SUBCLASS OF UNIFORMLY CONVEX FUNCTIONS WITH NEGATIVE COEFFICIENTS DEFINED BY LINEAR FRACTIONAL DIFFERENTIAL OPERATOR

AKANKSHA S. SHINDE, RAJKUMAR N. INGLE, P. THIRUPATHI REDDY AND B. VENKATESWARLU

Abstract

In this paper, we introduce a new subclass of uniformly convex functions with negative coefficients defined by linear fractional differential operator. We obtain the coefficient bounds, growth distortion properties, extreme points and radii of close-to-convexity, starlikeness and convexity for functions belonging to the class $T S(v, \varrho, \mu, s, m)$. Furthermore, we obtained modified Hadamard product, convolution and integral operators for this class.

1. Introduction

Let A denote the class of all functions $u(z)$ of the form

$$
\begin{equation*}
u(z)=z+\sum_{\eta=2}^{\infty} a_{\eta} z^{\eta} \tag{1}
\end{equation*}
$$

in the open unit disc $E=\{z \in \mathbb{C}:|z|<1\}$. Let S be the subclass of A consisting of univalent functions and satisfy the following usual normalization condition $u(0)=$ $u^{\prime}(0)-1=0$. We denote by S the subclass of A consisting of functions $u(z)$ which are all univalent in E. A function $u \in A$ is a starlike function of the order $v, 0 \leq v<1$, if it satisfy

$$
\begin{equation*}
\Re\left\{\frac{z u^{\prime}(z)}{u(z)}\right\}>v,(z \in E) \tag{2}
\end{equation*}
$$

We denote this class with $S^{*}(v)$.
A function $u \in A$ is a convex function of the order $v, 0 \leq v<1$, if it satisfy

$$
\begin{equation*}
\Re\left\{1+\frac{z u^{\prime \prime}(z)}{u^{\prime}(z)}\right\}>v,(z \in E) \tag{3}
\end{equation*}
$$

We denote this class with $K(v)$.

[^0]Let T denote the class of functions analytic in E that are of the form

$$
\begin{equation*}
u(z)=z-\sum_{\eta=2}^{\infty} a_{\eta} z^{\eta}, \quad\left(a_{\eta} \geq 0, z \in E\right) \tag{4}
\end{equation*}
$$

and let $T^{*}(v)=T \cap S^{*}(v), C(v)=T \cap K(v)$. The class $T^{*}(v)$ and allied classes possess some interesting properties and have been extensively studied by Silverman [19] and others.

A function $u \in A$ is said to be in the class of uniformly convex functions of order γ and type ϱ, denoted by $U C V(\varrho, \gamma)$, if

$$
\begin{equation*}
\Re\left\{1+\frac{z u^{\prime \prime}(z)}{u^{\prime}(z)}-\gamma\right\}>\varrho\left|\frac{z u^{\prime \prime}(z)}{u^{\prime}(z)}\right| \tag{5}
\end{equation*}
$$

where $\varrho \geq 0, \gamma \in[-1,1)$ and $\varrho+\gamma \geq 0$ and it is said to be in the class corresponding class denoted by $S P(\varrho, \gamma)$, if

$$
\begin{equation*}
\Re\left\{\frac{z u^{\prime}(z)}{u(z)}-\gamma\right\}>\varrho\left|\frac{z u^{\prime}(z)}{u(z)}-1\right|, \tag{6}
\end{equation*}
$$

where $\varrho \geq 0, \gamma \in[-1,1)$ and $\varrho+\gamma \geq 0$. Indeed it follows from (5) and (6) that

$$
\begin{equation*}
u \in U C V(\gamma, \varrho) \Leftrightarrow z u^{\prime} \in S P(\gamma, \varrho) \tag{7}
\end{equation*}
$$

For $\varrho=0$, we get respectively, the classes $K(\gamma)$ and $S^{*}(\gamma)$. The function of the class $U C V(1,0) \equiv U C V$ are called uniformly convex functions, were introduced and studied by Goodman with geometric interpretation in [4]. The class $S P(1,0) \equiv S P$ is defined by Ronning [13]. The classes $U C V(1, \gamma) \equiv U C V(\gamma)$ and $S P(1, \gamma) \equiv$ $S P(\gamma)$ are investigated by Ronning in [12]. For $\gamma=0$, the classes $U C V(\varrho, 0) \equiv$ $\varrho-U C V$ and $S P(\varrho, 0) \equiv \varrho-S P$ are defined respectively, by Kanas and Wisniowska in $[8,9]$.

Further, Murugusundarmoorthy and Magesh [10], Santosh et al. [15], and Thirupathi Reddy and Venkateswarlu [21] have studied and investigated interesting properties for the classes $U C V(\varrho, \gamma)$ and $S P(\varrho, \gamma)$.

For $u \in A$ given by (1) and $g(z)$ given by

$$
\begin{equation*}
g(z)=z+\sum_{\eta=2}^{\infty} b_{\eta} z^{\eta} \tag{8}
\end{equation*}
$$

their convolution (or Hadamard product), denoted by $(u * g)$, is defined as

$$
\begin{equation*}
(u * g)(z)=z+\sum_{\eta=2}^{\infty} a_{\eta} b_{\eta} z^{\eta}=(g * u)(z), \quad(z \in E) \tag{9}
\end{equation*}
$$

Note that $u * g \in A$.
In [2], Al-Oboudi and Al-Amoudi, defined the linear fractional differential operator $\mathfrak{D}_{\mu, s}^{m}: A \rightarrow A$ as follows:

$$
\begin{align*}
\mathfrak{D}_{\mu, s}^{m} u(z) & =z+\sum_{\eta=2}^{\infty} \phi(\mu, s, m, \eta) a_{\eta} z^{\eta} \tag{10}\\
\text { where } \phi(\mu, s, m, \eta) & =\left[\frac{\Gamma(\eta+1) \Gamma(2-\mu)}{\Gamma(\eta+1-\mu)}(1+s(\eta-1))\right]^{m} \tag{11}
\end{align*}
$$

When $\mu=0$, we get Al-Oboudi differential operator [3], when $\mu=0$ and $s=1$, we get Salagean differential operator [14] and when $m=1$ and $s=0$, we get Owa-Srivastava fractional differential operator [11].

Now, by making use of the linear operator $\mathfrak{D}_{\mu, s}^{m} u$, we define a new subclass motivated by the researchers $[5,6,7,17,18]$.

Definition 1.1. For $-1 \leq v<1$ and $\varrho \geq 0$, we let $T S(v, \varrho, \mu, s, m)$ be the subclass of A consisting of functions of the form (4) and satisfying the analytic criterion

$$
\begin{equation*}
\Re\left\{\frac{z\left(\mathfrak{D}_{\mu, s}^{m} u(z)\right)^{\prime}}{\mathfrak{D}_{\mu, s}^{m} u(z)}-v\right\} \geq \varrho\left|\frac{z\left(\mathfrak{D}_{\mu, s}^{m} u(z)\right)^{\prime}}{\mathfrak{D}_{\mu, s}^{m} u(z)}-1\right|, \tag{12}
\end{equation*}
$$

for $z \in E$.
By suitably specializing the values of μ and s, the class $T S(v, \varrho, \mu, s, m)$ can be reduces to the class studied earlier by Ronning [12, 13]. The main object of the paper is to study some usual properties of the geometric function theory such as coefficient bounds, distortion properties, extreme points, radii of starlikness and convexity, Hardmard product and convolution and integral operators for the class.

2. Coefficient bounds

In this section we obtain a necessary and sufficient condition for function $u(z)$ is in the class $T S(v, \varrho, \mu, s, m)$.

We employ the technique adopted by Aqlan et al. [1] to find the coefficient estimates for our class.

Theorem 2.1. The function u defined by (4) is in the class $T S(v, \varrho, \mu, s, m)$ if

$$
\begin{equation*}
\sum_{\eta=2}^{\infty}[\eta(1+\varrho)-(v+\varrho)] \phi(\mu, s, m, \eta)\left|a_{\eta}\right| \leq 1-v \tag{13}
\end{equation*}
$$

where $-1 \leq v<1, \varrho \geq 0$. The result is sharp.
Proof. We have $u \in T S(v, \varrho, \mu, s, m)$ if and only if the condition (12) satisfied. Upon the fact that

$$
\Re(w)>\varrho|w-1|+v \Leftrightarrow \Re\left\{w\left(1+\varrho e^{i \theta}\right)-\varrho e^{i \theta}\right\}>v,-\pi \leq \theta \leq \pi
$$

Equation (12) may be written as

$$
\begin{align*}
& \Re\left\{\frac{z\left(\mathfrak{D}_{\mu, s}^{m} u(z)\right)^{\prime}}{\mathfrak{D}_{\mu, s}^{m} u(z)}\left(1+\varrho e^{i \theta}\right)-\varrho e^{i \theta}\right\} \\
= & \Re\left\{\frac{\left.z\left(\mathfrak{D}_{\mu, s}^{m} u(z)\right)^{\prime} 1+\varrho e^{i \theta}\right)-\varrho e^{i \theta} \mathfrak{D}_{\mu, s}^{m} u(z)}{\mathfrak{D}_{\mu, s}^{m} u(z)}\right\}>v . \tag{14}
\end{align*}
$$

Now, we let

$$
\begin{aligned}
& \left.A(z)=z\left(\mathfrak{D}_{\mu, s}^{m} u(z)\right)^{\prime} 1+\varrho e^{i \theta}\right)-\varrho e^{i \theta} \mathfrak{D}_{\mu, s}^{m} u(z) \\
& B(z)=\mathfrak{D}_{\mu, s}^{m} u(z)
\end{aligned}
$$

Then (14) is equivalent to

$$
|A(z)+(1-v) B(z)|>|A(z)-(1+v) B(z)|, \text { for } 0 \leq v<1
$$

For $A(z)$ and $B(z)$ as above, we have

$$
|A(z)+(1-v) B(z)| \geq(2-v)|z|-\sum_{\eta=2}^{\infty}[\eta+1-v+\varrho(\eta-1)] \phi(\mu, s, m, \eta)\left|a_{\eta}\right|\left|z^{\eta}\right|
$$

and similarly

$$
|A(z)-(1+v) B(z)| \leq v|z|-\sum_{\eta=2}^{\infty}[\eta-1-v+\varrho(\eta-1)] \phi(\mu, s, m, \eta)\left|a_{\eta}\right|\left|z^{\eta}\right|
$$

Therefore

$$
\begin{aligned}
&|A(z)+(1-v) B(z)|-|A(z)-(1+v) B(z)| \\
& \geq 2(1-v)-2 \sum_{\eta=2}^{\infty}[\eta-v+\varrho(\eta-1)] \phi(\mu, s, m, \eta)\left|a_{\eta}\right| \\
& \text { or } \sum_{\eta=2}^{\infty}[\eta-v+\varrho(\eta-1)] \phi(\mu, s, m, \eta)\left|a_{\eta}\right| \leq(1-v)
\end{aligned}
$$

which yields (13).
On the other hand, we must have

$$
\Re\left\{\frac{z\left(\mathfrak{D}_{\mu, s}^{m} u(z)\right)^{\prime}}{\mathfrak{D}_{\mu, s}^{m} u(z)}\left(1+\varrho e^{i \theta}\right)-\varrho e^{i \theta}\right\} \geq v
$$

Upon choosing the values of z on the positive real axis where $0=|z|=r<1$, the above inequality reduces to

$$
\Re\left\{\frac{(1-v) r-\sum_{\eta=2}^{\infty}\left[\eta-v+\varrho e^{i \theta}(\eta-1)\right] \phi(\mu, s, m, \eta)\left|a_{\eta}\right| r^{\eta}}{z-\sum_{\eta=2}^{\infty} \phi(\mu, s, m, \eta)\left|a_{\eta}\right| r^{\eta}}\right\} \geq 0
$$

Since $\Re\left(-e^{i \theta}\right) \geq-\left|e^{i \theta}\right|=-1$, the above inequality reduces to

$$
\Re\left\{\frac{(1-v) r-\sum_{\eta=2}^{\infty}[\eta-v+\varrho(\eta-1)] \phi(\mu, s, m, \eta)\left|a_{\eta}\right| r^{\eta}}{z-\sum_{\eta=2}^{\infty} \phi(\mu, s, m, \eta)\left|a_{\eta}\right| r^{\eta}}\right\} \geq 0
$$

Letting $r \rightarrow 1^{-}$, we get the desired result. Finally the result is sharp with the extremal function u given by

$$
\begin{equation*}
u(z)=z-\frac{1-v}{[\eta(1+\varrho)-(v+\varrho)] \phi(\mu, s, m, \eta)} z^{\eta} \tag{15}
\end{equation*}
$$

3. Growth and Distortion Theorems

Theorem 3.1. Let the function u defined by (4) be in the class $T S(v, \varrho, \mu, s, m)$. Then for $|z|=r$
$r-\frac{1-v}{(\eta+1)(2-v+\varrho) \phi(\mu, s, m, 2)} r^{2} \leq|u(z)| \leq r+\frac{1-v}{(\eta+1)(2-v+\varrho) \phi(\mu, s, m, 2)} r^{2}$.

Equality holds for the function

$$
\begin{equation*}
u(z)=z-\frac{1-v}{(\eta+1)(2-v+\varrho) \phi(\mu, s, m, 2)} z^{2} \tag{17}
\end{equation*}
$$

Proof. We only prove the right hand side inequality in (16), since the other inequality can be justified using similar arguments. In view of Theorem 2.1, we have

$$
\sum_{\eta=2}^{\infty}\left|a_{\eta}\right| \leq \frac{1-v}{(\eta+1)(2-v+\varrho) \phi(\mu, s, m, 2)}
$$

Since ,

$$
\begin{aligned}
u(z) & =z-\sum_{\eta=2}^{\infty} a_{\eta} z^{\eta} \\
|u(z)| & =\left|z-\sum_{\eta=2}^{\infty} a_{\eta} z^{\eta}\right| \\
& \leq r+\sum_{\eta=2}^{\infty}\left|a_{\eta}\right| r^{\eta} \\
& \leq r+r^{2} \sum_{\eta=2}^{\infty}\left|a_{\eta}\right| \\
& \leq r+\sum_{\eta=2}^{\infty} \frac{1-v}{(\eta+1)(2-v+\varrho) \phi(\mu, s, m, 2)} r^{2}
\end{aligned}
$$

which yields the right hand side inequality of (16).
Next, by using the same technique as in proof of Theorem 3.1, we give the distortion result.

Theorem 3.2. Let the function u defined by (4) be in the class $T S(v, \varrho, \mu, s, m)$.
Then for $|z|=r$
$1-\frac{2(1-v)}{(\eta+1)(2-v+\varrho) \phi(\mu, s, m, 2)} r \leq\left|u^{\prime}(z)\right| \leq 1+\frac{2(1-v)}{(\eta+1)(2-v+\varrho) \phi(\mu, s, m, 2)} r$.
Equality holds for the function given by (17).
Theorem 3.3. If $u \in T S(v, \varrho, \mu, s, m)$ then $u \in T S(\gamma)$, where

$$
\gamma=1-\frac{(\eta-1)(1-v)}{[\eta-v+\varrho(\eta-1)] \phi(\mu, s, m, \eta)-(1-v)} .
$$

Equality holds for the function given by (17).
Proof. It is sufficient to show that (13) implies

$$
\sum_{\eta=2}^{\infty}(\eta-\gamma)\left|a_{\eta}\right| \leq 1-\gamma,
$$

that is

$$
\frac{\eta-\gamma}{1-\gamma} \leq \frac{[\eta-v+\varrho(\eta-1)] \phi(\mu, s, m, \eta)}{(1-v)}
$$

then

$$
\gamma \leq 1-\frac{(\eta-1)(1-v)}{[\eta-v+\varrho(\eta-1)] \phi(\mu, s, m, \eta)-(1-v)}
$$

The above inequality holds true for $\eta \in \mathbb{N}_{0}, \eta \geq 2, \varrho \geq 0$ and $0 \leq v<1$.

4. Extreme points

Theorem 4.1. Let $u_{1}(z)=z$ and

$$
\begin{equation*}
u_{\eta}(z)=z-\frac{1-v}{[\eta(\varrho+1)-(v+\varrho)] \phi(\mu, s, m, \eta)} z^{\eta} \tag{18}
\end{equation*}
$$

for $\eta=2,3, \cdots$. Then $u(z) \in T S(v, \varrho, \mu, s, m)$ if and only if $u(z)$ can be expressed in the form $u(z)=\sum_{\eta=1}^{\infty} \zeta_{\eta} u_{\eta}(z)$, where $\zeta_{\eta} \geq 0$ and $\sum_{\eta=1}^{\infty} \zeta_{\eta}=1$.

Proof. Suppose $u(z)$ can be expressed as in (18). Then

$$
\begin{aligned}
u(z) & =\sum_{\eta=1}^{\infty} \zeta_{\eta} u_{\eta}(z)=\zeta_{1} u_{1}(z)+\sum_{\eta=2}^{\infty} \zeta_{\eta} u_{\eta}(z) \\
& =\zeta_{1} u_{1}(z)+\sum_{\eta=2}^{\infty} \zeta_{\eta}\left\{z-\frac{1-v}{[\eta(\varrho+1)-(v+\varrho)] \phi(\mu, s, m, \eta)} z^{\eta}\right\} \\
& =\zeta_{1} z+\sum_{\eta=2}^{\infty} \zeta_{\eta} z-\sum_{\eta=2}^{\infty} \zeta_{\eta}\left\{\frac{1-v}{[\eta(\varrho+1)-(v+\varrho)] \phi(\mu, s, m, \eta)} z^{\eta}\right\} \\
& =z-\sum_{\eta=2}^{\infty} \zeta_{\eta}\left\{\frac{1-v}{[\eta(\varrho+1)-(v+\varrho)] \phi(\mu, s, m, \eta)} z^{\eta}\right\}
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \sum_{\eta=2}^{\infty} \zeta_{\eta}\left(\frac{1-v}{[\eta(\varrho+1)-(v+\varrho)] \phi(\mu, s, m, \eta)}\right)\left(\frac{[\eta(\varrho+1)-(v+\varrho)] \phi(\mu, s, m, \eta)}{1-v}\right) \\
&= \sum_{\eta=2}^{\infty} \zeta_{\eta}= \\
& \sum_{\eta=1}^{\infty} \zeta_{\eta}-\zeta_{1}=1-\zeta_{1} \leq 1 .
\end{aligned}
$$

So, by Theorem 2.1, $u \in T S(v, \varrho, \mu, s, m)$.
Conversely, we suppose $u \in T S(v, \varrho, \mu, s, m)$. Since

$$
\left|a_{\eta}\right| \leq \frac{1-v}{[\eta(\varrho+1)-(v+\varrho)] \phi(\mu, s, m, \eta)}, \eta \geq 2
$$

We may set

$$
\zeta_{\eta}=\frac{[\eta(\varrho+1)-(v+\varrho)] \phi(\mu, s, m, \eta)}{1-v}\left|a_{\eta}\right|, \eta \geq 2
$$

and $\zeta_{1}=1-\sum_{\eta=2}^{\infty} \zeta_{\eta}$. Then

$$
\begin{aligned}
u(z) & =z-\sum_{\eta=2}^{\infty} a_{\eta} z^{\eta}=z-\sum_{\eta=2}^{\infty} \zeta_{\eta} \frac{1-v}{[\eta(\varrho+1)-(v+\varrho)] \phi(\mu, s, m, \eta)} z^{\eta} \\
& =z-\sum_{\eta=2}^{\infty} \zeta_{\eta}\left[z-u_{\eta}(z)\right]=z-\sum_{\eta=2}^{\infty} \zeta_{\eta} z+\sum_{\eta=2}^{\infty} \zeta_{\eta} u_{\eta}(z) \\
& =\zeta_{1} u_{1}(z)+\sum_{\eta=2}^{\infty} \zeta_{\eta} u_{\eta}(z)=\sum_{\eta=1}^{\infty} \zeta_{\eta} u_{\eta}(z) .
\end{aligned}
$$

Corollary 4.2. The extreme points of $\operatorname{TS}(v, \varrho, \mu, s, m)$ are the functions $u_{1}(z)=z$ and

$$
u_{\eta}(z)=z-\frac{1-v}{[\eta(\varrho+1)-(v+\varrho)] \phi(\mu, s, m, \eta)} z^{\eta}, \eta \geq 2
$$

5. Radil of Close-to-convexity, Starlikeness and Convexity

A function $u \in T S(v, \varrho, \mu, s, m)$ is said to be close-to-convex of order δ if it satisfies

$$
\Re\left\{u^{\prime}(z)\right\}>\delta,(0 \leq \delta<1 ; z \in E)
$$

Also A function $u \in T S(v, \varrho, \mu, s, m)$ is said to be starlike of order δ if it satisfies

$$
\Re\left\{\frac{z u^{\prime}(z)}{u(z)}\right\}>\delta, \quad(0 \leq \delta<1 ; \quad z \in E)
$$

Further a function $u \in T S(v, \varrho, \mu, s, m)$ is said to be convex of order δ if and only if $z u^{\prime}(z)$ is starlike of order δ that is if

$$
\Re\left\{1+\frac{z u^{\prime}(z)}{u(z)}\right\}>\delta,(0 \leq \delta<1 ; z \in E)
$$

Theorem 5.1. Let $u \in T S(v, \varrho, \mu, s, m)$. Then u is close-to-convex of order δ in $|z|<R_{1}$, where

$$
R_{1}=\inf _{k \geq 2}\left[\frac{(1-\delta)[\eta-v+\varrho(\eta-1)] \phi(\mu, s, m, \eta)}{\eta(1-v)}\right]^{\frac{1}{\eta-1}}
$$

The result is sharp with the extremal function u is given by (15).
Proof. It is sufficient to show that $\left|u^{\prime}(z)-1\right| \leq 1-\delta$, for $|z|<R_{1}$. We have

$$
\left|u^{\prime}(z)-1\right|=\left|-\sum_{\eta=2}^{\infty} \eta a_{\eta} z^{\eta-1}\right| \leq \sum_{\eta=2}^{\infty} \eta a_{\eta}|z|^{\eta-1}
$$

Thus $\left|u^{\prime}(z)-1\right| \leq 1-\delta$ if

$$
\begin{equation*}
\sum_{\eta=2}^{\infty} \frac{\eta}{1-\delta}\left|a_{\eta}\right||z|^{\eta-1} \leq 1 \tag{19}
\end{equation*}
$$

But Theorem 2.1 confirms that

$$
\begin{equation*}
\sum_{\eta=2}^{\infty} \frac{[\eta(\varrho+1)-(v+\varrho)] \phi(\mu, s, m, \eta)}{1-v}\left|a_{\eta}\right| \leq 1 \tag{20}
\end{equation*}
$$

Hence (19) will be true if

$$
\frac{\eta|z|^{\eta-1}}{1-\delta} \leq \frac{[\eta(\varrho+1)-(v+\varrho)] \phi(\mu, s, m, \eta)}{1-v} .
$$

We obtain

$$
|z| \leq\left[\frac{(1-\delta)[\eta-v+\varrho(\eta-1)] \phi(\mu, s, m, \eta)}{\eta(1-v)}\right]^{\frac{1}{\eta-1}}, \eta \geq 2
$$

as required.
Theorem 5.2. Let $u \in T S(v, \varrho, \mu, s, m)$. Then u is starlike of order δ in $|z|<R_{2}$, where

$$
R_{2}=\inf _{k \geq 2}\left[\frac{(1-\delta)[\eta-v+\varrho(\eta-1)] \phi(\mu, s, m, \eta)}{(\eta-\delta)(1-v)}\right]^{\frac{1}{\eta-1}}
$$

The result is sharp with the extremal function u is given by (15).
Proof. We must show that $\left|\frac{z u^{\prime}(z)}{u(z)}-1\right| \leq 1-\delta$, for $|z|<R_{2}$. We have

$$
\begin{align*}
\left|\frac{z u^{\prime}(z)}{u(z)}-1\right| & =\left|\frac{-\sum_{\eta=2}^{\infty}(\eta-1) a_{\eta} z^{\eta-1}}{1-\sum_{\eta=2}^{\infty} a_{\eta} z^{\eta-1}}\right| \\
& \leq \frac{\sum_{\eta=2}^{\infty}(\eta-1)\left|a_{\eta}\right||z|^{\eta-1}}{1-\sum_{\eta=2}^{\infty}\left|a_{\eta}\right||z|^{\eta-1}} \\
& \leq 1-\delta \tag{21}
\end{align*}
$$

Hence (21) holds true if

$$
\sum_{\eta=2}^{\infty}(\eta-1)\left|a_{\eta}\right||z|^{\eta-1} \leq(1-\delta)\left(1-\sum_{\eta=2}^{\infty}\left|a_{\eta}\right||z|^{\eta-1}\right)
$$

or equivalently,

$$
\begin{equation*}
\sum_{\eta=2}^{\infty} \frac{\eta-\delta}{1-\delta}\left|a_{\eta}\right||z|^{\eta-1} \leq 1 \tag{22}
\end{equation*}
$$

Hence, by using (20) and (22) will be true if

$$
\begin{gathered}
\frac{\eta-\delta}{1-\delta}|z|^{\eta-1} \leq \frac{[\eta(\varrho+1)-(v+\varrho)] \phi(\mu, s, m, \eta)}{1-v} \\
\Rightarrow|z| \leq\left[\frac{(1-\delta)[\eta-v+\varrho(\eta-1)] \phi(\mu, s, m, \eta)}{(\eta-\delta)(1-v)}\right]^{\frac{1}{\eta-1}}, \eta \geq 2
\end{gathered}
$$

which completes the proof.
By using the same technique in the proof of Theorem 5.2, we can show that $\left|\frac{z u^{\prime \prime}(z)}{u^{\prime}(z)}-1\right| \leq 1-\delta$, for $|z|<R_{3}$, with the aid of Theorem 2.1.

Thus we have the assertion of the following Theorem 5.3.

Theorem 5.3. Let $u \in T S(v, \varrho, \mu, s, m)$. Then u is convex of order δ in $|z|<R_{3}$, where

$$
R_{3}=\inf _{k \geq 2}\left[\frac{(1-\delta)[\eta-v+\varrho(\eta-1)] \phi(\mu, s, m, \eta)}{\eta(\eta-\delta)(1-v)}\right]^{\frac{1}{\eta-1}}
$$

The result is sharp with the extremal function u is given by (15).

6. Inclusion theorem involving modified Hadamard products

For functions

$$
\begin{equation*}
u_{j}(z)=z-\sum_{\eta=2}^{\infty}\left|a_{\eta, j}\right| z^{\eta}, j=1,2 \tag{23}
\end{equation*}
$$

in the class A, we define the modified Hadamard product $u_{1} * u_{2}(z)$ of $u_{1}(z)$ and $u_{2}(z)$ given by

$$
u_{1} * u_{2}(z)=z-\sum_{\eta=2}^{\infty}\left|a_{\eta, 1}\right|\left|a_{\eta, 2}\right| z^{\eta}
$$

We can prove the following.
Theorem 6.1. Let the function $u_{j}, j=1,2$, given by (23) be in the class $T S(v, \varrho, \mu, s, m)$ respectively. Then $u_{1} * u_{2}(z) \in T S(v, \varrho, \mu, s, m, \xi)$, where

$$
\xi=1-\frac{(1-v)^{2}}{(\eta+1)(2-v)(2-v+\varrho)(1+\lambda)-(1-v)^{2}}
$$

Proof. Employing the technique used earlier by Schild and Silverman [16], we need to find the largest ξ such that

$$
\sum_{\eta=2}^{\infty} \frac{[\eta-\xi+\varrho(\eta-1)] \phi(\mu, s, m, \eta)}{1-\xi}\left|a_{\eta, 1}\right|\left|a_{\eta, 2}\right| \leq 1
$$

Since $u_{j} \in T S(v, \varrho, \mu, s, m), j=1,2$ then we have

$$
\begin{aligned}
& \quad \sum_{\eta=2}^{\infty} \frac{[\eta-v+\varrho(\eta-1)] \phi(\mu, s, m, \eta)}{1-v}\left|a_{\eta, 1}\right| \leq 1 \\
& \text { and } \sum_{\eta=2}^{\infty} \frac{[\eta-v+\varrho(\eta-1)] \phi(\mu, s, m, \eta)}{1-v}\left|a_{\eta, 2}\right| \leq 1
\end{aligned}
$$

by the Cauchy-Schwartz inequality, we have

$$
\sum_{\eta=2}^{\infty} \frac{[\eta-v+\varrho(\eta-1)] \phi(\mu, s, m, \eta)}{1-v} \sqrt{\left|a_{\eta, 1}\right|\left|a_{\eta, 2}\right|} \leq 1
$$

Thus it is sufficient to show that

$$
\begin{aligned}
& \frac{[\eta-\xi+\varrho(\eta-1)] \phi(\mu, s, m, \eta)}{1-\xi}\left|a_{\eta, 1}\right|\left|a_{\eta, 2}\right| \\
\leq & \frac{[\eta-v+\varrho(\eta-1)] \phi(\mu, s, m, \eta)}{1-v} \sqrt{\left|a_{\eta, 1}\right|\left|a_{\eta, 2}\right|}, \eta \geq 2
\end{aligned}
$$

that is

$$
\sqrt{\left|a_{\eta, 1}\right|\left|a_{\eta, 2}\right|} \leq \frac{(1-\xi)[\eta-v+\varrho(\eta-1)]}{1-v)[\eta-\xi+\varrho(\eta-1)]}
$$

Note that

$$
\sqrt{\left|a_{\eta, 1}\right|\left|a_{\eta, 2}\right|} \leq \frac{(1-v)}{[\eta-v+\varrho(\eta-1)] \phi(\mu, s, m, \eta)}
$$

Consequently, we need only to prove that

$$
\frac{(1-v)}{[\eta-v+\varrho(\eta-1)] \phi(\mu, s, m, \eta)} \leq \frac{(1-\xi)[\eta-v+\varrho(\eta-1)]}{1-v)[\eta-\xi+\varrho(\eta-1)]}, \eta \geq 2
$$

or, equivalently, that

$$
\xi \leq 1-\frac{(\eta-1)(1+\varrho)(1-v)^{2}}{[\eta-v+\varrho(\eta-1)]^{2} \phi(\mu, s, m, \eta)-(1-v)^{2}}, \eta \geq 2
$$

Since

$$
A(k)=1-\frac{(\eta-1)(1+\varrho)(1-v)^{2}}{[\eta-v+\varrho(\eta-1)]^{2} \phi(\mu, s, m, \eta)-(1-v)^{2}}, \eta \geq 2
$$

is an increasing function of $\eta, \eta \geq 2$, letting $\eta=2$ in last equation, we obtain

$$
\xi \leq A(2)=1-\frac{(1+\varrho)(1-v)^{2}}{[2-v+\varrho]^{2} \phi(\mu, s, m, \eta)-(1-v)^{2}}
$$

Finally, by taking the function given by (17), we can see that the result is sharp.

7. Convolution and Integral Operators

Let $u(z)$ be defined by (4) and suppose that $g(z)=z-\sum_{\eta=2}^{\infty}\left|b_{\eta}\right| z^{\eta}$. Then, the Hadamard product (or convolution) of $u(z)$ and $g(z)$ defined here by

$$
u(z) * g(z)=u * g(z)=z-\sum_{\eta=2}^{\infty}\left|a_{\eta}\right|\left|b_{\eta}\right| z^{\eta}
$$

Theorem 7.1. Let $u \in T S(v, \varrho, \mu, s, m)$ and $g(z)=z-\sum_{\eta=2}^{\infty}\left|b_{\eta}\right| z^{\eta}, 0 \leq\left|b_{\eta}\right| \leq 1$.
Then $u * g \in T S(v, \varrho, \mu, s, m)$.
Proof. In view of Theorem 2.1, we have

$$
\begin{aligned}
& \sum_{\eta=2}^{\infty}[\eta-v+\varrho(\eta-1)] \phi(\mu, s, m, \eta)\left|a_{\eta}\right|\left|b_{\eta}\right| \\
\leq & \sum_{\eta=2}^{\infty}[\eta-v+\varrho(\eta-1)] \phi(\mu, s, m, \eta)\left|a_{\eta}\right| \\
\leq & (1-v)
\end{aligned}
$$

Theorem 7.2. Let $u \in T S(v, \varrho, \mu, s, m)$ and α be real number such that $\alpha>-1$.
Then the function $F(z)=\frac{\alpha+1}{z^{\alpha}} \int_{0}^{z} t^{\alpha-1} u(t) d t$ also belongs to the class $T S(v, \varrho, \mu, s, m)$.
Proof. From the representation of $F(z)$, it follows that

$$
F(z)=z-\sum_{\eta=2}^{\infty}\left|A_{\eta}\right| z^{\eta}, \text { where } A_{\eta}=\left(\frac{\alpha+1}{\alpha+\eta}\right)\left|a_{\eta}\right|
$$

Since $\alpha>-1$, than $0 \leq A_{\eta} \leq\left|a_{\eta}\right|$. Which in view of Theorem 2.1, $F \in T S(v, \varrho, \mu, s, m)$.

8. Conclusion

This research has introduced a new subclass of uniformly convex functions with negative coefficients defined by linear fractional differential operator and studied some basic properties of geometric function theory. Accordingly, some results related to coefficient estimates, growth and distortion properties, radii of starlike and convexity and convolution properties have also been considered, inviting future research for this field of study.

Acknowledgments

The authors are thankful to the editor and referee(s) for their valuable comments and suggestions which helped very much in improving the paper.

References

[1] E. Aqlan, J. M. Jahangiri and S. R.Kulkarni, New classes of k-uniformly convex and starlike functions, Tamkang J. Math., 35(3), 261 - 266, 2004.
[2] F. M. Al-Oboudi and K.A. Al-Amoudi, On classes of analytic functions related to conic domains, J. Math. Anal. Appl., 339(1), 655-667, 2008.
[3] F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci., 2004(27), 1429-1436, 2004.
[4] A. W. Goodman, On uniformly convex functions, Ann. Pol. Math., 56, 87-92, 1991.
[5] R.W. Ibrahim, Classes of quantum integral operators in a complex domain, J. of Fract. Calc. and Appl., 12(1), 101-109, 2021.
[6] R.W.Ibrahim and D. Baleanu, On quantum hybrid fractional conformable differential and integral operators in a complex domain, RACSAM, 115, 31, 2021.
[7] R.W. Ibrahim and D. Baleanu, On a combination of fractional differential and integral operators associated with a class of normalized functions, AIMS Mathematics, 6(4), 4211-4226, 2021.
[8] S. Kanas and A. Wisniowska, Conic regions and k-uniform convexity, Comput. Appl. Math., 105, 327-336, 1999.
[9] S. Kanas and A. Wisniowska, Conic domains and starlike functions, Rev. Roum. Math. Pures Appl., 45 , 647-657, 2000.
[10] G. Murugusundarmoorthy and N. Magesh, Certain subclasses of starlike functions of complex order involving generalised hypergeometric functions, Int. J. Math. Sci., 45 , 12 pages, 2010.
[11] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Can. J. Math., 39(5), 1057-1077, 1987.
[12] F. Ronning, On starlike functions associated with parabolic regions, Ann. Univ. Mariae. Curie-Sklodowska Sect. A, 45, 117-122, 1991.
[13] F. Ronning, Uniformly convex functions and a corresponing class of starlike functions, Proc. Amer. Math. Soc., 118, 189-196, 1993.
[14] G. S. Salagean, Subclasses of univalent functions. Complex analysis, Proc. 5th Rom.-Finn. Semin., Bucharest 1981, Part 1, Lect. Notes Math., 1013, 362-372, 1983.
[15] M. P. Santosh, N. I. Rajkumar, P. Thirupathi Reddy and B. Venkateswarlu, A new subclass of analytic functions defined by linear operator, Adv. Math. Sci. J., 9(1), 205-217, 2020.
[16] A. Schild, and H. Silverman, Convolutions of univalent functions with negative coefficients, Ann. Univ. Mariae Curie-SkAlodowska Sect. A, 29, 99-107, 1975.
[17] A.S. Shinde, N. I. Rajkumar , P. Thirupathi Reddy and B. Venkateswarlu, A certain subclass of uniformly convex functions with negative coefficients defined by Caputo's fractional calculus operator, J. of Fract. Calc. and Appl., 12(1), 172-183, 2021.
[18] A.S. Shinde, N. I. Rajkumar and P. Thirupathi Reddy, On a certain subclass of meromorphically uniformly convex functions at infinity, Adv. in Math. Sci. J., 9 (3), 773-785, 2020.
[19] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51, 109-116, 1975.
[20] J. Spanier and K. B.Oldham, The zeta numbers and realted functions, Chapter 3 in An Atlas of functions, Washington, Dc:Hemisphere, 25-33, 1987.
[21] P. Thirupathi Reddy and B. Venkateswarlu, On a certain subclass of uniformly convex functions defined by bessel functions, Transylvanian J. of Math. and Mech., 10 (1), 43-49, 2018.

Akanksha S. Shinde
Department of Mathematics, VPM's Bn Bandodkar College of Science, Thane West 422 601, Maharashtra, India.

E-mail address: akankshashinde1202@gmail.com
Rajkumar N. Ingle
epartment of Mathematics, Bahirji Smarak Mahavidyalay, Bashmathnagar - 431512 , Hingoli Dist., Maharashtra, India.

E-mail address: ingleraju11@gmail.com
P. Thirupathi Reddy

Department of Mathematics, Kakatiya University, Warangal- 506 009, Telangana, InDIA.

E-mail address: reddypt2@gmail.com
B. Venkateswarlu

Department of Mathematics, GSS, GItAM University, Doddaballapur- 562 163, Bengaluru Rural, India.

E-mail address: bvlmaths@gmail.com

[^0]: 2010 Mathematics Subject Classification. 30C45.
 Key words and phrases. analytic, coefficient bounds, extreme points, convolution. Submitted Aug. 17, 2020. Revised Feb. 26, 2021.

