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Abstract 
 

Evaluating and developing the electroplating production process is a key 

challenge in this type of process. The process is influenced by several factors, such 

as process parameters, process costs, and production environments. Analyzing and 

optimizing all these factors together requires extensive analytical techniques that 

are not available for real-case industrial entities. This paper presents a practice-

based framework to improve the electroplating production line performance in 

order to reduce product flow time and waiting time while increasing total 

throughput with minimum number of defective products so as to establish 

sustainable operations and improve system performance. The proposed approach 

respectively uses Design of Experiments (DOE), Discrete-Event Simulation (DES), 

and Theory of Constraints (TOC) to identify the most significant factors affecting 

the production process and simulate a real production line to recognize the effect 

of these factors and assign possible bottlenecks. Several scenarios are generated as 

a corrective strategy for improving the production line. Following that, Data 

Envelopment Analysis- Charnes, Cooper, and Rhodes (CCR) input-oriented DEA 

model is used to evaluate and optimize the suggested scenarios. 
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1. Introduction 
 

Electroplating is the process of coating a surface with a thin layer of metal to improve 

the surface quality for a specific application [1]. Multiple phases of processing are necessary 

to complete the coating process, with each stage requiring certain parameters to control the 

quality and the thickness of the coating. One of these parameters is time; if the processing 

time exceeds a specified amount at each stage, the coated layer thickness, the consumption of 

the coating materials and the electrical current may be affected, accordingly increasing the 

overall cost and energy consumption of the process. In general, plating thickness is 

proportional to plating duration and current [2]. Faraday’s Laws state that the quantity of 

charge flow Q in a solution is proportional to the current flow I and flow time T, as 

demonstrated in the following equation: Q=IT [3].  

Whether the coated material is metal or plastic, a variety of factors influence product 

flow time in an electroplating production line. These factors include plating tank capacity, 

operator allocation, rack structure and amount, and so on. Materials costs and associated 

energy costs are also significant factors to consider. Modeling and optimizing electroplating 

manufacturing lines with mathematical models to determine the effect of these parameters on 

process performance is both difficult and inefficient. Simulation generates more accurate 

results and is more adaptable than mathematical models. Simulation-based optimization is 

commonly employed in companies with a manufacturing heritage to handle decision-making 

difficulties connected to process and system improvement. 

This work's main objective is to increase the efficiency of the electroplating 

production line in order to quote short and reliable lead times, decrease waiting times, and 

increase overall throughput while minimizing defective product counts in order to develop 

sustainable operations by applying an integrated simulation-based experimental design and 

Data Envelopment Analysis (DEA).   

An actual electroplating production process was modelled, tested, and validated for 

this purpose. Regression analysis and theory of constraints (TOC) paradigm were used to 

identify the key factors influencing product flow time and bottlenecks. 

Following that, various possible scenarios were developed based on the study of TOC 

and regression models. DEA was created for scenario analysis. In addition, the Charnes, 

Cooper, and Rhodes (CCR) DEA model was employed for the evaluation and optimization 

process. The major indicators utilized to measure the system's performance were lead 

time/product flow time, waiting time, and resource utilization. 

2. Literature review 

Identifying the status of the production line and current system performance is a 

difficult task that any make-to-order (MTO) company may face. In the literature review, a 

number of methodologies for modelling the manufacturing system and its performance is 

investigated. Existing approaches in this discipline are classified into two types: theoretical 
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or analytical approaches and experimental approaches. Analytical approaches used 

mathematical models-based assumptions and algorithms to solve any manufacturing problem. 

However, these approaches were limited in that they only considered very simple 

manufacturing systems and a limited number of parameters and presumptions, without taking 

into account all manufacturing status, as discussed in [4–9]. The experimental approaches, on 

the other hand, often used simulation or real-world data to create a model that approximated 

the system features and performance outlined which discussed in [10–16]. The based 

optimization strategy is frequently employed in many studies for improving the overall 

efficiency of identically processes or the overall performance of a system illustrated in [17-

24].  

Any production system has its own limitations and system constraints. Bottlenecks 

should be examined regularly in order to produce quick solutions to overcome these 

limitations for system performance optimization, ensuring long-term customer satisfaction 

and increasing system performance. Since Goldratt published the notion of constraints in the 

mid-1980s, much work has been expended on determining the optimal methods for constraint 

identification and approaches to eliminate constraints in order to improve production 

performance. This idea has been the subject of extensive investigation, with applications in a 

variety of domains [24–28]. 

The majority of studies in the electroplating optimization area are devoted to 

optimizing the chemical composition and process parameters such as temperature, current, 

voltage of coating, and coating thickness to obtain high quality coating as observed [29–32]. 

Other studies concentrated on electroplating production line process operations and 

management optimization including many techniques, such as an extensive mixed integer 

linear programming model, were created to identify optimization techniques for the single-

hoist cyclic scheduling issue for electroplating lines [33]. A triple-objective combined 

dynamic optimization (MIDO) model was created as a consequence of addressing output 

optimization, energy savings, and wastewater reductions concurrently for the best design and 

operation of electroplating operations. The 3D Pareto border of the optimization issue is 

obtained by iteratively solving the MIDO model using a tried-and-true approach, which offers 

crucial professional guidance for the process design and operation of electroplating processes 

[34]. A tolerance-based rule-base system was also suggested in order to reduce the completion 

time without a defective product and increase throughput for a single-crane scheduling 

challenge in a flexible circuit board electroplating line [35].  

None of the preceding articles presented a real framework and application for 

introducing simulation-based optimization, integrated with design of experiments and theory 

of constraints, to evaluate and optimize the electroplating production process in terms of 

product flow time, material costs, and energy costs. The primary goal of this work is to 

improve electroplating production line performance in order to quote a short and reliable lead 

time and reduce the waiting time while increasing total throughput without defective products 

so as to establish sustainable operations. 
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3. Work methodology  

The suggested framework for this study is presented in figure 1. Accordingly, the 

framework had five main steps: designing production flowcharts; designing and verifying 

simulation models; investigating significant factors based on experimentally designed 

simulation; conducting TOC to deduce bottlenecks; designing optimization scenarios based 

on factors and bottlenecks; and selecting the best scenario. 

 

Figure 1.  Overview of methodology 
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3.1. Problem and case study identification 

This study is being carried out in a plastic products MTO manufacturing company, 

where various products undergo several manufacturing stages such as injection, coating 

(plating), printing, and painting, as each product requires its own production route. After 

reviewing the historical data in the company's enterprise resource planning system, it was 

determined that all production stages are stable with little lateness, with the exception of the 

electroplating production stage, where lateness and work-in-process (WIP) have increased 

significantly. The system recorded a delayed order as a result of the second processing stage, 

which is considered a bottleneck in the production process. The historical data from the 

electroplating production line showed a high rate of defective products, WIP, cost increases, 

and product lead times, all of which contributed to a reduction in the performance of the 

manufacturing system as a whole. Based on data analysis of the KPI in the manufacturing 

system under service level constraints, the company needs to optimize the electroplating 

production line to maximize system performance in order to quote short lead time, decrease 

the number of late jobs, decrease product flow time, and decrease WIP in the system at the 

lowest possible improvement cost. 

The electroplating production line, as depicted in figure 2, involves a number of 

processes, including product and rack setup and fixation; acid cleaning; etching; 

neutralization; electrical plating; precipitation; pre-dipping, activation; nickel and chrome 

deposition. Various washing procedures are a part of the overall process. The final steps in 

the manufacturing process are drying and packaging. 

 

Figure 2. Electroplating production process flow chart  

Two cases are examined in this study. In the first case, a maximum of eight products 

of the two types of products A&B are taken into consideration. Twelve workstations are used 

to produce these products. They each have a particular sequence and route. In this case, each 
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product can make several visits to various processes (re-entrant flows) without having to go 

through additional processes. The second case involves the delivery of extremely large 

amounts of products to the production line, ranging from 100,000 to 500,000 units, for a 

specific product type that must go through 19 processing steps. Each order contains a unique 

set of specifications such as the number of racks, the batch size, which is determined by the 

size of the product, and the precise duration of each processing step. More details on how 

various process-related variables impact the overall product flow time are provided in the next 

section. 

Two cases are examined in this study. In the first case, a maximum of eight products 

of the two types of products A&B are taken into consideration. Twelve workstations are used 

to produce these products. They each have a particular sequence and route. In this case, each 

product can make several visits to various processes (re-entrant flows) without having to go 

through additional processes. The second case involves the delivery of extremely large 

amounts of products to the production line, ranging from 100,000 to 500,000 units, for a 

specific product type that must go through 19 processing steps. Each order contains a unique 

set of specifications such as the number of racks, the batch size, which is determined by the 

size of the product, and the precise duration of each processing step. More details on how 

various process-related variables impact the overall product flow time are provided in the next 

section. 

3.2. Simulation model assumptions and variables  

The computer simulation model is generated using the flowchart created in figure 2. 

Manufacturing system performance measures include throughput rate, flow time or lead-time, 

cost, and resource utilization. Several factors influence system performance; some are 

continuous and unpredictable, making adjustments difficult, such as environmental 

parameters and customer order amount, while others are adjustable. Six major factors are 

taken into consideration in this work: order arrival rate, resource capacity, processing time in 

each workstation (stage), batch size in each batch processing stage, time to failure (TTF), and 

time to repair (TTR) in each workstation subjected to random failure. The following 

notation will be used: The vectors Xk represent the k factors, which are assumed to 

exist: 

k= (1,2,....,6). 

All system products (orders) are represented in the factors as vectors. The factors 

denoted as vectors include all types of orders in the system. 

X1
⃗⃗⃗⃗ = {λ1, λ2, …, λi}; λ is the orders interarrival time, i the order type enters the system       (1) 

X2
⃗⃗⃗⃗  = {TTF1, TTF2, …. TTFj}; TTF is the time between failure in each work station j          (2) 

𝑋3
⃗⃗⃗⃗  = {TTR1, TTR2…. TTRj}; TTR is the time to repair in each work station j                     (3)  
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𝑋4
⃗⃗⃗⃗  = {N1, N2,..., Nj}: N is the number of resources in each work station j                           (4) 

X5
⃗⃗⃗⃗  =   tij; t is the processing time for each arrival order i in work station j                              (5) 

X6
⃗⃗⃗⃗  = Bj ; B is the batch size in each batch processing work station j                 (6)  

Simulation Model Assumptions and Considerations: 

 Each workstation has a predetermined processing time for each product type. 

 No disruption of power 

 Data was gathered from the company and identified with the appropriate analyzer 

tool in ARENA software for data analysis to determine the fitting statistical 

distribution. 

 The manufacturing working hours are 8 hours per shift, two shifts per day, five days 

a week. 

 The TTR and TTF schedules have been added to the simulation model along with the 

machine that is exposed to random failure. 

 The model is simulated for 12 workstations (WS1 to WS12). 

The objective of this research is to raise the production line's performance level. The 

key performance indicators (KPI) should be chosen before attempting to evaluate the 

performance of any manufacturing system or process. In this study, the electroplating 

production line's performance indicators are lead time (flow time), throughput rate, waiting 

time (queue length), and machine utilization level. First, factors are investigated, followed by 

data collection for the first case study with minimum and maximum value from observation 

over 6 months of production, which is recorded and distributed using the input analyzer tool 

in ARENA software as shown from table [1-6]. Appendix A contains the detailed analysis. 

Flow Time Mathematical Model Formulation  

In this study, lead time is regarded as the most essential key performance indicator, 

and the ability to accurately predict flow time is critical to quoting a good lead time. The time 

a job spends in the manufacturing process, from order release to completion, is referred to as 

its flow time. Waiting time or the time spent in lines is part of the acknowledgement of job 

flow time as playing an important role in any production process. The lead time formulation 

was created using the flow time due date assignment (FTDD) method, which has been shown 

to provide less mean value, total delay, and number of tardy jobs than other methods [36]. 

Flow-time FT is stated as the difference between the time at which a job enters the 

shop and the time at which the last operation on that job is completed. Equation [7] can be 

used to calculate FT by adding the processing times and waiting periods for jobs. 

FT=∑ 𝑝
𝑗=𝑛
𝑗=1 ij+wij  ; where j is the processing work station =1,2,3,….,n                                (7)        
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                  pij is the total processing time of product i in workstation j  

                              wij is the waiting time in each station j 

3.3. Discrete Event Simulation DES 

Simulation models can investigate the dynamic state of a manufacturing system and 

more precisely depict its properties. They can also be used to detect and solve problems in a 

more flexible and cost-effective manner than physical prototyping and testing. The first step 

in developing a simulation model is determining which aspects of a real system should be 

fixed (parameters) and which should be permitted to change during the simulation experiment 

(variables) [37]. 

The electroplating production line, which may include numerous workstations, batch 

processing, fluctuating machine capacity, random failures, WIP, and re-entrant flows, was 

identified as a bottleneck stage in the entire manufacturing process. This study takes a wide 

range of products into account. The electroplating production line, which may involve 

multiple workstations, batch processing, various machine capacities, random failure, WIP, 

and re-entrant flows, was considered a bottleneck stage in the overall manufacturing process 

in the study of a scale-down from a plastic injection and electroplating factory. This study 

considered a variety of products that need to be processed along different production routes 

at multiple workstations in the electroplating production line. 

This work employed simulation as an analytical tool that integrated both the system 

and the model to better understand how the system behaves in various circumstances. The 

system is represented as a discrete event model. Figure 3 illustrates how a discrete-event 

simulation (DES) model runs in the ARENA software and how it represents the production 

system and its order arrivals.  

The simulation model is designed to describe the actual production line with all 

stations present in the system, and two cases of product plating manufacture are investigated, 

the first of which is depicted in Figure 3. Multiple products entering the system with a limited 

order quantity, having a specific sequence and visiting the workstation more than once, and 

requiring batch processing workstations with a predetermined batch size, this case is used in 

factors analysis and measuring its effect on lead time or production flow time using fractional 

factorial analysis.  

The other case considered one type of product with an extremely high order quantity, 

the product visits all workstations in batch processing mode, this case was employed in DEA 

and TOC experiments. For 10,000 hours of simulation time, 32 simulation runs are carried 

out in order to extend the regression model and quantify the sensitivity of the chosen response 

(flow time) to the chosen variables (factors). The flow time formula, as illustrated in equation 

7, was inserted into the simulation model to record the flow time of each product. 
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Figure 3. First Case Simulation Model for an electroplating production line 

3.4. Design of Experiment 

To identify the important factors that influence the manufacturing process; a 

mathematical description of the process is required. Minitab 14 is used to build a fractional 

factorial design. As the number of variables increases, the number of runs required to produce 

a replicate of the design, quickly outgrows the resources of most experimenters. As a result, 

fractional factorial design is used [38]. To limit the number of simulations runs, fractional 

factorial design resolution IV was used, as shown in Table 7, Appendix B. 

3.4.1. Factors Levels Selection for DOE 

The electroplating production line's product flow time has been chosen as one of the 

performance measurement indicators, and thus it is expected to be determined how various 

factors affect the flow time using statistical methods and experimental design. The ranges 

over which the design variables will be adjusted and the precise levels at which the runs will 

be performed must be decided after the design variables have been chosen. Based on historical 

data gathered over a 6-month period for the first case study, high and low design levels of 

factors were chosen. Coded levels are utilized to overcome the issue since each factor is 

represented as a vector or matrix of two different sorts of products. The codes -1 for the low 

level and +1 for the high level, respectively, are used to identify the two levels. The simulation 

is run using a fractional factorial design to determine the regression equation's significant 

effects on the flow time for each factor. 

In order to present the effect of factors and their interactions on the system 

performance, fractional factorial experiment and response surface experiment data from the 
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simulation data collected in the first case were employed to estimate the flowtime regression 

models. Flow time was selected as the response since it is one of the performance measures 

as shown in (R1) and (R2). 

Regression Equation in fractional factorial experiment 

Regression Equation in responses surface experiment                                            

FLOW TIME = 886 + 292 X1 - 545 X2 + 136 X3 + 88 X4 + 44 X5 + 2438 X6 - 120 X1*X2 

- 465 X1*X3+ 377 X1*X4 + 198 X1*X5 + 2424 X1*X6 + 347 X2*X3 

+ 278 X2*X4 + 144 X2*X5 + 547 X2*X6 - 742 X3*X4 + 837 X3*X5 

+ 217 X3*X6 - 574 X4*X5 - 145 X4*X6 + 355 X5*X6                            (R2)                                                                

The analysis of variance (ANOVA) results for the fractional factorial and response 

surface experiments are reported in Tables 8 and 9 respectively, and are graphically depicted 

in Figures 4,5, 6, and 7, illustrated in Appendix B. 

As indicated in Table 7, figure 4, and figure 5 in Appendix B, the analysis of variance 

table, main factors effect chart, and Pareto Chart show that X1 and X6 have the most 

significant effect on flow time, as F value is far bigger than P value at this point, indicating 

that order arrival rate and batch size are the most significant factors. 

According to the values in the response surface analysis ANNOVA table, factors 

interaction effect chart, and Pareto chart for factor interaction as shown in table 9, figure 6, 

and figure 7 as shown in Appendix B, it has been shown that X1, X6, and X1X6 have the 

highest F value when compared to P value, indicating that X1 and X6 as well as the two-way 

interaction X1X6 have a significant effect on the flow time of the products in the production 

line. 

The regression coefficients are closely related to the factor effects, as demonstrated 

in the two regression models X6 and X1X6, which have the highest regression coefficient, 

which means that the arrival rate of future orders can affect the total number seized on the 

system as the system has more than re-entrant workstations (visited more than one) WS 

4,5,6,7,9,10, In addition to re-entrant workstations, it also has batch processing in Ws 4, 6, 7, 

8, 9, and 10, which has a major effect on flow time as shown in the simulation report. The 

main cause of the increased flow time of products A and B is the waiting time in batch 

processing workstations. As shown in Tables 10 and 11, which are illustrated in Appendix B, 

for the fractional factorial experiment and the response surface experiment, respectively, R 

squared is used as a statistical measure of fit to show how much variation and correlation of 

a dependent variable is explained by the independent variable(s) in the regression model. 

The basic standards for a good R-Squared reading can be substantially higher, such 

as 0.9 or above, as seen by the high level of correlation demonstrated by the Response Surface 

FLOW TIME = -33 + 916 X1 + 53 X2 + 233 X3 - 314 X4 + 524 X5 + 4137 X6                   (R1)              
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Analysis 97.61 (0.97) R-Squared reading. The R squared demonstrated in the fractional 

factorial design (87.41%) can likewise be regarded as an acceptable level of correlation. 

3.5. Theory of Constraints Approach 

The Theory of constraints technique regulates throughput and utilizes the only 

resources which is the bottleneck to manage throughput and other performance metrics [39]. 

In order to better understand the system and reduce product flow time, a theory of constraints 

(TOC) study based on the DES model is applied. Bottleneck and non-bottleneck resources are 

the two categories into which TOC divides the enterprise's resources. The simulation 

diagnostic model (second case) is used to identify the bottleneck resource, determine the 

bottleneck process, and measure current system performance in order to control the 

bottlenecks and enhance system performance as illustrated in Figure 8, which is referred to in 

Appendix C. 

The case being considered at this point involves a particular class of products with 

extremely large numbers, for which the customer established a lateness penalty cost. Each of 

the five batches contains 50 items that need to be coated. In this case, the batches are 

designated at the racks on which the product is fixed. This product goes through 19 different 

stages of processing, each station having a set processing time. After coating, all batches are 

sorted, polished, and packaged. 

Measuring the usage of the production system's machines is one method for 

identifying the bottleneck machine; the machine with the highest utilization is thought to be 

the bottleneck. It can be difficult to identify the bottleneck operation when different processes 

are used at the same rates. Additionally, the temporary bottleneck cannot be identified using 

the utilization approach [40]. Measuring the "queue lengths of the machines" in the production 

systems is another technique, which is often used to assess the bottleneck operation. With this 

approach, the waiting time or queue length is measured, and the resource with the longest 

waiting time or queue length is deemed to be the bottleneck [41]. The longest queue length or 

longest waiting time is the bottleneck detection approach taken into consideration in this work. 

This is proved from the diagnostic simulation report in Table 12 illustrated in Appendix C. 

Based on data from the simulation model used for diagnosis, it may be concluded that the 

bottleneck process stations for acid cleaning and bright chrome have the longest lines or the 

highest waiting times. 

3.6. Data Envelopment Analysis DEA 

DEA is a nonparametric strategy for analyzing the relative utility of a set of decision-

making units (DMUs) is based on a linear programming model that accepts a diverse range 

of inputs and generates a variety of different outputs; this optimization approach is widely 

utilized in research [42–48]. In DEA, non-beneficial criteria are referred to as input, whereas 

advantageous criteria are referred to as output. It is designed to have a low input value (non-

beneficial criteria) and a high output value (beneficial criteria). 
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In general, DEA uses the idea of system efficiency optimization and derives the 

output or input that determines the overall efficiency of DMUs. Alternative scenarios (DMUs) 

are characterized in the decision matrix. 

DEA was utilized as an optimization method in this work to choose the most effective 

scenario and enhance system performance. In this study investigation, resource utilization and 

throughput rate were DEA model outputs, whereas machine utilization, waiting times, and 

throughput rate served as optimization indicators. 

To consider the basic DEA model, four DMUs, two outputs (yij), and one input (xij), 

were chosen. 

The purpose of the model was to optimize the weighted sum of outputs to weighted 

sum of inputs ratio. It should be noted that Ej represents the efficiency of DMU j as stated in 

equation [1], where vi represents the weight of input parameter i and ur represents the weight 

of output parameter r. 

𝑀𝑎𝑥 𝐸𝑗=∑ uryrj2
r=1 ⁄ ∑ vi xij1

i=1                            

Subject to:  

∑ uryrj2
r=1 ⁄ ∑ vi xij1

i=1  ≤1, ∀ 𝑗=1,2,3,4                     

𝑢𝑟≥0, ∀ 𝑟=2  

𝑣𝑖≥0, ∀ 𝑖=1 

In order to enhance the performance of the electroplating production line in terms of 

the stated indicators, several scenarios or alternatives (DMUs) are built based on the 

recognized constraints using TOC and fractional factorial analysis in the DOE work stage. 

There are undoubtedly a number of more scenarios that might be stated to enhance 

performance, but many of them are either too costly or inappropriate for the current 

circumstance to be used in reality. 

According to TOC, the station with the longest queue length or waiting time is 

designated as the bottleneck station after running the simulated model numerous times, as 

shown in Table 11, and the following problems turned out: 

1. The first station (acid cleaning) has the longest queue due to the effect of batch 

processing and the arrival rate of the products. 

2. The bright chrome plating queue is the longest and has the highest wait time; as a 

result, the batch of products (racks) must spend more time in the previous station, 

potentially resulting in coating defects, high chemical and electrical consumption, 

and an increase in total time spent in the production line or lead time. 
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3. Some stations have extremely high utilization rates, while others have extremely 

low utilization rates, resulting in an increase in system WIP. 

4. The batch size (rack quantity) is too small and should be increased to improve 

throughput rate. 

5. The throughput rate was quite low in terms of working hours. 

Based on the problems identified in the simulation model report of the current state 

of the production line in the second case study, and with the participation of the production 

manager's point of view based on the existing constraints, the scenarios will be separated into 

four alternatives as follows: 

Scenario 1: This scenario represented the production line's prior position two years 

ago when each station had just one resource (tank), batch size was limited to 8 racks, each 

rack carrying 50 products, and only one shift worked each day. 

Scenario 2: the scenario identified from the current condition of the production line 

that increased one resource (tank) in the bright chrome station, resulting in a 50% reduction 

in processing time in the bright chrome station. 

Scenario 3: This scenario involves changing the geometric design of the rack, which 

results in a rise in the number of products kept in each rack from 50 to 80, resulting in a greater 

throughput rate; increasing the tanks in the bright chrome station to two tanks; and working 

two shifts per day. 

Scenario 4: This scenario proposed boosting bright chrome and pre-dipping stations, 

adjusting the volume of the tank (tank capacity), lowering working hours to one shift per day, 

and changing the geometric shape of the racks to hold 80 products to balance resource 

utilization. 

Following scenario selection, simulations are run for each scenario, and the values of 

inputs and outputs are stored in the decision matrix, as shown in Table 12. 

Table 12. DEA decision matrix 

DMUs 

(Scenarios) 

Input 1 (Waiting 

Time) 

(min) 

Output 1 (Machine 

Utilization) 

(%) 

Output 2 

(Throughput) 

(units) 

1 539.62 0.986 3400 

2 484.95 0.992 6650 
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3 504.6 1.06 10640 

4 410.22 1.07 17840 

Nominator 

√∑ 𝑋𝑖𝑗
2𝑛

𝑗=1
       

974.31 2.055 21810.76 

After running a simulation for each alternative, the total waiting time for all 

processing stages was recorded. The machine utilization level for all resources was calculated 

from the simulation report (instantaneous utilization/scheduled utilization), and throughput 

was recorded as the total number of units produced. 

There are various DEA models, such as the BCC and CCR models. In 1978, a linear 

programming (LP CCR) model was established, and it may be articulated by maximizing 

output or minimizing input criterion. The fundamental fractional CCR model is a non-convex 

programming model, which is very difficult to compute. In this study, the (LP CCR) model 

is used for optimization purposes to reduce the input (waiting time) to reflect on the 

performance of the production line, particularly the lead time quotation, which has been the 

case study company's biggest struggle. 

To begin applying the CCR model, the decision matrix must first be normalized, 

which is done by dividing each value in the decision matrix by the nominator determined from 

the next formula, and is recorded in Table 12. 

Nij=Xij/√∑ 𝑋𝑖𝑗
2𝑛

𝑗=1
               

The nominator = √∑ 𝑋𝑖𝑗
2𝑛

𝑗=1
       

The nominator is determined for each column in the decision matrix, as shown in 

Table 12, and then each value is divided by the nominator value, as shown in Table 13. 

Table 13. The nominated decision matrix 

DMUs Input 1 Output 1 Output 2 

1 0.553 0.479 0.1558 

2 0.4977 0.4827 0.3048 

3 0.51790 0.5158 0.4878 

4 0.42103 0.5206 0.8179 
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After the decision matrix is nominated, the CCR objective function for each DMU or 

alternative is determined using the following formula: 

gk= min( ∑ 𝑣𝑖 
𝑚
𝑖=1 ∗ 𝑥𝑖𝑘) 

subject to  

-∑ 𝑢𝑟 
𝑠
𝑟=1 𝑦𝑟𝑘 + ∑ 𝑣𝑖

𝑚
𝑖=1  𝑥𝑖𝑘 ≥ 0   for j= 1,…..,n  

 
∑ 𝑢𝑟

𝑠
𝑟=1 𝑦𝑟𝑘=1 

After organising the linear programming objective function model, Hk (the efficiency 

measure of the Kth DMU should be calculated by using this formula: 

Hk= 1/gk 

The nomenclature of the LP model is: 

n: the number of alternatives/ DMUs 

m: the number of input criteria 

s: the number of output criteria 

xik and yrk denote the value of the ith input criterion and the rth output criterion for the kth 

alternative. 

ur  and vi are non-negative variable weights for outputs and inputs, respectively, to be 

determined by the solution of the minimization problem. 

In this study, n = 4, m = 1, s=2 

So, the objective function for each scenario is:     

g1= min (0.553v1) 

subject to  

-0.479u1-0.1558u2+0.553v1≥0 

-0.4827u1-0.3048u2+0.4977v1≥0 

-0.5158u1-0.4878u2+0.51790v1≥0 

-0.5206u1-0.8179u2+0.421030v1≥0 

0.479u1+0.1558u2= 1 

u1, u2, v1≥0 

  g2= min (0.4977v1) 

subject to  

-0.479u1-0.1558u2+0.553v1≥0 

-0.4827u1-0.3048u2+0.4977v1≥0 

-0.5158u1-0.4878u2+0.51790v1≥0 

-0.5206u1-0.8179u2+0.421030v1≥0 

0.4827u1+0.3048u2= 1 

u1, u2, v1≥0 



 

22                                  MSA ENGINEERING JOURNAL 

Volume 2  Issue 2, E-ISSN 2812-4928, P-ISSN 28125339 

 (https://msaeng.journals.ekb.eg//) 

  

g3= min (0.51790v1) 

subject to  

-0.479u1-0.1558u2+0.553v1≥0 

-0.4827u1-0.3048u2+0.4977v1≥0 

-0.5158u1-0.4878u2+0.51790v1≥0 

-0.5206u1-0.8179u2+0.421030v1≥0 

0.5158u1+0.4878u2= 1 

u1, u2, v1≥0 

    

g4= min (0.42103v1) 

subject to   

-0.479u1-0.1558u2+0.553v1≥0 

-0.4827u1-0.3048u2+0.4977v1≥0 

-0.5158u1-0.4878u2+0.51790v1≥0 

-0.5206u1-0.8179u2+0.421030v1≥0 

0.5206u1+0.8179u2= 1 

u1, u2, v1≥0 

 

Table 14 displays the results of calculating gk and Hk for the kth scenario using the Excel 

solver tool to solve the linear programming model. 

 
Table 14. gk and HK values 

Alternatives (DMUs) gk Hk 

1 1.60864 0.6216 

2 1.23589 0.8113 

3 1.11706 0.8952 

4 1.06587 0.9382 

 
Table 14 shows that scenario 4, which had an effective rate of 93%, had the minimal objective 

function. 

4. Results and Discussion  

After examining the manufacturing line based on DOE and TOC results, the 

simulated model for Case 2 was activated for all scenarios. The DEA input-oriented CRR 

model's objective is to minimize the input (waiting time) to decrease the product flow time, 

whereas the waiting time is a significant portion of the flow time equation, which reflects on 

reducing the lead time of the entities or products, and therefore on the overall system 

performance. The objective function is constructed for all scenarios using the linear 

programming CCR model, and the results are given in table 14. The DEA deemed scenario 4 
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to be the optimum scenario, with an efficiency rate (Hk) of 93% and the least input value or 

objective function (gk).  

Despite maintaining one shift per day in this scenario, the throughput rate increased 

from 3400 products to 17840. This means that the throughput rate increased by 424.705 

percent from the production line's previous state ((17840-3400)/3400*100). As a result, this 

will reduce labor costs and the overall cost of electricity utilized, as well as minimize lead-

time and boost customer satisfaction. 

It is predicted that modifying the rack's geometric design to accommodate more 

products will increase product quantity while having no effect on batch processing; the batch 

will grow by 42.2 percent from 8*50 to 8*80 (8 racks); each rack includes 80 products. This 

greatly reduces the lead-time and improves system performance. 

It is recommended to increase the number of tanks in the bright chrome station and 

change their capacity to reduce queues and ensure that products do not have to wait in the 

previous station, which also reduces coating defects and chemical material consumption. It is 

also recommended to increase one tank in the pre-dipping station to balance resource 

utilization. 

According to this research, managers can make better decisions when they choose the 

proper scenario. For example, when scenario 4 is implemented, there will be a considerable 

improvement in the operational performance of the production line. Managers can use this 

study to focus on a small number of indicators for future improvement and policy formulation. 

5. Conclusion and Recommendations      

It is challenging to determine and improve the electroplating production line's 

performance in order to quote short and reliable lead times while increasing throughput rate 

with the least amount of waiting time. This is because the production line process is not only 

subject to the inherent randomness of the production process, but it can also depend on a wide 

range of factors that can have an impact on how well the process as a whole performs. 

A comprehensive framework of approaches was built in this study to fully analyze 

the effects that the factors may have on the performance and work on enhancing this 

performance based on this factor. The performance of an electroplating production line was 

improved by utilizing a novel methodology created by combining simulation-based 

experimental design, DEA, and TOC methods. In order to achieve this, a real electroplating 

production line was simulated, validated, and confirmed. All factors affecting production line 

performance were analyzed, and the significant factors were selected based on experimental 
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design and statistical modelling. Finally, all bottlenecks were identified based on TOC as the 

largest queue or the longest waiting time process. Following that, four basic scenarios based 

on identified bottlenecks and significant factors were developed with the cooperation of case 

study company managers and specialists. Waiting time, productivity rate or throughput rate, 

resource productivity, and utilization were considered as production line performance 

measures in this study.  

After selecting performance indicators and developing scenarios, DEA was created 

for scenario analysis and optimization. The optimum model for minimizing input was 

determined to be the input-oriented CCR DEA model. The DEA model considered waiting 

time as input, while selecting resource utilization and throughput rate as output. The ideal 

scenario was selected based on the DEA model results after executing the CCR model goal 

functions for four scenarios or DMUs and evaluating their efficiency. The fact that this 

scenario has the highest throughput rate and the shortest waiting time appears to be the most 

important reason why it was chosen as the best scenario. According to the optimization model, 

some criteria must be changed in order to improve the performance of the electroplating 

production line. For example, changing the geometric design of the rack to hold more products 

(more entities) and reducing the number of racks arriving at a given time; increasing one tank 

in the bottleneck station with the longest line; changing the tank capacity; increasing one tank 

in the pre-dipping station; and reducing the working time. 

 Planning and production managers in electroplating units can use the findings to 

increase the effectiveness of their production lines. They can also expand on the technique 

that has been outlined by adding additional interrelated scenarios for a future study. Flow time 

is chosen as one response in this work to evaluate the impact of other factors on it. It is also 

recommended to extend more parameters to acquire more efficient results and to employ 

multi-response factors in fractional factorial analysis to determine the significant effect of 

multiple factors on the system's performance. 
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Appendix A. Factors Levels Selection Tables 

These tables showed the minimum and maximum values of the selected 

factors from X1 to X6, which were gathered from the management executive system 

of the case study company and distributed using suitable tools, which are provided 

by the simulation model representing the first case study. 

Table 1. Products arrival rate 

 

 

 

 

 

 

 

Table 2. TTF of the electroplating production line resources. 

 

 

 

 

 

 

 

 

 

 

 
  

Arrival rate 

of entity 

X1 

A 

-X1 

(product/min) 

A 

+X1 

(product/min) 

B 

- X1 

(product/min) 

B 

+X1 

(product/min) 

 Expo(300min) Expo (600) Expo (400) Expo (700) 

TTF of resources X2 -X2 (min) +X2 (min) 

WS1 Expo (12000) Expo (15000) 

WS2 Expo (12000) Expo (12000) 

WS3 Expo (3000) Expo (5000) 

WS4 Expo (12000) Expo (15000) 

WS5 Expo (12000) Expo (15000) 

WS6 Expo (12000) Expo (15000) 

WS7 Expo (9000) Expo (12000) 

WS8 Expo (6000) Expo (9000) 

WS9 Expo (15000) Expo (18000) 

WS10 Expo (12000) Expo (15000) 

WS11 Expo (6000) Expo (9000) 

WS12 Expo (12000) Expo (15000) 
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Table 3. TTR of electroplating production line resources. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Resources capacity 

TTR of resources X3 -X3 (min) +X3 (min) 

WS1 Expo (120) Expo (420) 

WS2 Expo (90) Expo (390) 

WS3 Expo (120) Expo (420) 

WS4 Expo (300) Expo (600) 

WS5 Expo (300) Expo (600) 

WS6 Expo (480) Expo (720) 

WS7 Expo (480) Expo (720) 

WS8 Expo (120) Expo (420) 

WS9 Expo (120) Expo (420) 

WS10 Expo (120) Expo (420) 

WS11 Expo (240) Expo (540) 

WS12 Expo (60) Expo (360) 

Resource’s capacity X4 -X4 +X4 

WS1 1 1 

WS2 1 1 

WS3 1 1 

WS4 1 1 

WS5 1 3 

WS6 1 1 

WS7 1 1 

WS8 1 3 

WS9 1 3 
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Table 5. Processing time for each product in each workstation. 

 

  

WS10 1 1 

WS11 1 1 

WS12 1 1 

 

Processing time 

 X5 

 

Product A 

-X5 (min) 

 

Product A 

+X5 (min) 

 

Product B 

-X5 (min) 

 

Product B 

+X5 (min) 

 

 

             Ws1 Expo (5) Expo (10) Expo (7) Expo (12) 

Ws2 Expo (15) Expo (20) Expo (17) Expo (22) 

Ws3 Expo (20) Expo (25) Expo (25) Expo (25) 

Ws4 Expo (15) Expo (20) POIS(17.5) POIS(21.7) 

Ws5 9.5 + 11 * 

BETA(0.068, 

0.127) 

14.5 + 11 * 

BETA(0.068, 

0.127) 

4.5 + 9 * 

BETA(0.154, 0.11) 

11.5 + 9 

*BETA(0.154, 

0.11) 

Ws6 4.5 + 11 * 

BETA(0.105, 

0.105) 

9.5 + 11 * 

BETA(0.105, 

0.105) 

2.5 + 18 * 

BETA(0.13, 0.205) 

7.5 + 18 * 

BETA(0.13, 

0.205) 

Ws7 0.5 + 5 * 

BETA(0.0325, 

0.0561) 

4.5 + 6 * 

BETA(0.511, 

0.739) 

0.5 + 10 * 

BETA(0.382, 0.553) 

4.5 + 11 * 

BETA(0.365, 

0.528) 

Ws8 Expo (20) Expo (25) Expo (15) Expo (20) 

Ws9 Expo (10) Expo (15) 4.5 + 11 * 

BETA(0.105, 0.105) 

9.5 + 11 * 

BETA(0.105, 

0.105) 

Ws10 Expo (15) Expo (20) Expo (10) Expo (15) 

Ws11 Expo (15) Expo (20) Expo (10) Expo (15) 

Ws12 Expo (40) Expo (45) Expo (25) Expo (30) 
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Table 6. Batch size in each workstation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix B. Some Results of the Empirical Study 

The simulation experiments were performed following the design of 

experiments resulting from applying the DOE method. Table 7 showed the fractional 

factorial experiment design, which discussed the number of factors and runs used in 

the experiment. 

The analysis of variance (ANOVA) results was given in Tables 8 and 9 for 

fractional factorial analysis and response surface analysis, respectively. The ANOVA 

tables all suggest that the resulting regression models provide a good description of 

the data. As shown in R squared tables 10, 11.  

Batch size 

in batch 

processing 

stages X6 

 

- 

X6 

 

+ 

X6 

Ws1 

 

1 1 

Ws2 1 1 

Ws3 1 1 

Ws4 1 5 

Ws5 1 1 

Ws6 1 5 

Ws7 1 5 

Ws8 1 8 

Ws9 1 5 

Ws10 1 8 

Ws11 1 1 

Ws12 1 1 
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 Table 7. Fractional Factorial Experiment Design Summery 

Factors: 6 Base Design: 6, 32 Resolution: VI 

Runs: 32 Replicates: 1 Fraction: 1/2 

Blocks: 1 Center pts (total): 0       

Table 8.  ANNOVA Table for Fractional Factorial Experiment 

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 

Model 6 147088137 87.41% 147088137 24514690 28.93 0.000 

  Linear 6 147088137 87.41% 147088137 24514690 28.93 0.000 

    X1 1 6706550 3.99% 6706550 6706550 7.92 0.009 

    X2 1 22203 0.01% 22203 22203 0.03 0.873 

    X3 1 435776 0.26% 435776 435776 0.51 0.480 

    X4 1 790320 0.47% 790320 790320 0.93 0.343 

    X5 1 2196105 1.31% 2196105 2196105 2.59 0.120 

    X6 1 136937183 81.38% 136937183 136937183 161.63 0.000 

Error 25 21181289 12.59% 21181289 847252       

Total 31 168269426 100.00%             

The factors' effects and their interaction on products’ flow time were shown 

in figures 4,5, 6, and 7 respectively, which showed that X1, X6, and their interaction 

are the most significant factors. 

 

Figure 4. Main Factors effect on flow time 
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Figure 5. Pareto Chart for Factors Effects 

Table 9. ANNOVA Table for Response Surface Analysis 

Source DF Adj SS Adj MS F-Value P-Value 

Model 21 164253221 7821582 19.48 0.000 

  Linear 6 147088137 24514690 61.04 0.000 

    X1 1 6706550 6706550 16.70 0.002 

    X2 1 22203 22203 0.06 0.819 

    X3 1 435776 435776 1.09 0.322 

    X4 1 790320 790320 1.97 0.191 

    X5 1 2196105 2196105 5.47 0.041 

    X6 1 136937183 136937183 340.96 0.000 

  2-Way Interaction 15 17165084 1144339 2.85 0.050 

    X1*X2 1 28747 28747 0.07 0.794 

    X1*X3 1 432762 432762 1.08 0.324 

    X1*X4 1 284658 284658 0.71 0.420 
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    X1*X5 1 78719 78719 

 

 

 

0.20 0.667 

    X1*X6 1 11755310 11755310 29.27 0.000 

    X2*X3 1 240603 240603 0.60 0.457 

    X2*X4 1 154087 154087 0.38 0.549 

    X2*X5 1 41274 41274 0.10 0.755 

    X2*X6 1 599195 599195 1.49 0.250 

    X3*X4 1 1100119 1100119 2.74 0.129 

    X3*X5 1 1402503 1402503 3.49 0.091 

    X3*X6 1 94067 94067 0.23 0.639 

    X4*X5 1 659434 659434 1.64 0.229 

    X4*X6 1 41766 41766 0.10 0.754 

    X5*X6 1 251841 251841 0.63 0.447 

Error 10 4016204 401620       

Total 31 168269426          
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Figure 6. Pareto Chart for Factors Interaction 

 

Figure 7. Factors Interaction Effect 

Table 10. R- sq for fractional factorial design 

S R-sq R-sq(adj) PRESS R-sq(pred) 

920.463 87.41% 84.39% 34703423 79.38% 

Table 11. R-sq for response surface analysis 

S R-sq R-sq(adj) R-sq(pred) 

633.735 97.61% 92.60% 75.56% 
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Appendix C. Some Results from the Second Case Simulation Model  

Table 12. Queues waiting time in the electroplating production line 

Waiting Time Average Half Width Minimum 

Value 

Maximum 

Value 

Acid Cleaning 

Queue 

3.7984 (Insufficient) 0.00 7.5888 

Activation 

Queue  

0.00 (Insufficient) 0.00 0.00 

Bright Chrome 

Plating Queue 

2.7418 (Insufficient) 0.00 5.4833 

Bright Nickel-

Plating Queue  

0.00 (Insufficient) 0.00 0.00 

Drying Queue 0.00 (Insufficient) 0.00 0.00 

Electrical 

Plating Queue  

0.00 (Insufficient) 0.00 0.00 

Etching Queue 1.1772 (Insufficient) 0.00 2.3691 

Evacuating and 

Packing Queue 

0.05833333 (Insufficient) 0.00 0.1167 

Grouping 

Queue 

0.00099800 0.000015857 0.00 0.01666667 

Neutralization 

Queue 

0.00000000 (Insufficient) 0.00 0.00000000 

Pre-Dipping 

Queue 

0.1055 (Insufficient) 0.00 0.2103 

Precipitation 

Queue  

0.00475913 (Insufficient) 0.00 0.04014431 

Washing 1.1 

Queue  

0.00 (Insufficient) 0.00 0.00 

Washing 1.10 

Queue 

0.00 (Insufficient) 0.00 0.00 

Washing 1.11 

Queue  

0.00 (Insufficient) 0.00 0.00 

Washing 1.12 

Queue  

0.00 (Insufficient) 0.00 0.00 

Washing 1.2 

Queue  

0.00 (Insufficient) 0.00 0.00 

Washing 1.3 

Queue 

0.00 (Insufficient) 0.00 0.00 

Washing 1.4 

Queue 

0.00 (Insufficient) 0.00 0.00 

Washing 1.5 

Queue 

0.00 (Insufficient) 0.00 0.00 
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Washing 1.6 

Queue 

0.00 (Insufficient) 0.00 0.00 

Washing 1.7 

Queue 

0.07306787 (Insufficient) 0.00 0.1942 

Washing 1.8 

Queue 

0.00 (Insufficient) 0.00 0.00 

Washing 1.9 

Queue 

0.00 (Insufficient) 0.00 0.00 

 

 

 

Figure 8. Second Case Diagnostic Simulation Model 


