distance	e (A)	Plar	nt distance	e (A)	
Extracts Treatments(B)	20*20	30*30	Mean	20*20	30*30	Mean	20*20	30*30	Mean	20*20	30*30	Mean	
	1 st season												
F_1	0.123	0.116	0.120	0.188	0.213	0.200	7.167	10.620	8.893	9.783	11.070	10.427	
F_2	0.305	0.298	0.301	0.377	0.403	0.390	18.267	19.063	18.665	19.977	26.063	23.020	
F3	0.389	0.287	0.338	0.388	0.381	0.385	20.247	23.440	21.843	24.827	28.230	26.528	
F ₄	0.287	0.276	0.281	0.311	0.372	0.341	16.400	16.937	16.668	17.543	19.757	18.650	
F5	0.317	0.317	0.317	0.325	0.412	0.369	12.233	14.667	13.450	14.147	18.223	16.185	
Mean	0.284	0.259		0.318	0.356		14.863	16.945		17.255	20.669		
L.S.D at 0.05 for	A=0.	002 B=	0.003	A=0.0	006 B=	0.0009	A=0	.277 B=	0.437	A=0.	A=0.024 B=0.038		
L.S.D at 0.05 101	A	XB=0.00)4	A	XB = 0.00	13	AXB=0.619			AXB=0.054			
					2 nd	season							
F_1	0.195	0.153	0.174	0.206	0.232	0.219	5.700	11.240	8.470	8.437	13.340	10.888	
F ₂	0.356	0.286	0.321	0.431	0.425	0.428	18.353	19.760	19.057	20.860	27.007	23.933	
F ₃	0.411	0.266	0.339	0.437	0.402	0.420	21.433	24.550	22.992	26.563	30.327	28.445	
F4	0.328	0.224	0.276	0.351	0.391	0.371	17.403	17.683	17.543	18.110	20.413	19.262	
F ₅	0.356	0.220	0.288	0.362	0.443	0.403	10.427	16.870	13.648	15.507	19.463	17.485	
Mean	0.329	0.230		0.358	0.379		14.663	18.021		17.895	22.110		
L.S.D at 0.05 for	A=0.0	015 B=	0.0024	A=0.002 B=0.003		A=0	A=0.069 B=0.106			A=0.024 B=0.038			
L.S.D at 0.03 101	A	XB = 0.00	34	A	AXB=0.004		A	AXB=0.15	3	AXB=0.054			

F1:Control, F2: Licorice at 100 %, F3: Licorice at 50 %, F4: Aloe at 100 %, F5: Aloe at 50%.

Zinc, Iron and Manganese percentage

Tables (6 and7) declare that zinc, Iron and Manganese percentage contents/plant of thyme (*Thymus*

vulgaris L.) plant was increased by using planting distances (30*30 cm) in the two cuts and in both seasons.

Data showed that zinc (%) highly affected by all different extracts treatments in the both cuts and in the both

seasons with superiorly of F4 (aloe at 100 %), followed by F2 (Licorice at 100 %) in the first cuts in the both seasons, the greatest values were recorded by using the combination treatment of planting distances (20*20 cm) and F4 with (30*30 cm) and F2 followed descendingly by the combination treatment of planting distances (30*30 cm) and F3 in the two cuts in the first season. Except, (20*20 cm) and F4 followed descending by the combination treatment of planting distances at (30*30cm) with F4 in the two cuts in the second season.

In Iron (%) highly affected by all different extract's treatments in both cuts and in both seasons with superiorly of F4 (aloe at 100 %), followed by F2 (Licorice at 100 %) in the two cuts in both seasons. the greatest values was recorded by using the combination treatment of planting distances (30*30 cm) and F4 followed descendingly by the combination treatment of planting distances (20*20cm) and F4 in the two cuts and both seasons.

 Table 6. Effects of planting distances and some natural plant extracts and their interaction on zinc and iron percentage /plant of *Thymus vulgaris*, L. plants during 2017-2018 and 2018-2019 seasons.

Parameters			Zn	(%)	-	~			Fe	(%)		
Cutting		1 st cut			2 nd cut			1 st cut			2 nd cut	
Plant distance(A)	Plan	t distance	e (A)	Plan	t distance	e (A)	Plan	t distance	e (A)	Plan	t distance	e (A)
Extracts Treatments(B)	20*20	30*30	Mean	20*20	30*30	Mean	20*20	30*30	Mean	20*20	30*30	Mean
					1 st sea	ason						
F ₁	0.010	0.018	0.014	0.011	0.013	0.012	0.011	0.048	0.029	0.012	0.011	0.012
F ₂	0.012	0.028	0.020	0.015	0.029	0.022	0.059	0.043	0.051	0.060	0.043	0.052
F ₃	0.015	0.026	0.021	0.016	0.027	0.021	0.029	0.025	0.027	0.029	0.026	0.027
F ₄	0.028	0.022	0.025	0.029	0.023	0.026	0.078	0.079	0.079	0.078	0.079	0.079
F5	0.025	0.022	0.023	0.025	0.022	0.024	0.039	0.055	0.047	0.040	0.055	0.048
Mean	0.018	0.023		0.019	0.023		0.043	0.050		0.044	0.043	
L.S.D at 0.05 for	A=0.0	015 B=	0.0024	A=0.0	006 B=	0.0009	A=0.0	005 B=	0.0008)005 B=	
L.S.D at 0.05 101	A	XB = 0.00	34	A	XB = 0.00	13	A	XB = 0.00	11	A	XB=0.00	11
					2nd se	ason						
F ₁	0.008	0.019	0.014	0.009	0.015	0.012	0.011	0.013	0.012	0.020	0.018	0.019
F ₂	0.012	0.023	0.017	0.013	0.023	0.018	0.062	0.030	0.046	0.062	0.024	0.043
F ₃	0.016	0.022	0.019	0.016	0.022	0.019	0.033	0.028	0.031	0.033	0.028	0.031
F_4	0.029	0.028	0.028	0.029	0.029	0.029	0.080	0.080	0.080	0.079	0.080	0.080
F5	0.025	0.027	0.026	0.025	0.027	0.026	0.042	0.048	0.045	0.042	0.048	0.045
Mean	0.018	0.024		0.018	0.023		0.046	0.040		0.047	0.040	
L.S.D at 0.05 for $A=0.0006 B=0.0009$		A=0.0006 B=0.0009		A=0.0006 B=0.0009		A=0.0004 B=0.0008						
L.S.D at 0.05 101	A	XB = 0.00	13	A	XB = 0.00	13	A	XB = 0.00	13	A	XB = 0.00	12
F1:Control, F2: Licorio	xe at 100 %	, F3: Licor	ice at 50 %	6, F4: Aloe	at 100 %,	F5: Aloe at	50%.					

 Table 7. Effects of planting distances and some natural
 (20*2)

plant extracts and their interaction on manganese percentage /plant of *Thymus vulgaris*, L. plants during 2017-2018 and 2018-2019 seasons.

Parameters	Mn (%)							
Cutting		1 st cut			2 nd cut			
Plant distance(A)	Plant	distanc	e (A)	Plant	distance	e (A)		
Extracts	20*20	30*30	Mean	20*20	30*30	Mean		
Treatments(B)		1 st						
	0.007	1 st seas		0.007	0.000	0.000		
F_1	0.007	0.009	0.008	0.007	0.009	0.008		
F_2	0.012	0.013	0.013	0.013	0.014	0.013		
F ₃	0.011	0.013	0.012	0.011	0.013	0.012		
F4	0.019	0.020	0.019	0.019	0.020	0.020		
F5	0.015	0.017	0.016	0.016	0.018	0.017		
Mean	0.013	0.014		0.013	0.015			
L.S.D at 0.05 for	A = 0.0	= 0.0005 B = 0.0008 A = 0.0007 B = 0.0007						
L.S.D at 0.05 101	Až	KB = 0.00	11	AX	B=0.001	15		
		2 nd seas	son					
F ₁	0.010	0.010	0.010	0.006	0.010	0.008		
F_2	0.016	0.014	0.015	0.016	0.015	0.016		
F3	0.014	0.014	0.014	0.014	0.015	0.014		
F4	0.050	0.020	0.035	0.050	0.020	0.035		
F5	0.019	0.019	0.019	0.019	0.019	0.019		
Mean	0.022	0.015		0.021	0.016			
L.S.D at 0.05 for	$\overline{A=0.0}$	007 B=	0.0011	A=0.00	08 B = 0	0.0012		
	Až	KB=0.00	15	AX	B = 0.00	17		

 F_1 :Control, F_2 : Licorice at 100 %, F3: Licorice at 50 %, F4: Aloe at 100 %, F5: Aloe at 50%.

In manganese (%) it was significantly affected by the superiority of F4 (aloe at 100 %), followed by F5 (aloe at 50 %) in the two plots in the both seasons, while the greatest values was recorded by using the combination treatment of planting distances (30*30 cm) and F4 followed descendingly by the combination treatment of planting distances

(20*20cm) and F4 in the two cuts in the first season while the greatest values was (20*20 cm) and F4 followed descending by the combination treatment of planting distances (30*30cm) and F4 in the both cuts in the second season. the abovementioned data are met with those stated by Mohamed *et al.* (2023) on *Artemisia annua* L. Plant reported that spacing seemed, to be the optimum for plant, and Khater *et al.* (2020), on caraway plants found that with aloe extract produced the highest, all chemical constituents.

Chlorophyll A, B and Carotenoid's contents

The data in tables (8 and 9), declared that chlorophyll (A and B), and Carotenoid's contents (mg/g F.W.) of thyme (Thymus vulgaris L.) plant were increased by using planting distances at (30*30 cm) in both cuts and seasons, data showed that Chlorophyll (a), (b) and Carotenoid's greatly affected by each different plant extracts treatments in both cuts and in two seasons with superiorly of F3 (Licorice at 50%), followed by F2 (Licorice at 100 %) in the two cuts in both seasons, the greatest values was recorded by using the combination treatment of planting distance at (30*30cm) and F3 followed descending by the combination treatment of planting distance at (20*20cm) and F3 in the two cuts and both seasons. On the reverse, the lowest values of these parameters scored by between planting distance at (20*20 cm) and F_1 in two cuts and in both seasons. Also, the abovementioned results are met with those attained by Ibrahim (2021) on Firebomb declared that the high concentration of licorice roots extract, gave the highest total chlorophyll content, and Abdel-Mola et al. (2022) on Pelargonium graveolens, found that chlorophyll (a & b) increased with licorice extracts LRE. .

Table 8. Effects of planting distances and some natural plant extracts and their interaction on chlorophyll (a) (mg/g F.W.)	
and chlorophyll (b) content (mg/g F.W.) Of <i>Thymus vulgaris</i> L. plants during 2017-2018 and 2018-2019 seasons.	

Parameters		Chlorop	ohyll A (n	ıg/g fresh	weight)			Chlorop	ohyll B (n	ng/g fresh		
Cutting		1 st cut			2 nd cut			1 st cut			2 nd cut	
Plant distance(A)	Plant distance (A)		Plan	t distance	e (A)	Plan	t distance	e (A)	Plant distance		e (A)	
Extracts Treatments(B)	20*20	30*30	Mean	20*20	30*30	Mean	20*20	30*30	Mean	20*20	30*30	Mean
					1 st sea	ason						
F ₁	0.512	0.645	0.578	0.718	0.813	0.766	0.512	0.645	0.578	0.718	0.813	0.766
F_2	0.912	0.915	0.913	0.948	0.978	0.963	0.912	0.915	0.913	0.948	0.978	0.963
F ₃	0.937	0.940	0.938	1.010	1.040	1.025	0.937	0.940	0.938	1.010	1.040	1.025
F ₄	0.840	0.843	0.842	0.911	0.941	0.926	0.840	0.843	0.842	0.911	0.941	0.926
F5	0.816	0.819	0.817	0.884	0.914	0.899	0.816	0.819	0.817	0.884	0.914	0.899
Mean	0.803	0.832		0.894	0.937		0.803	0.832		0.894	0.937	
L.S.D at 0.05 for	A=0.0)007 B=0	0.0011	A=0.0	024 B=	0.0038	A=0.0	015 B=	0.0024	A=0.0	024 B=	0.0038
L.S.D at 0.05 101	A	XB=0.001	5	A	XB=0.005	54	A	XB = 0.00	34	A	XB = 0.00	54
					2nd se	ason						
F1	0.631	0.737	0.684	0.793	0.854	0.823	0.631	0.737	0.684	0.793	0.854	0.823
F ₂	0.937	0.967	0.952	1.080	1.110	1.095	0.937	0.967	0.952	1.080	1.110	1.095
F ₃	0.997	1.027	1.012	1.160	1.190	1.175	0.997	1.027	1.012	1.160	1.190	1.175
F4	0.923	0.953	0.938	0.968	0.998	0.983	0.923	0.953	0.938	0.968	0.998	0.983
F5	0.865	0.895	0.880	0.924	0.954	0.939	0.865	0.895	0.880	0.924	0.954	0.939
Mean	0.870	0.916		0.985	1.021		0.870	0.916		0.985	1.021	
L.S.D at 0.05 for	A = 0.0024 $B = 0.0038$ $A = 0.0024$ $B = 0.0038$	0.0038	A=0.0	024 B=	0.0038	A=0.0	024 B=	0.0038				
L.S.D at 0.05 for	A	XB=0.005	54	А	XB=0.005	54	А	XB=0.005	54	А	XB=0.00	54

F1:Control, F2: Licorice at 100 %, F3: Licorice at 50 %, F4: Aloe at 100 %, F5: Aloe at 50%.

Table 9. Effect of planting distances and some natural plant extracts and their interaction on carotenoids (mg/g fresh weight) of *Thymus vulgaris*, L. plants during 2017-2018 and 2018-2019 seasons.

2017-2010 and 2010-2019 seasons.									
Parameters	C	aroten	oids (mg/	g fresh					
Cutting		1 st cut	t		2 nd cut				
Plant distance(A)	Plan	t distan	ce (A)	Plant	distanc	e (A)			
Extracts Treatments(B)	20*20	30*30	Mean	20*20	30*30	Mean			
1 st season									
F1	0.205	0.218	0.212	0.214	0.236	0.225			
F ₂	0.282	0.286	0.284	0.285	0.289	0.287			
F ₃	0.296	0.300	0.298	0.298	0.302	0.300			
F ₄	0.275	0.268	0.272	0.267	0.271	0.269			
F5	0.252	0.256	0.254	0.254	0.258	0.256			
Mean	0.262	0.266		0.264	0.271				
L.S.D at 0.05 for			= 0.0024						
E.5.D & 0.05 101		XB = 0.0		AXB=0.004					
		2 nd seas	on						
F ₁	0.235	0.244	0.239	0.240	0.342	0.291			
F ₂	0.279	0.283	0.281	0.281	0.285	0.283			
F3	0.294	0.298	0.296	0.330	0.301	0.316			
F ₄	0.262	0.266	0.264	0.262	0.274	0.268			
F5	0.251	0.255	0.253	0.251	0.255	0.253			
Mean	0.264	0.269		0.273	0.291				
L.S.D at 0.05 for	A=0.0	006 B	= 0.0009	A=0.024 B=0.066					
L.S.D at 0.03 10r	A	XB=0.0	013	A	XB=0.0	96			

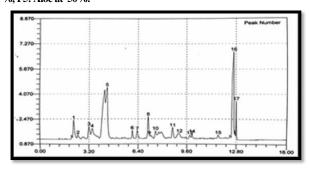
 $F_1:$ Control, $F_2:$ Licorice at 100 %, F3: Licorice at 50 %, F4: Aloe at 100 %, F5: Aloe at 50%.

Effect of planting distances and some natural plant (licorice and aloe) and their interactions on chemical composition and essential oil yield of *Thymus vulgaris* L. plants during 2017 and 2018 seasons.

Essential oil (%)

Tables (10) declares that essential oils % (per plant) of thyme (*Thymus vulgaris* L.) plant was increased by using planting distances especially (30*30 cm) in the two cuts and both seasons. Plant extracts treatments, data showed that Essential oils (%) (Per plant) greatly affected by each different extract's treatments in two cuts and in both seasons with superiorly of F5 (aloe at 50 %), followed by F3 (Licorice at 50 %) in the two cuts in both seasons. The greatest values was recorded by using the combination

treatment of planting distances (30*30 cm) and F5 followed descendingly by the combination treatment of planting distances (20*20cm) and F5 in two cuts in both seasons. While the lowest values of these treatment scored by between planting distances (20*20 cm) and F1 in the two cuts and in both seasons. Also, the abovementioned results are met with those attained by, (Khater *et al.* 2020) on *Pelargonium Graveolens*, found that with aloe extract produced the highest oil yield and oil percentage, Abdel-Mola *et al.* (2022) on *Carum* Carvi, parameters on oil yield was augmented due to the high dose with aqueous LRE, Toaima *et al.* (2022) on *Ocimum basilicum* L. Hassan (2023) on *Carum carvi*, licorice extract gave the highest, ratio of carvone, and limonene.


Essential oil constituents

Tables (11 and 12) and Figs. (1-10) showed that the effects of fertilizers treatments and plant distances at (30*30 cm) and (20*20 cm) on the compounds of essential oils from thyme (Thymus vulgaris L.) plant, The volatile oil compounds of thyme 12 constituents were such as $(\alpha$ thujene, camphene, α -pinene, sabinene, γ -terpinene, linalool, P-cymene, terpinenolene, borneol, bornyl acetate, carvacrol, thymol). In the two cuts and in both seasons, the main component was β -cymene ranged from (29.572 to 39.643%), followed by thymol ranged from (15.978 to 24.229%), borneol ranged from (1.852 to 16.722%), terpinenolene ranged from (3.912 to 6.427), a-thujene ranged from (4.048 to 6.055), bornyl acetate ranged from (2.388 to 6.998), carvacrol ranged from (2.404 to 4.726), sabinene ranged from (1.436 to 5.758), camphene ranged from (2.789 to 3.845), a-pinene ranged from (1.841 to 4.230), y-terpinene ranged from (1.46 to 2.291) and linalool ranged from (1.466 to 2.325). the abovementioned data on chemicals composition are met with those stated by (Nadjafi et al. 2014) on thymus vulgaris L., and Salvia officinalis L., and Punetha et al. (2022) on thymus vulgaris L., Yasuj et al. (2023) on thyme (thymus vulgaris, L.), the quantity of β -cymene increased considerably, by a considerable decline was in temperature conditions were detected during storage.

L. plants	L. plants during 2017-2018 and 2018-2019 seasons.									
Parameters		ntage (%)								
Cutting	1 st cut	2 nd cut								
Plant distance(A)	Plant distance (A)	Plant distance (A)								
Extracts Treatments(B)	20*20 30*30 Mean	20*20 30*30 Mean								
	1 st season									
F ₁	0.223 0.253 0.238	0.300 0.340 0.320								
F ₂	0.517 0.533 0.525	0.557 0.583 0.570								
F ₃	0.600 0.620 0.610	0.647 0.673 0.660								
F4	0.557 0.577 0.567	0.600 0.623 0.612								
F5	0.643 0.670 0.657	0.697 0.717 0.707								
Mean	0.508 0.531	0.560 0.587								
L.S.D at 0.05 for	A=0.002 B=0.003 AXB=0.004	A=0.002 B=0.003 AXB=0.004								
	2 nd season									
F ₁	0.250 0.290 0.270	0.280 0.380 0.330								
F ₂	0.550 0.557 0.553	0.557 0.590 0.573								
F3	0.633 0.660 0.647	0.650 0.693 0.672								
F4	0.583 0.593 0.588	0.590 0.623 0.607								
F5	0.700 0.727 0.713	0.727 0.743 0.735								
Mean	0.543 0.565	0.561 0.606								
L.S.D at 0.05 for	A=0.002 $B=0.003AXB=0.004$	A=0.002 B=0.003 AXB=0.004								

Table 10. Effect of planting distances and some natural plant extracts and their interaction on essential oil percentage in fresh herb/plant of Thymus vulgaris,

	AAD= 0.004	AAD=0.004
F1:Control, F2: Licorice a	t 100 %, F3: Licorice	at 50 %, F4: Aloe at 100
% F5: Aloe at 50%		

essential oils distilled from F5 (Alovera50) on planting distance 30*30cm in the 2nd cut and 2nd

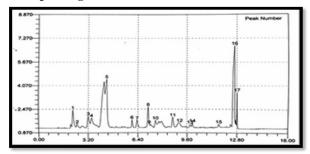
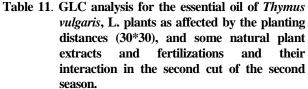



Fig. 3. Chromatogram of thyme (Thymus vulgaris, L.) essential oils distilled from F4 (Alovera100) on planting distance 30*30cm in the 2nd cut and 2nd

Second							
Tre.							
No.	F1	F2	F3	F4	F5		
Component							
α-Thujene	5.110	5.950	5.097	6.055	4.048		
α- pinene	2.465	2.189	2.017	4.230	1.841		
Camphene	3.065	3.167	3.385	3.361	3.327		
Sabinene	5.490	3.799	5.758	2.164	3.289		
β- Cymene	32.515	31.964	34.658	35.403	38.270		
Linalool	1.789	1.758	1.930	1.961	1.700		
γ-Terpinene	1.855	1.964	1.793	2.069	2.291		
Terpinenolene	5.636	5.437	5.046	4.831	5.827		
Borneol	7.801	9.931	10.612	9.959	1.852		
Bornyl acetate	3.835	3.993	4.492	4.057	2.388		
Thymol	16.178	17.431	20.796	19.525	24.229		
Carvacrol	3.521	4.726	3.845	3.871	3.657		
Total							
D G () D T (0.0/ 514			

F1:Control, F2: Licorice at 100 %, F3: Licorice at 50 %, F4: Aloe at 100 %, F5: Aloe at 50%.

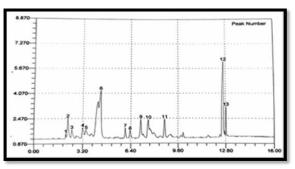


Fig. 1. Chromatogram of thyme (Thymus vulgaris, L.) Fig. 2. Chromatogram of thyme (Thymus vulgaris, L.) essential oils distilled from F3 (Liquorices50) on planting distance 30*30cm in the 2nd cut and 2nd

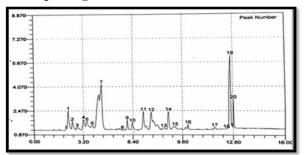


Fig. 4. Chromatogram of thyme (Thymus vulgaris, L.) essential oils distilled from F2 (Liquorices100) on planting distance 30*30cm in the 2nd cut and 2nd

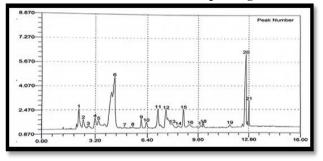


Fig. 5. Chromatogram of thyme (Thymus vulgaris, L.) essential oils distilled from F1 (control) on planting distance 30*30cm in the 2nd cut and 2nd

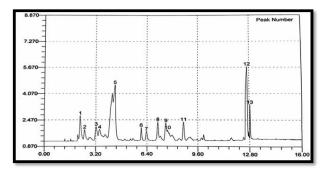


Fig. 7. Chromatogram of thyme (*Thymus vulgaris*, L.) essential oils distilled from F3 (Liquorices50) on planting distance 20*20cm in the 2nd cut and 2nd

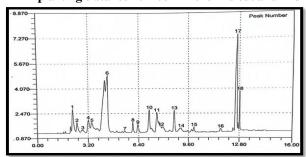


Fig. 8. Chromatogram of thyme (*Thymus vulgaris*, L.) essential oils distilled from F4 (Alovera100) on planting distance 20*20cm in the 2nd cut and 2nd

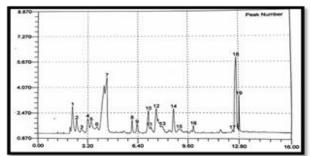


Fig. 10. Chromatogram of thyme (Thymus vulgaris, L.) essential oils distilled from F1 (control) on planting distance 20*20cm in the 2nd cut and 2nd

Table 12. GLC analysis for the essential oil of *Thymus*
vulgaris, L. plants as affected by the planting
distances (20*20), some natural plant extracts
and fertilizations and their interaction in the
second cut of the second season.

Tre.					
No.	F1	F2	F3	F4	F5
Component					
α-Thujene	5.733	6.045	5.693	5.262	5.553
α- pinene	2.840	4.009	2.444	2.237	2.313
Camphene	3.355	2.789	3.102	3.004	3.845
Sabinene	4.140	1.436	2.167	5.698	2.355
β- Cymene	32.094	29.572	36.976	32.856	39.643
Linalool	1.974	2.149	1.890	1.466	2.325
γ-Terpinene	2.001	1.657	1.867	1.686	2.126
Terpinenolene	3.912	6.427	5.463	5.373	5.011
Borneol	8.229	16.722	10.685	6.920	3.673
Bornyl acetate	4.014	6.998	6.562	4.333	6.508
Thymol	15.978	17.040	19.081	17.323	21.592
Carvacrol	3.638	2.404	3.198	4.400	4.091

Conclusively, its better to apply the planting distance at (30*30cm) and F_5 (Aloe extract at 50%), for enhancing for enhancing all studied traits of thyme plant.

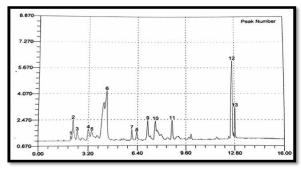


Fig. 6. Chromatogram of thyme (*Thymus vulgaris*, L.) essential oils distilled from F5 (Alovera50) on planting distance 20*20cm in the 2nd cut and 2nd

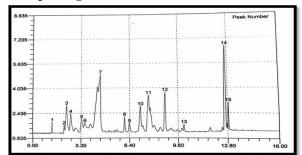


Fig. 9. Chromatogram of thyme (Thymus vulgaris, L.) essential oils distilled from F2 (Liquorices100) on planting distance 20*20cm in the 2nd cut and 2nd

REFERENCES

- A.O.A.C., (1990). Official Methods of Analysis (15th Ed.). Association of Official Analytical Chemists, Washington, DC, USA.
- Abd El-Azim, W.M.; Khater, R. M. R. and Badawy, M.Y.M. (2017). Effect of Bio-Fertilization and Different Licorice Extracts on Growth and Productivity of *Foeniculum vulgare*, Mill. Plant. Middle East J. Agric. Res., 6(1): 1-12.
- Abdel-Mola, M. A. M.; Kenawy, A. G.M.; Ali, Sh. K. and Ayyat, A. M. (2022). Influence of Foliar Application of Gibberellic Acid and Liquorice Root Extract on Growth, Volatile Oil Yield Productivity and Antimicrobial Activity in Geranium (*Pelargonium Graveolens* L. Her.) Plants. Scientific J. Flowers & Ornamental Plants. 9(4):249-271.
- Al- Ajeeli, T. A. Z. (2005). Effect GA₃ and some nutrients to produce Glycynhizgin and some other components in the plant Licorice (*Glycyrrhiza glabra* L.), Ph.D. Dissertation, Faculty of Agriculture, University of Baghdad, Iraq.
- Black, C.A.; Evans, D.O.; Ensminger, LE.; White, J.L.; Clark, F.E. and Dinauer, R.C. (1982). Methods of Soil Analysis. part 2. Chemical and microbiological properties. 2nd Ed. Soil Sci., Soc. of Am. Inc. Publ., Madison, Wisconsin, U. S.A.
- British Pharmacopeia, (1963). Determination of Volatile Oil in Drugs. The Pharmaceutical Press, Lond., W. C. L., 213 p.
- Bunzen, J.; N. Guidchard; J. labbe; P. prevot; J. Sperpinet and Trenchant, J. (1969). Practical manual of gas Chromatography. J. Trenchant Ed., El-Seivier publ. Comp., Amesterdam, London.
- Chapman, H.D. and Paratt, P.F. (1961). Methods of Soil, Plants and Water Analysis. Univ. California, Div. Agric. Sci., 314p.

- Dong Zhi, L.; Tsuzuki, E.; Sugimoto, Y.; YanJun, D.; Matsuoand, M. and Terao, H. (2004). Allelopathic effects of aqueous Aloe vera leaf extracts on selected crops. 20.
- El-Gohary, A. E.; Wahba, H. E.; Hendawy, S. F. and Hussein, M. F.(2021). Effect of licorice root and cabbage leaf extracts as a natural fertilizer on growth and productivity of Cynara cardunculus L. ORIGINAL ARTICLE. Vol. 20(1)17-22.
- Hasan, D. M. and Kader, J. Sh. (2022). Response of Pomegranate Trees Cv. Sawa to Foliar Application with NPK Fertilizer and Licorice Root Extract. Kirkuk University Journal for Agricultural Sciences. Vol. 13(3) 202:216.
- Herbert, D., Phipps, P.J. and Strange, R.E. (1971). Determination of total carbohydrates, Methods in Microbiology, 5 (8): 290-344.
- Hoftman, E. (1967). Chromatography, Reinhold publ. corp., 2nd. Ed. pp. 208-515.
- Horneck, D.A. and Hanson, D. (1998). Determination of potassium and sodium by flame Emission spectrophotometry. In handbook of reference methods for plant analysis, e.d Kolra, Y. P.(e.d). 153-155.
- Horneck, D.A. and Miller, R.O. (1998). Determination of total nitrogen in plant handbook of reference methods for plant analysis, (e.d) Kolra, Y.P73.
- Hucker, T. and G. Catroux (1980). Phosphorus in sewage ridge and animal's wastes slurries. Proceeding of the EEC Seminar, Haren (Gr): Gromingen Netherlands 12, 13 June.
- Jackson, M.L., (1973). Soil Chemical Analysis. Prentice-Hall of Indian Private, New Delhi. Jedrzejczak R., W. Reczajska and B. Szteke, 1999. Magnez i inne makroelementy w rooelinnych surowcach jadalnych. [Magnesium and other macronutrients in edible plant raw materials]. Biul. Magnezol., 4(1): 72-76. (In Polish)
- Josias H. Hamman (2008). Composition and Applications of Aloe vera Leaf Gel, Department of pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
- Khafaji, S. S. O. (2018) Pharmacological Application of Thyme. Adv. Anim. Vet. Sci. 6(9): 366-371.
- Khater, R. M.; Abd-Allah, W. H. and EL-Shafay, R. M. (2020). Effect of Organic Fertilization and Spraying Aloe Vera Extract on the Growth and Productivity of Carum Carvi L. Plant under Shalateen Conditions in Egypt. Department of Medicinal and Aromatic Plants, Desert Research Center, Cairo, Egypt. Plant Archives Vol. 20 No. 2, pp. 4959-4971.

- Mohamed ,Y.F.Y. and Ghatas, Y.A.A.(2020) Effect of some safety growth stimulants and zinc treatments on growth, seeds yields, chemical constituents, oil productivity and fixed oil constituents of chia (Salvia hispanica L.) plant. Scientific J. Flowers & Ornamental Plants, 7(2):163-183 (2020)
- Mohamed, S. M.; Mohamed, Y.F.Y.; Saleh, D. M. and Eman M. A. (2023). Influence of Planting Distances in Presence of Chemical Fertilization and Compost on Growth, Essential Oil, Artemisinin Content and Chemical Constituents of Artemisia annua L. Plant. J. of Plant Production, Mansoura Univ., Vol. 14 (2):31 - 43, 2023.
- Nurzyńska-Wierdak, R.; Zawiślak, G. and Papliński, R. (2023). Agronomic Practices in Lemon Balm Production under Temperate Climate Conditions: Raw Material Yield and Active Substances Content. Journal Agronomy, Vol. 13(5): 17-23.
- Sabry, G. H.; Rizk- Alla, M. S. & Abd El-Wahab, M.A. (2009). Influence of effective micro-organisms, seaweed extract and amino acids application on growth, yield and bunch quality of red globe grapevines. J. Agric. Sci. Mansoura Univ, 34(6), 5901-5921.
- Saleem, J. S. M.; and Saeid, A. J. I (2023). Effect of foliar application of licorice root extract and potassium and their interaction on vegetative growth and yield of cauliflower (Brassica oleracea L. Var.Botrytis). Hybrid. Journal of University of Duhok. Vol. 26(1): 87-95.
- Toaima, W.; Badawy, M. and E. S. Hamed, (2022). Effect of Organic Fertilization on Productivity of Some Newly Introduced Basil Varieties under Siwa Oasis Conditions. Journal of Applied Biology & Biotechnology; Vol.10(2): p.p. 74-8.
- Wilfred, T. Busela, Alistair, M. Stephen, Marthinus and C. Botha (1990). Carbohydrate polymers from Aloe ferox leaves. Phytochemistry, 29(11): 3555-3558.
- Wilson, V. (2020). Effect of Aloe vera Foliar Spray on Control of Insect Damage and Growth of Eggplant (Solanum melongena L.) Seedlings. Asian Journal of Plant Science and Research, 2020, 10(1):16-24.
- Yasuj, S. F. M.; Najafian, S. and Hosseinifarahi, M. (2022). Investigating the Storage Conditions of the Essential Oil Compounds of Garden Thyme. Journal of Medicinal Plants and By-products.

تأثير مسافات الزراعة والمستخلصات النباتية على النمو الخضري و المكونات الكيميائية وانتاجية الزيت العطري لنبات الزعتر

مي صبري رفاعي ، يسرى فهمي يوسف محمد ١ ، أحمد عبد العزيز دويدار ٢ و صفاء مصطفى محمد ١

ا قسم البساتين – كليه الزر اعه جامعه بنها –مصر . ٢ قسم النباتات الطبية والعطرية- معهد بحوث البساتين- مركز البحوث الزر اعية- الدقي.

الملخص

يعتبر الزعتر نباتًا بريًا مهمًا صالحًا للأكل تمت دراسته لعدة قرون لأهميته الفريدة في صناعة الأغنية والأدوية ومستحضرات التجميل. أجريت هذه الدراسة خلال موسمي٢٠١٧ و ٢٠١٨ في المزرعة التجريبية بقسم البساتين بكلية الزراعة - جامعة بنها لدراسة تأثير الزراعة بمسلفات مختلفة (٢٠ ٣٠ سم و ٣٠ ٣٠ سم) والمستخلصات النباتية (مستخلص عرق السوس والصبار) على النمو وانتاجية الزيت لنبات الزعتر. أظهرت النتائج أن معاملة التفاعل بين مسافات الزراعة (٢٠ * ٢٠) سم و F5 (مستخلص الصبار ٢٠٪) ، متبوعة بترتيب تنازلي بالمعاملة المشتركة بين وسبب الريف فب الرضر. المهرك الصحل من السامل بين المال مراد (المسلسل المسبر من) متبوعة بترتيب تنازلي بالمعاملة المشتركة بين مسافات الزراعة (۲۰ * ۲۰ سم) و F3 (مستخلص عرق السوس ٥٠٪) في كلا الحشتين والموسمين. علاوة على ذلك ، فإن الجمع بين مسافات الزراعة ومعاملات التسميد يعزز التقديرات الكميانية خاصة مسافة الزراعة (۳۰ * ۳۰ سم) و F3 (عرق السوس ٥٠٪) في معظم الحالات تمت زيادة نسبة الزيوت العطرية لنبات الزعتر باستخدام معاملة التفاعل المسافات الزراعة (۳۰ * ۳۰ سم) و F3 (الصبار ٥٠٪). الشتمل تحليل GLC للزعتر على ۱۲ مركبًا و المكون الرئيسي كان β-Cymen وبالتالي يفضل تطبيق مسافة الزراعة (٣٠ * ٣٠ سم) و f5 (مستخلص الصبار •ُ) لتعزيز النَّمو في نبات الزعتر