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ABSTRACT

Agriculture, being a labor-intensive sector, plays a
crucial role in ensuring food security. Scientific
advancements have rapidly influenced various fields,
including agriculture, with significant impacts on genetics,
plant science, environmental studies, climate research,
land management, machinery, technology, and remote
sensing. These advancements have resulted in improved
resource management, leading to a reduction in food crises
and famines. The focus of the study was on utilizing
satellites images to monitor changes in vegetative growth
grapevines, specifically using Sentinel-1 and Satellites-2.
The study confirmed the effectiveness of these satellites
data in accurately monitoring leaf changes by analyzing
the VH and VV bands of Sentinel-1, as well as the NDVI
bands 8-4, 5-6, 5-7, and 5-8a of Sentinel-2. The
relationships between these bands and leaf changes showed
B significant values of 0.72, 0.42, 0.51, 0.51, and 0.52,
respectively. However, lower accuracy was observed for
chlorophyll. These findings highlight the high precision of
satellites in monitoring changes in vegetative growth of
grapevines and underscore the importance of developing
improved techniques for monitoring and analyzing
chlorophyll. That leads in future, to apply pressing
Agriculture.

Keywords: Aswan; Satellite remote sensing; Sentinel-
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INTRODUCTION

Grapes, Vitis vinifera belongs to Vitaceae family,
(Revilla et al, 2018) isthe second most
important fruit crop in Egypt. The total cultivated area
according to the statistics of the ministry of agriculture
and land reclamation in 2021 is 210632.73 feddan,
productivity is 1,435,000 tons (F.A.O, 2021). Remote
sensing has different applications in many fields as
oceans, environment, climate and agriculture (Clay &
Shanahan, 2011 and Levy et al., 2018). Remote sensing
technology is one of the technologies that have been
developed rapidly in recent years, especially in
agricultural applications (Badr et al., 2015). It is a low
cost tool with high temporal and spatial accuracy
(Ledderhof et al., 2017). The nations are racing to
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provide this technology for optimal management of
resources (Zude-Sasse et al., 2016). Remote sensing is
one of the most important free systems available
(Drusch et al., 2012 and Roy et al., 2014). With the
advent of applications in agricultural science, the
emergence of this science depends on the availability of
information in the management of the farm (Bonilla et
al.,, 2014 and Ozdemir et al., 2017). The greater the
amount of information available, the better management
of agriculture can be achieved in terms of providing
moisture, fertilization and appropriate care for each
plant and area according to the information, to minimize
costs and optimize the management of the resources
(Abdel-Rahman et al., 2008 and Addabbo et al., 2016).
Remote sensing used widely in precision agriculture
(Das et al., 2018). It reduces cost facilitates
management and can predict potential problems and
provides information and can analyses these information
easily. There are many studies had been conducted on
using of remote sensing for farm management in
grapes, apples, olives, coffee, almonds, citrus, wheat
and maize (Revilla et al., 2018; Velazquez-Marti &
Cazco-Logrofio, 2018; Xiao et al., 2018 and Rabia et
al., 2021). These studies include evaluated fertilization,
nutritional status, spread of diseases and agricultural
climate (Johnson et al., 2001; Zude-Sasse et al., 2016;
Alvino & Marino, 2017; Bukata et al., 2018; Das et al.,
2018 and Hall, 2018). This gives a comparative
advantage to farmers by  marketing their
products at affordable prices. One of the main problems
facing farmers is variability in the growth of grape vines
which affects production. The technique of remote
sensing is used for the rapid, precise and early detection
of these differences within the field (Clay & Shanahan,
2011; Tarara et al.,, 2013 and Vanino et al., 2015).
These studying enable farmers to intervene
rapidly to solve the minute problem. By wise control of
fertilizer and pesticides and reduction of environmental
pollution (Bonilla et al., 2014; Immitzer et al., 2016 and
Ozdemir et al., 2017). The aim of this study is to
explore the use of satellite remote sensing for estimating
and mapping vineyards variability.
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MATERIALS AND METHODS
Study Area

The Flame seedless grapevines grafted of Freedom
rootstocks were planted in a private vineyard in the
Bllana Village of Aswan. Location (24.36607 degrees
north, 32.987283 degrees west) (Right down 24.36375
latitude and 32.97561 longitude) during the 2019 and
2020 growing seasons (Figure 1). At the beginning of
this trial, the vines were three years old and were spaced
1.0 meters (between vine) and 1.5 meters (between
rows). Drip irrigation was employed along with
fertigation, which involved injecting compound
fertilizer NPK into the system in accordance with the
irrigation guidelines provided by the Ministry of
Agriculture.

Vegetation measurements
Number of leaves

Counting number of leaves per vine selected by a
random selection of vines in the location

Total chlorophyll

Total chlorophyll content was measured by using a
Minolta SPAD chlorophyll meter (model spadso2 plus)
the total chlorophyll content (SPAD) of fresh leaves was
measured in accordance with the procedure stated by
SuR et al. (2015).

Remote sensing measurements

Data Processing Software Idrisi Tools from Google
Earth Engine are needed to track, measure, examine,
assess, and simulate Earth observation data. In 2005,
Google formally debuted Google Earth (GE) as a
"geobrowser,” and in 2010, Google Earth Engine
(GEE), a cloud computing platform (Gorelick et al.,
2017). Sentinel-2 multi-spectral bands (MSI) with 13

spectral bands (Gomarasca et al., 2019) and Sentinel
radar imaging (Bousbih et al., 2017) a European Space
Agency (ESA) satellites.

Vegetation Indices: Red edge normalized difference
vegetation index (NDVI)

NDVI, or normalized difference vegetation index,
is a measure of vegetation. Vegetation indices (VI) are
useful for boosting vegetation-related signals and
attenuating unwanted sounds. The NDVI, which is well-
known and frequently used, is a straightforward
(Gomarasca et al., 2019) but the efficient indicator for
measuring is a green vegetation.

It correlates chlorophyll absorption in red
wavelengths with near-infrared leaf scattering in green
leaves (BXAK4 et al., 2019 and Liu et al., 2022) this
identical as following.

(1)NDVI (8-4) = (B8-B4)/ (B8+B4)

B8 and B4 are the satellite spectral bands for VNIR
and Red wavelengths, respectively (Table 1)

Satellite Sentinel-2 can be used to calculate the
normalized difference vegetation index (NDVI), which
is a commonly used indicator of plant health Table (1).
The red edge band in Sentinel-2 data can be particularly
useful for NDVI calculations as it captures the subtle
differences in plant reflectance in the red edge spectral
region. This makes it possible to more accurately
estimate vegetation density and chlorophyll content,
which are important factors in assessing plant health.

The farm has been divided on NDVI maps into 4
blocks. Each block consists of three replicates with a
total of 12 Location. Data were collected over a period
of 2 years. Table (2) (Figure 2 and 3).

prososing

Figure 1. Maps of the study area (A-B-C) from Landsat 8, Landsat 8 pansharpening and Santinal -2,
respectively
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Table 1. The Spectral Bands and Resolutions of Sentinel-2 msi sensor

Band Resolution Central Wavelength Description
Bl 60 m 443 nm Ultra Blue (Coastal and Aerosol)
B2 10m 490 nm Blue
B3 10m 560 nm Green
B4 10m 665 nm Red
B5 20m 705 nm Visible and Near Infrared (VNIR)
B6 20m 740 nm Visible and Near Infrared (VNIR)
B7 20m 783 nm Visible and Near Infrared (VNIR)
B8 10m 842 nm Visible and Near Infrared (VNIR)
B8a 20m 865 nm Visible and Near Infrared (VNIR)
B9 60 m 940 nm Short Wave Infrared (SWIR)
B10 60 m 1375 nm Short Wave Infrared (SWIR)
B11 20m 1610 nm Short Wave Infrared (SWIR)
B12 20m 2190 nm Short Wave Infrared (SWIR)

Types of used NDV1 red edges (Tablel):

(2) NDVI red edge (5-6) = (B5-B6)/ (B5+B6)
(3) NDVI red edge (5-7) = (B5-B7)/ (B5+B7)
(4) NDVI red edge (5-8a) = (B5-B8a)/ (B5+B8a)

A B € D
Figure 2. (A and B) displays a false color image (238-284) and (C and D) presents the NDVI (4-8) and True
color image derived from Sentinel-2 imagery. Upon analyzing the Figure, noticeable variations can be
observed between the regions in the NDVI image when compared to the other images

Block 4

Figure 3. Represents the study's twelve location treatments based on vegetation indices, specifically NDVI
(Normalized Difference Vegetation Index)
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Table 2. Location treatments based on vegetation indices (NDVI)

Location
BLOTID Longitude Latitude

1 Al 32.97350886 24.36505465
Blockl 2 A2 32.97343046 24.36509542

3 A3 32.973451 24.365239

4 B1 32.9744795 24.3653563
Block2 5 B2 32.97431 24.365667

6 B3 32.974326 24.365929

7 C1 32.97472654 24.3643864
Block3 8 C2 32.974608 24.36429

9 C3 32.9745735 24.36422568

10 D1 32.97436405 24.36391952
Block4 11 D2 32.9741869 24.36387705

12 D3 32.973989 24.363969

The Sentinel-2A Multispectral Instrument

Images from the Sentinel-2A  Multispectral
Instrument of the European Space Agency (ESA) were
used in the analysis. Every five days, the Sentinel-2A
satellite gathers data from the earth. The GEE platform
specifies a dataset availability window for 03/28/2019
to 09/22/2020, Table (3), The time periods 07/27/2020-
08/12/2020 and 07/27/2021- 08/12/2021  were
considered in the analysis. The table below provides
specifics regarding the satellite image's band and
resolution.

Table 3. Displays the dates when Sentinel-2 satellite
images were utilized in the experiment

Table 4. Satellite images per seasons rang from the
spring and the summer

1 the spring 20/3/2019- 21/6/2019
2 the summer 21/6/2019-22/9/2019
3 the spring 20/3/2020-21/6/2020
4 the summer 21/6/2020-22/9/2020

2019 2020
1 11/4/2019 15/4/2020
2 16/5/2019 15/5/2020
3 10/6/2019 14/6/2020
4 15/7/2019 14/7/2020
5 14/8/2019 13/8/2020
6 13/9/2019 17/9/2020

Season average:
determine the different growth stages of a vineyard, per-
pixel season average were used Table (4).

Statistical Analysis.

Python, Google Colab (Canesche et al., 2021), and
Wekeo (Zhongming et al., 2021) were utilized to gather
proof. Satellite data from Sentinel-1 and Sentinel-2 were
obtained and combined with actual data. Excel was
employed to process directory data. The relationship
between variables was examined through regression
analysis. Regression analysis is a statistical tool used to
investigate the relationships between variables, aiming
to determine the causal effect of one variable on
another. To compare means, the Tukey mean
comparison analysis was performed using R.

Results and Discussion
Vegetation measurements
Number of leaves
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Figure 4. (A and B) presents the results of the analysis of variance (ANOVA) and Tukey's multiple comparison
test for the number of leaves per vine in 2019 and 2020. The statistical significance was determined at a level of

p <0.05

Figure 5. (A, B, C, and D) showcases the images of vineyard vegetation in four different blocks captured in 2019

At the Figure (4 and 5) first season, there are
differences in the number of leaves per vine in plants
between each block. It unclouded in the second season
as well. The highest value in the first season and the
second season, respectively was block 1, (136 and 304),
and the lowest value was block 2 in the first and second
seasons (99 and 134). There is a significant
improvement from the second season to the first in the

number of grape leaves. ANOVA, Tukey's multiple
comparison test (significant p< 0.05) of it is evident that
there are significant differences between the blocks
where the highest value was sector block 4 and the
lowest was block 2. In the second season, sector block 1
was the highest. But it was the lowest in the first season.
The second season was greater than the first, at the
Figure (4). The study elucidated that the variation in
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forage growth and leaf count is attributed to
environmental factors, including the specific growth
conditions and soil fertility. These factors result in year-
to-year, seasonal, and geographical variations, even
when considering the same stage of maturity. Moreover,
it was observed that higher temperatures tend to
accelerate plant development while reducing leaf-to-
stem ratios (Buxton, 1996).

Total chlorophyll

In Figure (6) of the first season and second seasons
ANOVA, Tukey’s multiple comparison test (significant
p< 0.05) of total chlorophyll in the first season had clear
significant differences. The highest value was block 4 as
the number of grapevine leaves, while the lowest was
block 2. This is proportional to the number of leaves per
vine in the first season. While in the second season,
there weren't significant differences. The measurement

b
Tukey

a
| B
®

Total chloraphyl -1

1 2 3 4
Blocks

of chlorophyll levels can vary among different plants
and is influenced by various factors. Some studies
suggested that this variation may be attributed to
deficiencies in certain elements, while others associate it
with the presence of diseases (Shibaeva et al., 2020).
There are also indications that both factors could
potentially play a role (Mishra et al., 2017).
Additionally, research suggests that environmental
conditions, such as sunlight exposure, can impact
chlorophyll levels (Mufioz-Huerta et al., 2013).
Furthermore, studies have explored the use of remote
sensing techniques to assess the nitrogen status in
plants, which can provide valuable information related
to chlorophyll content (Mufioz-Huerta et al., 2013).
Remote sensing measurements

Normalized difference vegetation index (NDVI) (4-
8)

Tukey

Total chlorophyll -2

Blocks

Figure 6. (A and B) demonstrates the analysis of variance (ANOVA) and Tukey's multiple comparison test for total
chlorophyll levels in 2019 and 2020. The significance level was set at p < 0.05
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Figure 7. Consists of four images. In Figure 7 (A and B), the ANOVA and Tukey's multiple comparison test
results for the NDVI (Normalized Difference Vegetation Index) at four different blocks are depicted. The
significance level was set at p < 0.05, indicating statistically significant differences in the NDVI values among
the blocks. (C and D), the NDVI images of the same area captured in 2019 and 2020 are shown. These images

visually represent the distribution and intensity of vegetation based on the NDVI values for the respective
years

In the first and second seasons, as shown in Figure, changes over large areas when using modern farming
(7), it can be observed that ANOVA, Tukey's multiple methods and farmers with a high degree of technology
comparison test (significant p< 0.05) of NDVI (4-8).  (Perez-Flores etal., 2019).
There are no significant differences between the N ormalized difference vegetation index red edge
different regions for the first and second seasons. The (NDVI) red edge (5-6)
studies concluded that NDVI is effective in monitoring
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Figure 8. (A and B) illustrates the ANOVA, Tukey’s multiple comparison test (significant p< 0.05) of NDVI (5-6) at 4 blocks

and (C and D) (NDVI image in same area at 2019 and 2020

Figure (8), provides a visual representation of
results from the first and second seasons ANOVA,
Tukey’s multiple comparison test clarify that there are
no significant differences between the different regions
in the first season. While, in the second season, the
difference appears in a form between block 1 and the
rest of the others regions. Multi-Spectral Instrument
(MSI) has been found to be more sensitive to NDVI red
edge (5-6) in monitoring changes in plants than NDVI
(4-8), despite the differences in spatial resolution.
Studies utilizing NDVI measurements play a crucial
role in monitoring changes in vegetation health and
identifying areas of potential concern, such as drought,

disease outbreaks, or invasive species infestations
(Vélez et al., 2020). NDVI provides valuable insights
into the owverall health and condition of vegetation
cover. However, in the specific study mentioned
(Cogato et al., 2019), the effectiveness of NDVI was
found to be weak, which could be attributed to the
limited size of the study area (Cogato et al., 2019). It is
important to note that while this particular study may
have reported weak efficiency of NDVI for monitoring
vegetation health.

Normalized difference vegetation index red edge
(NDVI) (5-7) and (5-8a)
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Figure 9. (A and B) NDVI image in same area at2019 and 2020 and (C and D) illustrates the ANOVA, Tukey’s
multiple comparison test (significant p< 0.05) of NDVI (5-7) at 4 blocks

Observing Figure. (9 and 10) in relation to the first
and second seasons ANOVA, Tukey's multiple
comparison test, there are no significant differences
between the different regions of the first season. In the
second season, the difference appears in a form between
block 1 and the rest of the regions normalized difference
vegetation index red edge (NDVI) (5-8a) and (NDVI)
(5-7) .It also represents that, no significant differences
between the different regions of the first season. In the

second season, the difference appears in a form between
block 1 and the rest of the others blocks. Multi-Spectral
Instrument (MSI) has been found to be more sensitive to
NDVI red edge in monitoring changes in plants than
NDVI (4-8), despite the differences in spatial resolution.
The results demonstrated that the red-edge band indices
outperformed the broadband indices, (Imran et al.,
2020).
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Figure 10. (A and B) NDVI image in same area at 2019 and 2020 and (C and D) illustrates the ANOVA,
Tukey’s multiple comparison test (significant p< 0.05) of NDVI (5-8a) at 4 blocks

VV band Sentinel-1

The graphical illustration in Figure (11) visually
captures the unique aspects and variations of the first
and second seasons show that. ANOVA, Tukey’s
multiple comparison test (significant p<0.05) of There
are no significant differences between the different
regions of the first season. In the second season, the
difference appears in a form between block 1 and the
rest of the others blocks. Sentinel-1 (VV) and Multi-
Spectral Instrument (MSI) has been found to be more
sensitive to NDVI red edge in monitoring changes in

plants than NDVI (4-8), despite the differences in
spatial resolution. The radar satellite Sentinel-1 showed
similar sensitivity in detecting changes compared to the
observations obtained from the red edge of NDVI,
although there was an inverse relationship. This
highlights the importance of Sentinel-1, as it provides
high spatial accuracy and the ability to capture data
even in the presence of cloud cover. Furthermore, it is
worth noting that the capabilities of NDVI (bands 4-8)
were found to be at their minimum in this context
(Vreugdenhil et al., 2018).
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Figure. 11. (A and B) (VV image in same area at 2019 and 2020 and (C and D) illustrates the ANOVA, Tukey’s
multiple comparison test (significant p< 0.05) of VV at 4 blocks

Numerous studies have investigated the accuracy of
using radar data from the Sentinel-1 satellite for
assessing vegetative growth. For example (Vreugdenhil
et al., 2018) significant amount of the variability with
87% for corn and 63% for winter cereals, indicating the
potential of Sentinel-1 data for estimating vegetative
growth, (\VVreugdenhil et al., 2018).

The graphical illustration in Figure (11) visually
captures the unique aspects and variations of the first
and second seasons show that. ANOVA, Tukey's
multiple comparison test (significant p<0.05) of There
are no significant differences between the different
regions of the first season. In the second season, the
difference appears in a form between block 1 and the
rest of the others blocks. Sentinel-1 (VV) and Multi-
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Spectral Instrument (MSI) has been found to be more
sensitive to NDVI red edge in monitoring changes in
plants than NDVI (4-8), despite the differences in
spatial resolution. The radar satellite Sentinel-1 showed
similar sensitivity in detecting changes compared to the
observations obtained from the red edge of NDVI,
although there was an inverse relationship. This
highlights the importance of Sentinel-1, as it provides
high spatial accuracy and the ability to capture data
even in the presence of cloud cover. Furthermore, it is
worth noting that the capabilities of NDVI (bands 4-8)
were found to be at their minimum in this context
(Vreugdenhil et al., 2018). Numerous studies have
investigated the accuracy of using radar data from the
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Sentinel-1 satellite for assessing vegetative growth. For
example (Vreugdenhil et al., 2018) significant amount
of the variability with 87% for corn and 63% for winter
cereals, indicating the potential of Sentinel-1 data for
estimating vegetative growth, (Vreugdenhil et al.,
2018).

Regression analysis between field and satellite
measurements

Regression analysis relationship between number of
leaves in the first and the second seasons among
types of NDVI and VH band and VV band Sentinel-1
measured from satellite images.
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Figure 12. Simple linear regression relationship between Leaves number Season 1
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Figure 13.'Sim'ble linear regression relationship between Leaves number Season 2

Based on the analysis presented in Figures (12 and
13), the relationship between the number of leaves in
the first and second seasons can be observed in relation
to various vegetation indices and radar bands. In Figure
(12), the highest values were observed for NDVI (5-6),
(5-7), and (5-8a) during the first season, indicating
strong relationships (B* =0. 25, R* = 0.22, and R® =
0.16, respectively) between these indices and the
number of leaves. Figure (13) illustrates the simple
linear regression relationships between the number of
leaves in the second season and the VH and VV bands
of Sentinel-1, as well as the NDVI bands 8-4, 5-6, 5-7,
and 5-8a of Sentinel-2. The R- values for these
relationships were 0.72, 0.42, 0.51, 0.51, and 0.52,
respectively. This indicates higher relationships between
the number of leaves and these variables during the

second season. The VH band had the highest
correlation. NDVI (4-8) had a lower sensitivity and
strength compared to the other sensors, possibly due to
the influence of a higher number of leaves in the second
season and the specific characteristics of the area.
Furthermore, the regression analysis indicates that the
values of NDVI (5-6), NDVI (5-7), and NDVI (5-8a)
from Sentinel-2, as well as the VH and V'V bands from
Sentinel-1, have higher regression relationships
compared to NDVI (8-4). This implies that these
variables provide better predictive power for
understanding the relationship between the number of
leaves and the seasons, as depicted in Figures (12 and
13). The accuracy improved in the second season as
compared to the first season, possibly due to an increase
in the number of vine leaves. The relationships between
the data, whether obtained through radar or
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multispectral means, were also more apparent in the
second season. Research studies have shown that while
the radar satellite Sentinel-1 has low sensitivity in
monitoring changes, it can still support the findings
presented in the research. For example, essential for
regional crop monitoring and accurate management rice
(Yang et al., 2021). Sentinel-1 has gained extensive
usage in monitoring crop meteorological disasters and
assessing losses, specifically for detecting frost damage
in grapes (Li et al., 2021), and drought monitoring
(Mendes et al., 2021). The widespread utilization of
Sentinel-1 radar data highlights its potential in detecting
changes and monitoring various fields. Supporting
decision-making processes in diverse domains. There
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are no significant differences between the different
regions of the first season. In the second season, the
difference appears in a form between regions A and the
rest of the others regions.

Regression analysis relationship between total
chlorophyll in the first and the second seasons among
types of NDVI and VH band and VV band Sentinel-1
measured from satellite images.

In Figure (14), the highest £ value of 0.15 was
observed for NDVI (4-8), indicating a strong
relationship with chlorophyll and other variables during
the first season
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Figure 14. Simple linear regression relationship between Total chlorophyll Season 2



ALEXANDRIA SCIENCE EXCHANGE JOURNAL, VOL. 44, No.3 JULY - SEPTEMBER 2023 297

VH band SENTINEL 1
Ri=D22

w  Rarickedais
"

: oy

y= = 154K, = 57,97

NDVI band 8-4 SENTINEL 2

R*=0.00

¥ =1.60x — 2887 »

L]

NDVI band 5-7 SENTINEL 2

BT = 0,04

¥ =30.68x, —23.26

L]

VV band SENTINEL 1

RI=0.23
— R T O

®  SamzEdes

= =2.08x) = 55.50

w

NDVI band 5-6 SENTINEL 2

R*=0,04

¥o=36.23x; — 24,54

NDVI band 5-8a SENTINEL 2

RI=0.03

sy =2521K = 23,15

[

Figure 15. Sifnple linear regression relationship between total chlorophyll Season 1

Figure (15) depicts the relationship between
chlorophyll and various variables. During the second
season, VH and VV had R? values of 0.22 and 0.23,
respectively, which were the highest values. In the first
season, VV exhibited the highest value. Figure (14)
shows the simple linear regression relationship between
total chlorophyll in the second season and NDVI band
5-8a from Sentinel-2, along with the VH and VV bands
from Sentinel-1, NDVI band 8-4, NDVI band 5-6,
NDVI band 5-7 from sentinel 2, and NDVI band 5-8a.
Figure (15) demonstrates the results of regression
analysis, indicating that the VH and VV bands from
Sentinel-1 have the highest values among the other
variables. The study revealed that a higher number of
plant leaves corresponded to a stronger relationship,
which was observed in both the first and second
seasons. Furthermore, the study suggested that NDVI

(5-6) had higher accuracy but lower resolution
compared to NDVI (4-8), likely due to differences in the
wavelengths used. However, regarding chlorophyll, the
results were inconclusive in both seasons, possibly due
to the lack of discernible differences, despite previous
studies confirming the existence of a relationship. The
results for chlorophyll were inconclusive in both
seasons, which could be attributed to the lack of
differences observed. This is despite previous studies
confirming the relationship between chlorophyll and
vine health. Studies have investigated the relationship
between remote sensing and chlorophyll using satellite
data. For example, (Zhen et al., 2021) developed a
chlorophyll content retrieval model using remote
sensing data from the Sentinel-2 satellite in mangrove
forests. The value of the Sentinel-2 can support more
sustainable wheat crop management practices (Revill et
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al., 2019). The application of artificial intelligence in
agriculture through remote sensing offers promising
opportunities. Integrating crop simulation models with
remote sensing has already shown its value in providing
insights into crop development and projected
productivity. Additionally, satellite remote sensing has
proven to be an effective tool for monitoring
chlorophyll content in wvegetation, which further
enhances the capabilities of remote sensing in
agricultural applications (Hatfield et al., 2019). This
study introduces a wheat modeling approach that
utilizes Sentinel-2 data to estimate and predict wheat
yield. The developed model versions demonstrate their
effectiveness in accurately predicting wheat vyield.
Specifically designed for durum wheat, this vyield
prediction model holds significant potential as a
valuable tool for stakeholders involved in the wheat
industry, including dealers, traders, and pasta food
companies (Li et al., 2019). The studies have reached
the conclusion that VV (Vertical Vertical) and VH
(Vertical Horizontal) polarizations, along with NDVI
red edge (5-6), are more effective in monitoring changes
in plants compared to NDV1 (4-8).

In conclusion, the study demonstrated the effectiveness
of using satellite data to accurately monitor leaf changes
in grapevines. By analyzing specific bands such as VH
and VV in Sentinel-1 and NDVI bands 8-4, 5-6, 5-7,
and 5-8a in Sentinel-2, the researchers established
significant relationships with leaf changes, as indicated
by the R*values of 0.72, 0.42, 0.51, 0.51, and 0.52,
respectively. However, when assessing chlorophyll
levels, the accuracy was comparatively lower. These
findings emphasize the high precision of satellite
technology in  monitoring vegetative growth in
grapevines and underscore the importance of further
developing techniques to improve the monitoring and
analysis of chlorophyll levels. By addressing this
limitation, future applications of pressing agriculture
can be enhanced, leading to more efficient and targeted
grape cultivation practices.
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