

Egyptian Journal of Soil Science

http://ejss.journals.ekb.eg/

Optimizing snap bean production under salt affected soil via compost, selenium and cobalt

Hoda I. Ahmed^a; Mohamed A. El-Sherpiny^b and Dina A. Ghazi^c

^a Horticulture Research Institute, Agriculture Research Center, El-Gama St., Giza, 12619, Egypt

Egypt ^b Soil & Water and Environment Research Institute, Agriculture Research Center, El-Gama St., Giza, 12619, Egypt

^c Soils Department, Faculty of Agricultural, Mansoura University, Mansoura, 35516, Egypt

NAP beans are a valuable vegetable crop due to their high nutritional value, but their production Can be challenging under salt-affected soil conditions, which can adversely affect their growth and productivity. To optimize snap bean production under this issue, a field experiment was conducted to evaluate the effect of various interventions on the growth performance and yield quality of two snap bean cultivars (Savana and Newten) grown on saline soil. The main factor was the selected cultivars, while compost soil addition at a rate of 8.0 ton ha⁻¹ (applied or not) was evaluated as a sub main factor. Also, foliar applications of selenium (as sodium selenite, Na₂SeO₃ 45.56 %Se) and cobalt (cobalt sulphate, CoSO₄, 36%Co), at rates of 0.0 and 5.0 mg L⁻¹ for each one, were assessed as a subsub-plot factor. The Savana cultivar outperformed the Newten cultivar in achieving maximum values for all performance traits expressing growth and productivity. Additionally, the addition of compost to soil led to an increase in some parameters *e.g.*, dry foliage weight, chlorophyll, No. of pods plant⁻¹, pods yield, protein and carbohydrates compared to plants grown without compost. On the other hand, the exogenous application of selenium was superior to the cobalt treatment, followed by the control treatment. Conversely, the plant's need for antioxidants such as peroxidase and catalase decreased with Savana cultivar plants treated with compost and selenium. The findings of this study can also be extended to other vegetable crops grown in saline conditions to enhance their productivity and nutritional quality.

Keywords: Saline soil, compost, cobalt, selenium.

1. Introduction

Snap bean (*Phaseolus vulgaris* L.) is an important crop in Egypt and contributes significantly to the country's economy. Egypt is one of the major producers and exporters of snap bean in the world (**Taha** *et al.* 2023). The crop is mainly grown in the Nile Delta and along the Mediterranean coast, where the favorable climate and soil conditions support its growth and productivity (**El-Mougy** *et al.* 2020). However, the cultivation of snap bean in saline soils is often hampered by the adverse effects of salinity stress. Saline soils have high concentrations of salt, which can cause osmotic stress, ion toxicity, nutrient deficiency, and oxidative stress in the plants, leading

*Corresponding author e-mail: m_elsherpiny2010@yahoo.com Received: 30/06/2023; Accepted: 17/07/2023 DOI: 10.21608/EJSS.2023.220513.1613 ©2023 National Information and Documentation Center (NIDOC)

to reduced growth, yield, and quality of the crop (Kumar et al. 2020).

It is possible to overcome the problems of saline soils when cultivating bean crops through the use of cultivars that are more tolerant to salinity stress. The cultivation of salt-tolerant cultivars is an effective strategy to mitigate the negative effects of salinity on bean crops. The use of salt-tolerant cultivars can help to minimize these effects by maintaining normal physiological processes even under high salt concentrations. In other words, these cultivars can help to maintain plant growth and productivity even under high salt concentrations, thus ensuring stable and sustainable bean crop production (Nemeskéri et al. 2010).

Also, to overcome the negative effects of salinity stress on snap bean, various strategies have been proposed, including the use of compost, selenium, and cobalt. Compost is a rich source of organic matter, which can improve soil structure (Elsherpiny et al. 2023a& b), water-holding capacity, and nutrient availability, thus helping to alleviate the adverse effects of salinity on snap bean (El Hasini et al. 2020). Additionally, selenium and cobalt are essential micronutrients that can improve plant tolerance to salinity stress. Selenium acts as an antioxidant, protecting the plant from oxidative stress caused by salinity (Jiang et al. 2017; Elsherpiny and Kany 2023; Abdalla et al. 2023), while cobalt is involved in nitrogen fixation and enhances plant growth and productivity (Baddour et al. 2021). Although its direct impact on plant growth under salinity stress may be limited, by improving nutrient uptake and enhancing metabolic processes, cobalt Table 1. Properties of the initial soil.

supplementation can indirectly support plant growth and mitigate the negative effects of salinity (Akeel and Jahan 2020).

Therefore, the objective of this study was to assess the effectiveness of compost, selenium, and cobalt in enhancing the tolerance of two snap bean cultivars to salinity stress, and to investigate their impact on the growth, yield, and quality of the plants grown in saline soil conditions.

2. Material and Methods

- Experimental location and soil sampling

The study was conducted at the Experimental Farm of Mansoura University in Egypt, which is located at coordinates 31°22'32.32" E and 31° 3' 17.05" N, and has an elevation of 6 meters above sea level. According to the Agriculture Extension services affiliated with the Ministry of Agriculture and Soil Resources in Egypt (MASR), the average temperature at the experimental site was 29°C during the summer and 13°C during the winter.

Traits and units		Values
pH (1:5 soil suspension)		8.10
EC, dSm ⁻¹ (soil extract 1:5)		6.25
Organic matter%		1.75
Total CaCO ₃ , %		2.21
Nitrogen, mg kg ⁻¹		50.59
Phosphorus, mg kg ⁻¹		7.550
Potassium, mg kg ⁻¹		230.9
	Sand	204.0
Particles size distribution, g kg ⁻¹	Silt	299.6
	Clay	496.4
Texture		Clayey

Notes: The soil is saline because the EC exceeds 4.0 dSm⁻¹.

Table 2. Proj	perties of	compost.
---------------	------------	----------

Traits and units	Values
Total C, g kg ⁻¹	217
Total N, g kg ⁻¹	17.6
C:N ratio	12.3
рН	6.15
EC, dSm ⁻¹	3.70
Available nutrient	s, mg kg ⁻¹
Iron	59.0
Manganese	29.0
Phosphorus	0.59
Potassium	0.83
Zinc	19.0

Prior to sowing the snap bean, a composite soil sample was collected from the experimental site (at a depth of 0-30 cm). The sample was analyzed using methods described by **Dane and Topp (2020) and**

Sparks *et al.* (2020). The initial soil characteristics are shown in Table 1.

- Studied cultivars and substances

Two snap bean cultivars, Savana and Newten, were procured from a private agricultural company in the Egyptian commercial market. The compost with properties listed in Table 2 was obtained from the agricultural commercial market. Sodium selenite (Na₂SeO₃, 45.56% Se) and cobalt sulfate (CoSO₄, 36% Co) were purchased from Sigma Company, Egypt. To create standard solutions, selenium and cobalt were dissolved in a solvent at a specific concentration. The resulting standard solutions were then utilized to prepare the Se and Co concentrations used in the study.

- Experimental setup

A field experiment was conducted during two successive seasons (2022-2023) under a split-splitplot design with three replicates to evaluate the effect of various interventions on the growth performance and yield quality of two snap bean cultivars (Savana and Newten) grown on salt-affected soil (with an EC value of 6.25 dsm⁻¹). The main factor was the selected cultivars, while compost soil addition at a rate of 8.0 ton ha⁻¹ (applied or not) was evaluated as a sub main factor. Also, foliar applications of selenium (as sodium selenite, Na₂SeO₃, 45.56 %Se) and cobalt (cobalt sulphate, CoSO₄, 36%Co), at rates of 0.0 and 5.0 mg L⁻¹ for each one, were assessed as a sub-sub-plot factor.

The experimental sub-sub-plot had an area of 10.23 m^2 (3.1 m × 3.3 m) and contained six ridges of 0.75 m width and 3.0 m length, with a planting distance of 7 cm between each plant. Prior to sowing, compost was mixed thoroughly with the surface layer of soil (0-50 cm) according to the treatment under investigation. On February 16th, seeds were sown at a rate of 45 kg fed⁻¹, and pods were harvested at the appropriate maturity stage during both seasons. One hour prior to sowing, Okadin biofertilizer obtained from the bio-fertilizer production unit affiliated with MASR was used to inoculate the seeds at a rate of 200g of rhizobium inoculant carried on peat moss fed⁻¹, with sugar solution used as a sticker. Other fertilization processes (P and K) and all traditional agricultural practices for snap bean production were executed according to the recommendations of MASR. The foliar application of selenium and cobalt was repeated twice at two-week intervals, starting from the first watering, which was 21 days after sowing, with a volume of 400 L fed⁻¹ for each element. Surface irrigation was used for watering, with the Nile River serving as the source of irrigation.

- Measurement traits

After 50 days of sowing, the growth traits and leaf chemical constituents of snap bean plants were measured, including plant height, foliage fresh and dry weights, chlorophyll content (SPAD value) (Castelli *et al.* 1996), and antioxidant enzymes such as peroxidase enzyme (POD) and catalase enzyme (CAT) (Tunley, 1971). POD activity was assessed by observing the guaiacol oxidation at 470 nm through a spectrophotometer. The reaction mixture comprised guaiacol, hydrogen peroxide, and crude plant extract. The absorbance was continuously monitored over time to measure the rate of change, and the POD activity was reported as units per minute per gram of fresh weight (FW). CAT activity was determined by tracking the hydrogen peroxide decomposition at 240 nm using a spectrophotometer. The reaction mixture contained hydrogen peroxide and crude plant extract. The absorbance changes were measured over time, and the CAT activity was expressed as units per minute per gram of FW. Also, phosphorus, and potassium nitrogen, were determined in leaves using the Kjeldahl method, spectrophotometer, flame photometer, and respectively (Tandon, 2005), as the leaves were oven-dried, ground, and wet digested with a mixture of perchloric and sulfuric acids (1:1) (Peterburgski (1968).

When the pods reached maturity, yield and its components such as the No. of pods per plant, pod length, pod weight, pod diameter, and pod yield were measured. The chemical constituents of the pods (outer shell + grains inside the pods), including N, P, K were determined as formerly mentioned in leaves. Also, the quality traits of the pods, including crude protein, carbohydrates, fiber, and total dissolved solid TDS, were determined (**AOAC**, 2000). - Statistical analysis.

The statistical analysis was carried out using CoStat

(Version 6.303, CoHort, USA, 1998–2004) following the methodology described by Gomez and Gomez (1984).

2. 3. Results

- Plant performance at 50 days from sowing

Table 3 presents the outcomes of the application of compost to soil and cobalt/selenium foliar treatment on various growth traits of snap beans (two cultivars) grown under saline conditions after 50 days from sowing, during two seasons. The growth traits analyzed were plant height (cm), fresh and dry foliage weight (g plant⁻¹), and chlorophyll SPAD readings. Also, Table 4 demonstrates the impact of the same treatments on chemical components, such as N, P, and K (%), and enzymatic antioxidants

production, such as peroxidase and catalase (A564 $\min^{-1} g^{-1}$ protein), in the leaves of snap beans at the same period.

With the exception of enzymatic antioxidants, the Savana cultivar outperformed the Newten cultivar in achieving maximum values for all performance traits mentioned. Additionally, the addition of compost to soil led to an increase in plant height (cm), fresh and dry foliage weight (g plant⁻¹), chlorophyll (SPAD readings), N, P, and K (%) values compared to plants grown without compost. On the other hand, the exogenous application of selenium was superior to the cobalt treatment, followed by the control treatment which came in the last order (without foliar application). Conversely, peroxidase and catalase

(A564 min⁻¹ g⁻¹ protein) values took a reverse trend, with the Newten cultivar recording the highest values compared to the other cultivar. Furthermore, plants treated with compost had lower values of peroxidase and catalase compared to those untreated with compost. Also, the foliar application of both beneficial elements (Se and Co) led to a decreased need for antioxidants, as the control treatment realized the highest values of peroxidase and catalase. Overall, Tables 3 and 4 demonstrate that the best performance in terms of growth and decreased need for antioxidants was achieved with Savana cultivar plants treated with compost and selenium.

 Table 3. Effect of compost soil addition and cobalt/selenium foliar application on growth traits and chlorophyll SPAD reading of snap bean grown under salinity conditions at the period of 50 days from sowing.

Treatments			Plant height cm	,	Fresh wei g plant	ght, 1	Dry weig g plant	ght, t ⁻¹	Chloro SPAD r	phyll, eading
	Treatments	1	1 st 2	nd	1 st	2 nd	1 st	2^{nd}	1 st	2 nd
		sea	ason Sea	son	season	Season	season	Season	season	Season
	-				Cultivars					
	Savana	46	.35a 47.	81a 1	.09.51a	110.83a	18.26a	18.47a	39.92a	40.59a
	Newten	43	.55b 44.	92b 1	05.82b	107.10b	17.23b	17.51b	38.07b	38.76b
	LSD at 5%	0	.04 0.	02	0.20	0.40	0.15	0.12	0.11	0.50
				O	rganic fertiliz	zation				
,	Without compost	42	.19b 43.	49b 1	04.06b	105.22b	16.71b	16.92b	37.14b	37.80b
	With compost	47	.71a 49.	24a 1	11.27a	112.72a	18.78a	19.06a	40.86a	41.56a
	LSD at 5%	0	.02 0.	16	0.36	1.32	0.14	0.01	0.09	0.26
				I	Folair applica	ntion				
Control (Cont.)		44.02c 45.40		40c 1	06.51c	107.74b	17.38c	17.58c	38.39c	39.12c
	Cobalt (Co)	44	.94b 46.	31b 1	07.70b	108.91b	17.77b	18.05b	39.00b	39.64b
	Selenium (Se)	45	.89a 47.	39a 1	08.79a	110.26a	18.10a	18.34a	39.60a	40.27a
	LSD at 5%	0	.60 0.	15	0.47	1.22	0.25	0.07	0.16	0.47
					Interaction	n				
	Without	Cont.	42.65hi	44.03i	104.61h	105.81gh	16.89h	i 17.0	6i 37.48	3i 38.19hi
	compost	Со	43.56gh	44.91h	105.92g	106.96fg	17.21g	h 17.40	5h 38.05	h 38.67gh
ana		Se	44.57fg	45.90g	107.14f	108.36ef	17.56f	g 17.74	4g 38.61	g 39.19fg
Sava		Cont.	48.15bc	49.63c	111.89c	113.08bc	18.92b	c 19.0	9c 41.21	c 41.93bc
•1	With	Со	49.15ab	50.49b	112.99b	114.69ab	19.32a	b 19.58	8b 41.80	b 42.43ab
	composi	Se	50.01a	51.90a	114.50a	116.10a	19.68a	a 19.90	0a 42.40)a 43.13a
	Without	Cont.	39.86k	41.191	101.05j	102.24i	15.80	x 16.0	01 35.55	51 36.24k
	compost	Со	40.79jk	42.00k	102.48i	103.41hi	16.25jl	k 16.40	5k 36.24	k 36.89jk
ten		Se	41.69ij	42.88j	103.16i	104.52ghi	i 16.57i	j 16.8	0j 36.91	j 37.60ij
Vew		Cont.	45.40ef	46.74f	108.49e	109.82de	17.89e	f 18.1	9f 39.33	3f 40.11ef
F -1	With	Со	46.25de	47.83e	109.40de	110.56de	18.29d	e 18.7	De 39.91	e 40.57de
	composi	Se	47.29cd	48.87d	110.34d	112.06cd	18.60c	d 18.9	1d 40.48	d 41.16cd
	LSD at 5%	1	.20 0.	30	0.96	2.45	0.50	0.14	0.32	0.95

Means within a row followed by a different letter (s) are statistically different at a 0.05 level

			Lea	ves chem	ical constit	uents]	Enzymatio	e antioxida	ants	
		N.	%	J	P.%	K	.%	Pero	xidase,	Cat	alase,	_
Tre	eatments	,			,		,	A564	A564 min ⁻¹ ·g ⁻¹		min ⁻¹ ∙g ⁻¹	
		1 st	2 nd	1 st	2 nd							
		season	season	Season								
					Culti	ivars						_
S	avana	3.68a	3.75a	0.406a	0.413a	2.13a	2.20a	0.718b	0.667b	54.52b	50.53b	
N	lewten	3.42b	3.47b	0.385b	0.392b	2.02b	2.08b	0.867a	0.800a	62.57a	57.75a	
LS	D at 5%	0.02	0.02	0.007	0.005	0.05	0.04	0.034	0.007	0.12	0.02	
Leaves chemical constituents Enzymatic antioxidants N.% Providase, Catalase, A564 min ⁻¹ st ⁻¹ A564 min ⁻¹ st ⁻¹ A564 min ⁻¹ st ⁻¹ It " 2 nd It " 2 nd A564 min ⁻¹ st ⁻¹ Season Season												
Witho	ut compost	3.26b	3.33b	0.375b	0.381b	1.95b	2.01b	0.946a	0.874a	65.71a	60.75a	
Witł	n compost	3.83a	3.90a	0.416a	0.424a	2.20a	2.27a	0.639b	0.593b	51.38b	47.53b	
LS	D at 5%	0.01	0.01	0.001	0.002	0.03	0.06	0.016	0.003	0.18	0.11	
					Folair ap	plication						
Control (without)		3.46c	3.53c	0.388c	0.396c	2.03b	2.10b	0.841a	0.777a	60.82a	56.40a	
(Cobalt	3.55b	3.61b	0.395b	0.402b	2.08a	2.15c	0.792b	0.734b	58.63b	54.12b	
Se	lenium	3.63a	3.70a	0.403a	u 0.410a	2.11a	2.18a	0.745c	0.689c	56.20c	51.89c	
LS	D at 5%	0.01	0.01	0.005	0.004	0.05	0.04	0.011	0.009	0.25	0.73	
					Intera	action						
	Without	Cont.	3.28i	3.36i	0.380gh	0.388i	1.96ghi	2.02fg	0.935d	0.865d	63.11d	58.49d
	compost	Со	3.40h	3.46h	0.384gh	0.391h	2.02fgh	2.08ef	0.863e	0.801e	61.31e	56.55e
ına	· · · ·	Se	3.51g	3.59g	0.388fg	0.396g	2.05efg	2.11e	0.815f	0.752f	59.53f	55.25e
Save	With	Cont.	3.89c	3.96c	0.420bc	0.428c	2.22abc	2.29bc	0.607j	0.567j	50.53j	47.60h
	aammaat	Со	3.96b	4.03b	0.427ab	0.434b	2.26ab	2.32ab	0.565k	0.533k	48.06k	44.25i
	composi	Se	4.03a	4.09a	0.435a	0.444a	2.30a	2.38a	0.5251	0.4841	44.591	41.02j
	Without	Cont.	3.071	3.131	0.357j	0.3641	1.86i	1.93h	1.059a	0.973a	72.32a	66.61a
	compost	Со	3.13k	3.18k	0.366ij	0.370k	1.91i	1.97gh	1.028b	0.946b	69.98b	64.80b
ten	compose	Se	3.20j	3.24j	0.374hi	0.378j	1.93hi	1.98gh	0.976c	0.904c	68.04c	62.78c
New	With	Cont.	3.61f	3.67f	0.397ef	0.405f	2.09def	2.15de	0.763g	0.704g	57.30g	52.89f
-		Со	3.71e	3.77e	0.404de	0.413e	2.15cde	2.22cd	0.711h	0.655h	55.17h	50.90g
	compost	Se	3.79d	3.87d	0.414cd	0.422d	2.18bcd	2.26bc	0.666i	0.615i	52.64i	48.52h
LS	D at 5%	0.01	0.01	0.010	0.009	0.10	0.08	0.001	0.018	0.49	1.45	

Table 4. Effect of compost soil addition and cobalt/selenium foliar application on chemical constituents and enzymatic antioxidants production in leaves of snap bean grown under salinity conditions at the period of 50 days from sowing.

_

Means within a row followed by a different letter (s) are statistically different at a 0.05 level

Egypt. J. Soil Sci. 63, No. 3 (2023)

Table 5.	Effect of compost soil addition and cobalt/selenium foliar application on pods yie	ld and its
	components of snap bean grown under salinity conditions at harvest stage "A 2-yea	r study on
	two cultivars".	

		No. a	f pods	Pod length, cm		Pod weight, g		Pod diameter, cm		Pod yield ton fed ⁻¹		
Tre	eatments	1^{st}	2 nd	1 st	2 nd	1^{st}	2 nd	1 st	2 nd	1^{st}	2 nd	
		season	Season	season	Season	season	Season	season	Season	season	Season	
					C	ultivars						
	Savana	26.89a	30.00a	10.87a	10.99a	5.05a	5.15a	0.46a	0.47a	2.86a	2.91a	
	Newten	25.00a	27.61b	10.22b	10.39b	4.55b	4.62b	0.39b	0.41b	2.48b	2.54b	
LS	D at 5%	NS	0.24	0.08	0.01	0.16	0.05	0.06	0.01	0.02	0.04	
					Organi	ic fertilizati	ion					
	Without compost	23.83b	26.67b	9.95b	10.08b	4.29b	4.38b	0.36b	0.37b	2.10b	2.15b	
Wit	h compost	28.06a	30.94a	11.14a	11.30a	5.31a	5.40a	0.49a	0.51a	3.24a	3.29a	
I	.SD at 5%	0.94	0.93	0.08	0.11	0.04	0.02	0.02	0.02	0.02	0.02	
					Folaiı	applicatio	n					
	Control (without)	25.17c	28.00c	10.34c	10.46c	4.61c	4.71c	0.41c	0.42a	2.61c	2.65c	
	Cobalt	26.00b	28.75b	10.54b	10.71b	4.81b	4.89b	0.42b	0.44ab	2.68b	2.73b	
	Selenium	26.67a	29.67a	10.77a	10.91a	4.98a	5.07a	0.45a	0.46a	2.72a	2.79a	
I	SD at 5%	0.55	0.63	0.15	0.14	0.06	0.01	0.03	0.03	0.01	0.04	
					In	teraction						
		Cont.	24.00fg	27.00gh	10.10hi	10.19gh	4.39i	4.50i	0.37efg	0.38fgh	2.17h	2.20f
	Without compost	Co	24.67ef	27.67fg	10.25gh	10.40fg	4.52h	4.61h	0.40def	0.41efg	2.25g	2.29e
na		Se	25.33de	28.33ef	10.43fg	10.53ef	4.66g	4.76g	0.41de	0.42def	2.35g	2.39d
Sava		Cont.	28.00b	31.00c	11.26bc	11.35b	5.38c	5.49c	0.51ab	0.53ab	3.44c	3.49a
	With	Со	29.33a	32.33b	11.49ab	11.65a	5.59b	5.69b	0.53ab	0.54a	3.46b	3.53a
	composi	Se	30.00a	33.67a	11.70a	11.82a	5.78a	5.88a	0.54a	0.56a	3.49a	3.55a
		Cont.	22.33h	25.00j	9.39k	9.52j	3.851	3.931	0.31h	0.32h	1.901	1.93h
	Without compost	Co	23.00gh	25.67ij	9.66jk	9.78ij	4.08k	4.15k	0.33gh	0.35gh	1.96k	1.99h
u	1	Se	23.67fg	26.33gh	9.89ii	10.03hi	4.25i	4.31i	0.34fgh	0.35gh	2.01i	2.10g
Vewtu		Cont	26 33cd	29.00e	10.60ef	10.77de	4.82f	4.91f	0.44cd	0.45cde	2.95f	3.00c
F	With	Co	27.00bc	29.33de	10.76de	10.99cd	5 04e	5 13e	0.45cd	0.47bcd	3 03e	3.095
	compost	50	27.000c	30.33cd	11.04cd	11.25hc	5 234	5 334	0.49bc	0.51abc	3.054	3 11h
LS	D at 5%	1.09	1.26	0.29	0.29	0.12	0.01	0.06	0.06	0.01	0.09	5.110

Means within a row followed by a different letter (s) are statistically different at a 0.05 level

*NS:Non-significant

- Yield, quality and qualitative traits at harvest stage

It is clear that physical and qualitative traits of the snap bean (two cultivars) plants grown under salinity conditions at the harvest stage *i.e.*, No. of

Egypt. J. Soil Sci. **63,** No. 3 (2023)

pods plant⁻¹, pods, length (cm), weight (g), diameter (cm), yield (ton fed⁻¹) (**Table 5**), N, P, K, (**Table 6**), crude protein, carbohydrates, fiber and TDS (%) (**Table 7**) were significantly affected as a result of compost soil addition and cobalt/selenium foliar application treatments.

 Table 6. Effect of compost soil addition and cobalt/selenium foliar application on seeds quality traits (seeds chemical constituents) of snap bean grown under salinity conditions at harvest stage "A 2-year study on two cultivars".

Treatments		N,	%	Р	,%	K,%		
	Treatme	ints	1 st season	2 nd	1 st	2 nd	1 st	2 nd
				Cultiva	ars			
	Savan	a	3.00a	3.05a	0.336a	0.343a	1.75a	1.78a
	Newte	n	2.89b	2.94b	0.319b	0.324b	1.55b	1.58b
	LSD at 5	5%	0.04	0.01	0.012	0.004	0.07	0.04
				Organic fert	ilization			
	Without co	mpost	2.83b	2.88b	0.310b	0.316b	1.45b	1.47b
	With compost		3.07a	3.12a	0.344a	0.351a	1.86a	1.89a
	LSD at 5%		0.02	0.01	0.008	0.004	0.04	0.02
				Folair appl	ication			
	Control (wi	thout)	2.90c	2.96a	0.320c	0.328c	1.57c	1.60c
	Cobal	t	2.95b	3.00a 0.328		0.333b	1.66b	1.69b
	Selenium		2.99a 3.03a 0.334b 0.339		0.339a	1.72a	1.75a	
	LSD at 5	5%	0.02	NS	0.002	0.004	0.03	0.04
				Interact	tion	P,% K,% 1^{st} 2^{nd} 1^{st} 2^{nd} 336a 0.343a 1.75a 1.78a 336a 0.324b 1.55b 1.58b 012 0.004 0.07 0.04 012 0.004 0.07 0.04 012 0.004 0.07 0.04 013 0.316b 1.45b 1.47b 014 0.351a 1.86a 1.89a 008 0.004 0.04 0.02 008 0.004 0.04 0.02 015 0.328c 1.57c 1.60c 020c 0.328c 1.57c 1.60c 0328a 0.339a 1.72a 1.75a 002 0.004 0.03 0.04 011 0.321f 1.48f 1.51f 014 0.325ef 1.55e 1.58a 0325 0.339a 1.95ab 1.98a 0360a 0.367a 1.99a 2.03a <th></th>		
	Without	Control	2.85e	2.91cd	0.311h	0.321f	1.48f	1.51fg
	compost	Cobalt	2.90d	2.95cd	0.319g	0.325ef	1.55e	1.58f
ina		Selenium	2.92d	2.96cd	0.325f	0.332de	1.64d	1.67e
Sava	****	Control	3.08b	3.13ab	0.348c	0.355b	1.90b	1.94bc
	With	Cobalt	3.13a	3.18ab	0.353b	0.359b	1.95ab	1.98ab
	composi	Selenium	3.15a	3.20a	0.360a	0.367a	1.99a	2.03a
	Without	Control	2.71g	2.76e	0.291j	0.297h	1.23h	1.25i
	compost	Cobalt	2.78f	2.83de	0.305i	0.308g	1.36g	1.38h
ten		Selenium	2.81ef	2.86de	0.310h	0.313g	1.42fg	1.44gh
New	****	Control	2.98c	3.04bc	0.332e	0.339cd	1.69d	1.72e
	With	Cobalt	3.00c	3.04bc	0.335e	0.342c	1.78c	1.81d
	composi	Selenium	3.07b	3.12ab	0.340d	0.346c	1.83c	1.87cd
	LSD at 5	5%	0.04	Isson 2 nd Cultivars Da 3.05a 0 Db 2.94b 0 Qa 3.05a 0 Qb 2.94b 0 Qa 0.01 0 Qa 0.01 0 Qa 3.12a 0 Qa 3.12a 0 Qa 3.00a 0 Qa 3.00a 0 Qa 3.03a 0 Qa 3.04b 0 Qa 2.95cd 0 Qa 2.95cd 0 Qa 2.95cd 0 Qa 3.13ab 0 Qa 3.20a 0 Qa 2.85de 0 Qa 3.04bc	0.005	0.008	0.07	0.08

Means within a row followed by a different letter (s) are statistically different at a 0.05 level

*NS:Non-significant

Table	7.	Effect of	compost	soil	addition	and	cobalt/selenium	foliar	application	on seeds	quality	traits
		(seeds a	quality an	d bi	ochemical	l trai	ts) of snap bean	grown	under salini	ty conditi	ons at h	arvest
		stage ".	A 2-year s	study	y on two c	ultiv	ars''.					

			Prote	ein, %	Carbohy	drates, %	Fibe	er, %	TD	5, %
	Treatmo	ents	1 st season	2 nd Season						
					Cultiva	irs				
	Savan	a	18.77a	19.09a	37.59a	38.77a	13.09a	13.26a	6.17a	6.24a
	Newte	en	18.06b	18.38b	34.62b	35.71b	12.48b	12.64b	5.82b	5.91b
	LSD at	5%	0.30	0.04	0.03	0.02	0.04	0.01	0.04	0.01
				(Organic fert	ilization				
	Without co	mpost	17.67b	17.97b	33.10b	34.12b	12.22b	12.37b	5.67b	5.74b
	With con	ipost	19.16a	19.49a	39.10a	40.36a	13.36a	13.53a	6.32a	6.41a
	LSD at	5%	0.11	0.02	0.01	0.13	0.03	0.03	0.04	0.06
					Folair appl	ication				
	Control (w	ithout)	18.15c	18.49a	35.12c	36.23c	12.59c	12.74c	5.87c	5.94b
	Cobalt		18.44b	18.74a	36.12b	37.22b	12.79b	12.93b	6.02b	6.11a
	Selenium		18.66a	18.95a	37.06a	38.27a	12.99a	13.18a	6.11a	6.18a
	LSD at	5%	0.14	NS*	0.48	0.12	0.05	0.05	0.07	0.08
					Interact	ion				
	Without	Control	17.79e	18.19cd	33.63g	34.72i	12.30i	12.44h	5.77e	5.84ef
	compost	Cobalt	18.10d	18.42cd	34.71f	35.79h	12.52h	12.64g	5.89d	5.98de
ana		Selenium	18.25d	18.48cd	35.76e	36.82g	12.77g	12.93f	5.97cd	6.02d
Sav		Control	19.25b	19.58ab	39.48b	40.70c	13.44c	13.59c	6.35b	6.41bc
	With compost	Cobalt	19.54a	19.88ab	40.51a	41.61b	13.64b	13.82b	6.49a	6.57ab
	-	Selenium	19.67a	19.98a	41.43a	42.99a	13.89a	14.11a	6.55a	6.61a
	Without	Control	16.94g	17.23e	30.54i	31.571	11.681	11.83k	5.29g	5.35h
	compost	Cobalt	17.35f	17.67de	31.53h	32.46k	11.92k	12.06j	5.49f	5.57g
vten		Selenium	17.56ef	17.85de	32.46h	33.38j	12.12j	12.30i	5.62f	5.69fg
Nev		Control	18.60c	18.98bc	36.85d	37.93f	12.94f	13.09e	6.05c	6.14d
	With compost	Cobalt	18.75c	19.02bc	37.74cd	39.02e	13.06e	13.19e	6.20b	6.32c
	-	Selenium	19.17b	19.50ab	38.59bc	39.88d	13.19d	13.39d	6.29b	6.40c
	LSD at	5%	0.28	0.92	0.96	0.24	0.10	0.10	0.14	0.17

Means within a row followed by a different letter (s) are statistically different at a 0.05 level *NS:Non-significant

Fig. 1. Interaction effect of compost soil addition and cobalt/selenium foliar application on pods yield of snap bean grown under salinity conditions at harvest stage during the first season.

Fig. 2. Interaction effect of compost soil addition and cobalt/selenium foliar application on pods yield of snap bean grown under salinity conditions at harvest stage during the second season.

Also, Figs 1 and 2 illustrate the interaction effect of compost soil addition and cobalt/selenium foliar application on pods yield (ton fed⁻¹) of snap bean grown under salinity conditions at harvest stage during the first and second seasons. The Savana cultivar achieved the highest values for yield, quality, and qualitative traits at the harvest stage,

outperforming the newten cultivar. Furthermore, the addition of compost to soil led to an increase in the values of these traits compared to plants grown without compost. On the other hand, the exogenous application of selenium was superior followed by the cobalt treatment then the control treatment (without foliar application). The trend remained consistent in both seasons studied. Generally, Tables 5, 6, and 7 as well as figs 1 and 2 demonstrate that savana cultivar plants treated with compost and selenium achieved the highest values of yield, quality, and qualitative traits.

4. Discussion

Excessive salt concentration in the soil can hinder the growth of snap bean plants. Salinity interferes with water absorption by the roots, creating an imbalance in osmotic pressure and causing water stress (Garcia et al. 2019). This can result in stunted growth, reduced plant height, and smaller overall plant size. The salinity of soil could lead to an increase in free radicals in the tissues snap bean plants. This is because the excessive accumulation of salt in the soil can cause osmotic stress, which in turn leads to the production of reactive oxygen species (ROS) such as superoxide anion (O^{2-}) , hydrogen peroxide (H_2O_2) , and hydroxyl radical (OH) in the snap bean plant cells (Motaleb et al. 2020). These ROS can cause oxidative damage to cell components such as lipids, proteins, and DNA, leading to cell death and impaired plant growth and productivity. The production of free radicals can also trigger a chain reaction that further increases the levels of ROS in the plant cells, leading to a state of oxidative stress (Saxena et al. 2019). To mitigate the harmful effects of salinity-induced free radicals, plants have developed antioxidant defense systems such as peroxidase and catalase enzymes that scavenge ROS and prevent oxidative damage. However, under salt stress, the antioxidant defense severe mechanisms may become overwhelmed, leading to a buildup of free radicals and oxidative stress in the snap bean plant cells.

The results of the study suggest that the addition of compost to soil and the exogenous application of cobalt/selenium had a significant positive effect on the growth, yield, and quality traits of snap bean plants grown under saline conditions. The Savana cultivar outperformed the Newten cultivar in achieving maximum values for most of the studied traits.

The superior performance of the Savana cultivar may be attributed to genetic variations that confer tolerance to salt stress. Different plant varieties have varying genetic backgrounds, which influence their ability to tolerate salt stress. Savana cultivar may have possessed genes that were more efficient in managing the adverse effects of salinity, resulting in better plant growth and yield compared to the Newten cultivar (**Kumar** *et al.* 2020).

The addition of compost to soil improved the physical and chemical properties of soil, which positively impacted plant growth and yield. The compost provides a source of nutrients, increases soil organic matter, improves soil structure, and enhances the availability of water and nutrients to plants. This helps plants to establish healthy root systems, uptake essential nutrients, and maintain optimum physiological processes, resulting in improved growth and yield (**El Hasini** *et al.* **2020**).

The exogenous application of cobalt/selenium to the leaves of plants acted as a beneficial element that facilitated various metabolic processes in plants. Cobalt is an essential component of vitamin B12 and plays a critical role in nitrogen fixation and chlorophyll synthesis. Selenium is an essential component of selenoproteins, which play important roles in stress responses and antioxidant defense mechanisms. The foliar application of selenium was superior to cobalt, indicating its higher efficiency in improving plant performance under saline conditions. Selenium and cobalt are both micronutrients that are essential for plant growth and development. However, selenium is known to have a higher toxicity threshold in plants than cobalt. This means that plants can tolerate higher levels of selenium without experiencing negative effects, whereas cobalt toxicity can occur at lower concentrations. Additionally, selenium has been shown to have a more significant impact on plant growth and development than cobalt. Selenium plays a crucial role in photosynthesis and can enhance the activity of antioxidant enzymes, which protect plants from oxidative stress. It has also been linked to increased seed germination, root and shoot growth, and improved plant resistance to biotic and abiotic stress. On the other hand, cobalt is essential for nitrogen fixation in leguminous plants, which can contribute to plant growth and development. However, it has not been shown to have significant effects on other growth traits or antioxidant enzyme activity, as compared to selenium (Jiang et al. 2017; Baddour et al. 2021).

Therefore, based on the results obtained from this study, it is likely that the superior performance of the snap bean plants treated with selenium is due to its ability to enhance photosynthesis, antioxidant activity, and plant resistance to stress, which ultimately leads to improved growth and yield.

5. Conclusion

The results of this study demonstrate that the application of compost soil and selenium foliar treatment can significantly improve the growth, yield, and quality of snap bean plants grown in saline conditions. The Savana cultivar outperformed the Newten cultivar in achieving maximum values for most of the traits analyzed. Additionally, the application of compost soil led to an increase in the values of most traits, while selenium foliar treatment was superior to cobalt treatment in enhancing the plant's performance.

Generally, the results of this study can recommend the following;

- Farmers growing snap beans in saline conditions should consider the application of compost soil and selenium foliar treatment to improve plant growth,

yield, and quality. - The selection of the appropriate cultivar, such as the Savana cultivar in this study, can also significantly enhance plant performance in saline conditions.

- Further research should be conducted to determine the optimal application rates and methods for compost soil and selenium foliar treatment, as well as the long-term effects of these treatments on soil health and plant growth.

- The findings of this study can also be extended to other vegetable crops grown in saline conditions to enhance their productivity and nutritional quality.

The findings of this study could contribute to ensuring a stable and sustainable production of snap bean in Egypt, which could in turn have positive implications for the country's economy and food security.

Conflicts of interest

Authors have declared that no competing interests exist.

Formatting of funding sources: The research was funded by the personal efforts of the authors. Garcia, C. L., Dattamudi, S., Cha

6. References

- Abdalla, Z. F., El-Bassiony, A. E. M., El-Ramady, H., El-Sawy, S., & Shedeed, S. (2023). Broccoli Biofortification Using Biological Nano-and Mineral Fertilizers of Selenium: A Comparative Study under Soil Nutrient Deficiency Stress. *Egyptian Journal of Soil Science*, 63(1), 57-66.
- Akeel, A., & Jahan, A. (2020). Role of cobalt in plants: its stress and alleviation. Contaminants in Agriculture: Sources, Impacts and Management, 339-357.
- AOAC, (2000)." Official Methods of Analysis". 18th Ed. Association of Official Analytical Chemists, Inc., Gaithersburg, MD, Method 04.
- Baddour, A. G., El-Sherpiny, M. A., & Sakara, H. M. (2021). Effect of rhizobium inoculant, nitrogen starter and cobalt on stimulation of nodulation, n fixation and performance of faba bean (*Vicia faba L.*) grown under salinity stress. Journal of Soil Sciences and Agricultural Engineering, 12(2): 61-69.
- Castelli, F., Contillo, R., & Miceli, F. (1996). Nondestructive Determination of Leaf Chlorophyll Content in Four Crop Species 1. Journal of Agronomy and Crop Science, 177(4): 275-283.
- CoStat version 6.303 copyright (1998-2004). CoHort Software 798 Lighthouse Ave. PMB 320, Monterey, CA, 93940, USA.
- Dane, J. H. and Topp, C. G. (Eds.) (2020). "Methods of soil analysis", Part 4: Physical methods (Vol. 20). John Wiley & Sons.

- El Hasini, S., De Nobili, M., Azim, K., Douaik, A., Laghrour, M., El Idrissi, Y., ... & Zouahri, A. (2020). The influence of compost humic acid quality and its ability to alleviate soil salinity stress. International journal of recycling organic waste in agriculture, 9(1):21-31.
- El-Mougy, N. S., Abdel-Kader, M. M., & Abouelnasr, H. M. (2020). Seed dressing and foliar spray of green bean (*Phaseolus vulgaris* L.) with essential oils and disinfectants for suppressing root rot and wilt incidence under field conditions. International Journal of Agricultural and Biosystems Engineering, 14(9):102-108.
- Elsherpiny, M. A.& Kany, M.A. (2023). Maximizing faba bean tolerance to soil salinity stress using gypsum, compost and selenium. Egyptian Journal of Soil Science, 63(2), 243-253.
- Elsherpiny, M. A., Baddour, A., & Kany, M. (2023b). Effect of organic and bio fertilization and magnesium foliar application on soybean production. Egyptian Journal of Soil Science, 63(1), 127-141.
- Elsherpiny, M. A., Fatma A. El-Bakry, Noha R. Ibrahim and Hayam A. ElShaboury (2023a). Role of compost, biochar and sugar alcohols in raising the maize tolerance to water deficit conditions. Egyptian Journal of Soil Science, 63(1), 67-81.
- Garcia, C. L., Dattamudi, S., Chanda, S., & Jayachandran, K. (2019). Effect of salinity stress and microbial inoculations on glomalin production and plant growth parameters of snap bean (*Phaseolus* vulgaris). Agronomy, 9(9), 545.
- Gomez; K. A and Gomez, A.A (1984). "Statistical Procedures for Agricultural Research". John Wiley and Sons, Inc., New York.pp:680.
- Jiang, C., Zu, C., Lu, D., Zheng, Q., Shen, J., Wang, H., & Li, D. (2017). Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (*Zea mays* L.) under salinity stress. Scientific reports, 7(1): 42039.
- Kumar, V., Kumar, P., & Khan, A. (2020). Optimization of PGPR and silicon fertilization using response surface methodology for enhanced growth, yield and biochemical parameters of French bean (*Phaseolus vulgaris* L.) under saline stress. Biocatalysis and Agricultural Biotechnology, 23, 101463.
- Motaleb, N. A., Elhady, S. A., & Ghoname, A. (2020). AMF and Bacillus megaterium neutralize the harmful effects of salt stress on bean plants. Gesunde Pflanz, 72(1), 29-39.
- Nemeskéri, E., Sárdi, É., Remenyik, J., Kőszegi, B., & Nagy, P. (2010). Study of the defensive mechanism against drought in French bean (*Phaseolus vulgaris* L.) varieties. Acta physiologiae plantarum, 32, 1125-1134.
- Peterburgski, A. V. (1968). "Hand Book of Agronomic Chemistry". Kolas Publishing House Moscow, (in Russian).

- Saxena, R., Kumar, M., & Tomar, R. S. (2019). Plant responses and resilience towards drought and salinity stress. Plant Arch, 19(Suppl 2), 50-58.
- Sparks, D. L., Page, A. L., Helmke, P. A., & Loeppert, R. H. (Eds.). (2020)."Methods of soil analysis", part 3: Chemical methods (Vol. 14). John Wiley & Sons.
- Taha,A.A., Mariam N.A. Makhlouf and Omar,M.M (2023). Response of *Phaseolus vulgaris* L plant to

applying potassium fulvate and different manganese sources either to the soil or to the leaves. Egyptian Journal of Soil Science, 63(1), 83-100.

- Tandon, H. L. S. (2005). Methods of analysis of soils, plants, waters, fertilizers & organic manures. Fertilizer Development and Consultation Organization.
- Tunley, D. R. (1971). Book Review: Enzymes and the Determination of Enzyme Activity.