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POSITIVE SOLUTIONS FOR SINGULAR α -ORDER (2 ≤ α ≤ 3)

FRACTIONAL BOUNDARY VALUE PROBLEMS ON THE

HALF-LINE

ABDELHAMID BENMEZAI, SOUAD CHENTOUT

Abstract. This article deals with existence of positive solutions to the frac-
tional boundary value problem{

Dαu(t) + f(t, u(t)) = 0, 0 0 ≤ t < ∞
u(0) = Dα−2u(0) = limt→∞ Dα−1u(t) = 0

where α ∈ [2, 3], Dα is the standard Riemann-Liouville derivative and f :
(0,+∞)× (0,+∞) → R+ is a continuous function and may exhibit singular at
u = 0. The main existence result is obtained by means of Guo-Krasnoselskii’s

version of expansion and compression of a cone principal in a Banach space.

1. Introduction and main results

In the last few decades, fractional differential equations have gained a consid-
erable interest and importance, since they arise from many physical applications.
Physical experimentation showed that the integral and derivative operators of frac-
tional order do share some of the characteristics exhibited by the processes asso-
ciated with complex systems having long-memory in time and fractional calculus
provide an excellent framework to describe the hereditary properties of various ma-
terials and processes. For recent developments in the theory fractional calculus and
its applications, we refer to [2, 7, 8, 9, 12, 13, 14].

Often, for physical considerations, the positivity of the solution is required. This
why existence of positive solutions for various classes of boundary value problems
associated with fractional differential equations has been the subject many papers,
see, [1, 3, 4, 6, 10, 11, 15, 16] and references therein. However, to the best of our
knowledge, there are no works considering existence of positive solutions in the case
where such boundary value problems are posed on infinite intervals and having a
singular dependence on the variable space. Thus, the purpose of this paper is to
fill in the gap in this area.
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We are concerned in this paper with existence of positive solutions to the frac-
tional boundary value problem (fbvp for short),{

Dαu(t) + f(t, u(t)) = 0, t ∈ I
u(0) = Dα−2u(0) = limt→∞ Dα−1u(t) = 0

(1.1)

where I = (0,+∞), α ∈ [2, 3], Dα is the standard Riemann-Liouville derivative and
f : I × I → R+ is a continuous function.

Our approach in this work is based on a fixed point formulation of the fbvp (1.1)
and the main existence result in this work is then proved by the Guo-Krasnoselskii’s
version of expansion and compression of a cone principal in a Banach space.

Set

Q (α) =

{
q ∈ C

(
I,R+

)
:

∫ +∞

0

q(s) (1 + s)
α−1

ds < ∞
}

and assume that the nonlinearity f satisfies the following hypothesis:
for all R > 0 there exists two functions ωR,ΨR : I → I
such that ΨR is nonincreasing,

f(t, (1 + t)
α−1

u) ≤ (1 + t)
α−1

ωR (t)ΨR (u) for all t > 0 and u ∈ (0, R]
and Φr,R ∈ Q (α) for all r ∈ (0, R] ,

(1.2)
where

Φr,R(t) = ωR (t)ΨR (rγ̃ (t)) ,

γ̃ (t) =
γ (t)

(1 + t)α−1
and

γ (t) = min
(
1, tα−1

)
.

The statement of the main existence result in this work needs to introduce the
following additional notations. Set for q ∈ Q (α) , θ > 1 and ν = 0, ∞, Iθ = [1/θ, θ] ,

fν(q) = lim supu→ν

(
max
t≥0

f(t, (1 + t)
α−1

u)

(1 + t)
α−1

q(t)u

)
,

fν(q, θ) = lim infu→ν

(
min
t∈Iθ

f(t, (1 + t)
α−1

u)

(1 + t)
α−1

q(t)u

)
,

∆(q) = supt≥0

(
1

(1+t)α−1

∫ t

0
G(t, s) (1 + s)

α−1
q(s)ds

)
,

Θ(q, θ) = supt≥0

(
1

(1+t)α−1

∫ θ

1/θ
G(t, s) (1 + s)

α−1
p(s)γ̃(s)ds

)
.

Theorem 1.1. Assume that Hypothesis (1.2) holds and there exist two functions
p, q in Q(α) such that one of the following Hypotheses (1.3) or (1.4) holds true;

f0(q)∆ (q) < 1 < f∞(p, θ)Θ (p, θ) (1.3)

or
f∞(q)∆ (q) < 1 < f0(p, θ)Θ (p, θ) . (1.4)

Then the fbvp (1.1) admits at least one unbounded increasing positive solution.

For the typical case of the fbvp (1.1) where f(t, u) = (1 + t)
α−1

p(t)uρ with ρ < 0
and p ∈ C (R+,R+), we obtain from Theorem 1.1 the following corollary:

Corollary 1.2. Assume that f(t, u) = (1 + t)
α−1

p(t)uρ where ρ < 0 and p ∈
C (I,R+) . If∫ 1

0

tρ(α−1)p(t)dt < ∞ and

∫ +∞

1

(1 + t)
(1−ρ)(α−1)

p(t)dt < ∞,
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then the fbvp (1.1) admits at least one unbounded increasing positive solution.

Proof. We have for all R > 0

Rρ
∫ +∞
0

(1 + t)
α−1

p(t)dt ≤
∫ +∞
0

(1 + t)
α−1

p(t) (Rγ̃ (t))
ρ
dt

≤ 2(1−ρ)(α−1)Rρ
∫ 1

0
tρ(α−1)p(t)dt+Rρ

∫ +∞
0

(1 + t)
(1−ρ)(α−1)

p(t)dt < ∞.

This shows that p ∈ Q (α) and Hypothesis (1.2) holds with ωR (t) = p (t) and
ΨR (u) = uρ. We have also,

f0(p) = f0(p, θ) = +∞ and f∞(p) = f∞(p, θ) = 0 for all θ > 1,

proving that Condition (1.4) is satisfied. This ends the proof. �

2. Abstract background

Let (E, ||.||) be a real Banach space. A nonempty closed convex subset C of E
is said to be a cone in E if C ∩ (−C) = {0E} and tC ⊂ C for all t ≥ 0.

Let Ω be a nonempty subset in E. A mapping A : Ω → E is said to be compact
if it is continuous and A (Ω) is relatively compact in E.

The main tool of this work is the following Guo-Krasnoselskii’s version of expan-
sion and compression of a cone principal in a Banach space.

Theorem 2.1. Let P be a cone in E and let Ω1,Ω2 be bounded open subsets of E
with 0 ∈ Ω1 and Ω1 ⊂ Ω2. If T : P ∩ (Ω2\Ω1) → P is a compact mapping such that
either:

(1) ||Tu|| ≤ ||u|| for u ∈ P ∩ ∂Ω1 and ||Tu|| ≥ ||u|| for u ∈ P ∩ ∂Ω2, or
(2) ||Tu|| ≥ ||u|| for u ∈ P ∩ ∂Ω1 and ||Tu|| ≤ ||u|| for u ∈ P ∩ ∂Ω2,

Then T has at least one fixed point in P ∩ (Ω2\Ω2).

3. Riemann-Liouville fractional derivative

Now, let us recall some basic facts related to the theory of fractional differen-
tial equations. Let β be a positive real number, the Riemann-Liouville fractional
integral of order β of a function f : (0,+∞) → R is defined by

Iβ0+f(t) =
1

Γ(β)

∫ t

0

(t− s)β−1f(s)ds,

where Γ(β) is the gamma function, provided that the right side is pointwise defined

on (0,+∞). For example, we have for any real σ > −1, Iβ0+t
σ = Γ(σ+1)

Γ(σ+β+1) t
σ+β .

The Riemann-Liouville fractional derivative of order β ≥ 0, of a continuous
function
f : (0,+∞) → R is given by

Dβ
0+f(t) =

1

Γ(n− β)

(
d

dt

)n ∫ t

0

f(s)

(t− s)β−n+1
ds,

where n = [β] + 1, [β] denotes the integer part of the number β. See that D0f = f.

As a basic example, we quote for σ > β − 1, Dβ
0+t

σ = Γ(σ+1)
Γ(σ−β+1) t

σ−β . Thus, if

u ∈ C (0,+∞) ∩ L1 (0,+∞), then the fractional differential equation Dβ
0+u(t) = 0
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has u(t) =
∑i=[β]+1

i=1 cit
β−i, ci ∈ R, as unique solution and if u has a fractional

derivative of order β in C (0,+∞) ∩ L1 (0,+∞) , then

Iβ0+D
β
0+u(t) = u(t) +

i=[β]+1∑
i=1

cit
β−i, ci ∈ R. (3.1)

For a detailed presentation on fractional differential calculs, see [8] or [13].

4. Fixed point formulation

Firstly, we introduce the necessary framework for the fixed point formulation of
the fbvp (1.1). Throughout, we let E be the linear space defined by

E =

{
u ∈ C

(
R+,R

)
: lim
t→∞

u (t)

tα−1
= 0 ∈ R

}
,

Equipped with the norm ∥·∥E where for all u ∈ E, ∥u∥E = supt>0
|u(t)|

(1+t)α−1 , E

becomes a Banach space.
In all what follows E+ denote the cone of nonnegative functions in E and the

subset P of E defined by

P = {u ∈ E : u(t) ≥ γ(t) ∥u∥E for all t ≥ 0}
is a cone in E.
Let G : R+ × R+ → R the function given by

G(t, s) =
1

Γ(α)

{
tα−1 − (t− s)α−1 0 ≤ s ≤ t < ∞
tα−1 0 ≤ t ≤ s < ∞.

Lemma 4.1. (Lemma 1, [3])The function G is continuous and has the following
properties:

G(0, s) = 0 for all s ≥ 0, (4.1)

0 < G(t, s) ≤ tα−1

Γ(α)
for all t, s ≥ 0, (4.2)

lim
t→0

G (t, s)

tα−1
=

1

Γ(α)
, lim

t→+∞

G (t, s)

tα−1
= 0 for all s ≥ 0, (4.3)

G(t, s) ≥ γ(t)
G(τ, s)

(1 + τ)
α−1 for all t, τ, s ≥ 0. (4.4)

The following lemma is an adapted version for the case of the space E of Cor-
duneanu’s compactness criterion ([5], p. 62). It will be used in this work to prove
that some operator is completely continuous.

Lemma 4.2. A nonempty subset M of E is relatively compact if the following
conditions hold:

(a) M is bounded in E,

(b) the functions belonging to

{
u : u(t) =

x(t)

(1 + t)
α−1 , x ∈ M

}
are locally equicon-

tinuous on [0,+∞), that is, equicontinuous on every compact interval of R+

and
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(c) the functions belonging to

{
u : u(t) =

x(t)

(1 + t)
α−1 , x ∈ M

}
are equiconver-

gent at +∞, that is, given ϵ > 0, there corresponds T (ϵ) > 0 such that
|x(t)− x(+∞)| < ϵ for any t ≥ T (ϵ) and x ∈ M.

Lemma 4.3. Assume that Hypothesis (1.2) holds, then there exists a continuous
operator T : K {0} → K such that for all r,R with 0 < r < R, T (K ∩ (B(0, R)B(0, r)))
is relatively compact and fixed points of T are positive solutions to the fbvp (1.1).

Proof. Let u ∈ K {0} and let Φr be the function given by Hypothesis (1.2) for
r = ∥u∥ . For all t > 0, we have∫ +∞

0
G(t, s)f(s, u(s))ds =

∫ +∞
0

G(t, s)f(s, (1 + s)
α−1 u(s)

(1+s)α−1 )ds

≤
∫ +∞
0

G(t, s) (1 + s)
α−1

Φr(s)ds

≤ tα−1

Γ(α)

∫ +∞
0

(1 + s)
α−1

Φr(s)ds < ∞.

Set

v(t) =

∫ +∞

0

G(t, s)f(s, u(s))ds.

Clearly, v is continuous and for all t ≥ 0, we have from (4.2)

v(t)

(1+t)α−1 =
∫ +∞
0

G(t, s)f(s, u(s))ds ≤ 1
Γ(α)

tα−1

(1+t)α−1

∫ +∞
0

(1 + s)
α−1

Φr(s)ds

≤ 1
Γ(α)

∫ +∞
0

(1 + s)
α−1

Φr(s)ds < ∞.

Moreover, it follows from (4.4) that for all t, τ ≥ 0

v(t) =
∫ +∞
0

G(t, s)f(s, u(s))ds ≥ γ(t)

(1+τ)α−1

∫ +∞
0

G(τ, s)f(s, u(s))ds

= γ (t) v(τ)

(1+τ)α−1 .

Passing to the supremum on τ , we obtain v(t) ≥ γ (t) ∥v∥ for all t ≥ 0, that is
v ∈ K.

Thus, we have proved that the oerator T : K {0} −→ K, where for u ∈ K {0}
and t ≥ 0

Tu(t) =

∫ +∞

0

G(t, s)f(s, u(s))ds,

is well defined.
Now, let r,R with 0 < r < R, Ω = K∩(B(0, R)B(0, r)) and Φr,R be the function

given by Hypothesis (1.2). For a sequence (un) ⊂ Ω such that limun = u ∈ K {0} ,
we have

∥Tun − Tu∥E ≤ sup
t≥0

∫ +∞
0

G(t,s)

(1+t)α−1 |f(s, un(s))− f(s, u(s))| ds

≤ 1
Γ(α) sup

t≥0

tα−1

(1+t)α−1

∫ +∞
0

|f(s, un(s))− f(s, u(s))| ds

≤
∫ +∞
0

|f(s, un(s))− f(s, u(s))| ds,

|f(s, un(s))− f(s, u(s))| ≤ 2 (1 + s)
α−1

Φr,R(s),∫ +∞
0

(1 + s)
α−1

Φr,R(s)ds < ∞ and
lim |g(s, un(s))− g(s, u(s))| = 0 for all s ≥ 0.

Thus, we conclude by means of Lebesgue dominated convergence theorem that
lim ∥Tun − Tu∥E = 0. Proving the continuity of T on Ω.
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For all u ∈ Ω, we have then

|Tu(t)|
(1+t)α−1 ≤

∫ +∞
0

G(t,s)

(1+t)α−1 f(s, (1 + s)
α−1 u(s)

(1+s)α−1 )ds

≤ 1
Γ(α)

∫ +∞
0

(1 + s)
α−1

Φr,R(s)ds < ∞.

This shows that TΩ is bounded.
We have then for all u ∈ ΩThis shows that the operator T is bounded on Ω.
Let [ξ, η] be an interval of R+. For all u ∈ Ω and all t1, t2 ∈ [ξ, η] with 0 <

t2 − t1 < 1, We have∣∣∣ Tu(t2)

(1+t2)
α−1 − Tu(t1)

(1+t1)
α−1

∣∣∣ ≤ 1
Γ(α)

∫ t1
0

∣∣∣∣( t2−s
1+t2

)α−1

−
(

t1−s
1+t1

)α−1
∣∣∣∣Φr,R(s) (1 + s)

α−1
ds

+
(

t2−t1
1+t2

)α−1

|ΦR|α +

∣∣∣∣( t2
1+t2

)α−1

−
(

t1
1+t1

)α−1
∣∣∣∣ |Φr,R|α ,

where |Φr,R|α = 1
Γ(α)

∫ +∞
0

(1 + s)
α−1

Φr,R(s)ds.

We have by the mean value theorem:∣∣∣∣( t2−s
1+t2

)α−1

−
(

t1−s
1+t1

)α−1
∣∣∣∣ ≤ (α− 1)

(
η

1+η

)α−2 ∣∣∣ t2−s
1+t2

− t1−s
1+t1

∣∣∣
≤ (α− 1)

(
η

1+η

)α−2
(t2−t1)(1+s)
(1+t2)(1+t1)

≤ (α− 1)
(

η
1+η

)α−2

(t2 − t1)

(4.5)

and ∣∣∣∣( t2
1+t2

)α−1

−
(

t1
1+t1

)α−1
∣∣∣∣ ≤ (α− 1)

(
η

1+η

)α−2 (
t2

1+t2
− t1

1+t1

)
≤ (α− 1)

(
η

1+η

)α−2

(t2 − t1) .

The above calculations lead to∣∣∣ Tu(t2)

(1+t2)
α−1 − Tu(t1)

(1+t1)
α−1

∣∣∣ ≤ 2 (α−1)
Γ(α)

(
η

1+η

)α−2

|Φr,R|α (t2 − t1) +
(

t2−t1
1+t2

)α−1

|Φr,R|α

≤ 1
Γ(α)

(
2 (α− 1)

(
η

1+η

)α−2

+ 1

)
|Φr,R|α (t2 − t1)

Proving that T (Ω) is equicontinuous on compact intervals.
We have for any u in Ω and t ≥ 0∣∣∣ Tu(t)

(1+t)α−1

∣∣∣ ≤ ∫ +∞
0

G(t,s)

(1+t)α−1 |g(s, u(s))| ds
≤
∫ +∞
0

G(t,s)

(1+t)α−1 (1 + s)
α−1

Φr,R(s)ds = H(t).

Since Φr,R ∈ Q (α) , the Property (4.3) of the function G and the dominated con-
vergence theorem lead to limt→∞ H(t) = 0, proving the equiconvergence TΩ.

In view of Lemma 4.2 TΩ is relatively compact in E and since r,R are arbitrary,
the operator T is continuous.

Now, let u ∈ K {0} be a fixed point of T. Therefore, we have

u(t) =
∫ +∞
0

G(t, s)f(s, u(s))ds

= − 1
Γ(α)

∫ t

0
(t− s)

α−1
f(s, u(s))ds+ tα−1

Γ(α)

∫∞
0

f(s, u(s))ds

= −Iα0+f(t, u(t)) +
tα−1

Γ(α)

∫∞
0

f(s, u(s))ds.



JFCA-2020/12(2) POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL BVP 27

Dα−2u(t) = Dα−2u(t) = −
∫ t

0
(t− s) f(s, u(s))ds+ t

∫ +∞
0

f(s, u(s))ds.

Dα−1u(t) = −
∫ t

0
f(s, u(s))ds+

∫ +∞
0

f(s, u(s))ds =
∫ +∞
t

f(s, u(s))ds.
Dαu(t) = −f(t, u(t)),
Dα−2u(0) = limt→+∞ Dα−1u(t) = 0

and we obtain from (4.1), u(0) =
∫ +∞
0

G(0, s)f(s, u(s))ds = 0.
These show that u is a positive solution to the fbvp (1.1), ending the proof. �

5. Proof of Theorem 1.1

Step 1. Existence in the case where (1.3) holds
Let ϵ > 0 be such that (f0 (q)+ϵ)∆ (q) < 1. For such a ϵ, there exists R1 > 0 such

that f(t, (1 + t)
α−1

w) ≤ (f0 (q)+ ϵ) (1 + t)
α−1

q (t)w for all w ∈ (0, R1). Thus, for
all u ∈ K ∩ ∂Ω1, where Ω1 = {u ∈ E, ∥u∥ < R1} , the following estimates hold.

∥Tu∥ = supt≥0

(
1

(1+t)α−1

∫ +∞
0

G(t, s)f(s, u(s))ds
)

≤ supt≥0

(
1

(1+t)α−1

∫ +∞
0

G(t, s)f(s, (1 + s)α−1 u(s)
(1+s)α−1 )ds

)
≤ supt≥0

(
1

(1+t)α−1

∫ t

0
G(t, s)(f0 (q) + ϵ) (1 + s)

α−1
q(s) u(s)

(1+s)α−1 ds
)

≤ (f0 (q) + ϵ) supt≥0

(
1

(1+t)α−1

∫ t

0
G(t, s) (1 + s)

α−1
q(s)ds

)
∥u∥

≤ (f0 (q) + ϵ)∆ (q) ∥u∥ ≤ ∥u∥ .
Now, suppose that f∞ (p, θ) > Θ(p, θ) and let ε > 0 be such that (f∞ (p, θ)−ε) >

Θ(p, θ). There exists R2 > R1 such that f(t, (1 + t)
α−1

w) ≥ (f∞ (β, , θ) − ε)(1 +
t)α−1p(t)w for all t ∈ Iθ and w ≥ 0 with w ≥ R2. Let Ω2 = {u ∈ E : ∥u∥ < R2/γ∗},
where γ∗ = inft∈Iθ γ̃ (t). For all u ∈ K ∩ ∂Ω2, we have

∥Tu∥ ≥ supt≥0

(
1

(1+t)α−1

∫ θ

1/θ
G(t, s)f(s, u(s))ds

)
≥ supt≥0

(
1

(1+t)α−1

∫ θ

1/θ
G(t, s)f(s, (1 + s)

α−1 u(s)

(1+s)α−1 )ds
)

≥ (f∞ (p, θ)− ε) supt≥0

(
1

(1+t)α−1

∫ θ

1/θ
G(t, s) (1 + s)

α−1
p(s) u(s)

(1+s)α−1 ds
)

≥ (f∞ (p, θ)− ε) supt≥0

(
1

(1+t)α−1

∫ θ

1/θ
G(t, s) (1 + s)

α−1
p(s)γ̃(s)ds

)
∥u∥

= (f∞ (p, θ)− ε)Θ (p, , θ) ∥u∥ ≥ ∥u∥ .
Therefore, we deduce from Theorem 2.1, that T admits a fixed point u ∈ K with

R1 ≤ ∥u∥ ≤ R2/γ∗ which is, by Lemma 4.3 a positive solution to the bvp (1.1).

Step 2. Existence in the case where (1.4) holds

Let ε > 0 be such that (f0 (p, θ)− ε)Θ(p, θ) > 1. There exists R̃1 > 0 such that

f(t, (1 + t)α−1w) > (f0 (p, θ)− ε)(1 + t)α−1p (t)w for all w ∈ [0, R̃1], and all t ∈ Iθ.

Thus, for all u ∈ K ∩ ∂Ω1, where Ω1 =
{
u ∈ E : ∥u∥ < R̃1/γ∗

}
, we have

∥Tu∥ ≥ supt≥0

(
1

(1+t)α−1

∫ θ

1/θ
G(t, s)f(s, u(s))ds

)
≥ supt≥0

(
1

(1+t)α−1

∫ θ

1/θ
G(t, s)f(s, (1 + s)

α−1 u(s)

(1+s)α−1 )ds
)

≥ (f∞ (p, θ)− ε) supt≥0

(
1

(1+t)α−1

∫ θ

1/θ
G(t, s) (1 + s)

α−1
p(s) u(s)

(1+s)α−1 ds
)

≥ (f∞ (p, θ)− ε) supt≥0

(
1

(1+t)α−1

∫ θ

1/θ
G(t, s) (1 + s)

α−1
p(s)γ̃(s)ds

)
∥u∥

= (f∞ (p, θ)− ε)Θ (p, , θ) ∥u∥ ≥ ∥u∥ .
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Let ϵ > 0 be such that (f∞ (q) + ϵ)∆ (q) < 1. Then there exists Rϵ > 0 such
that

f(t, (1 + t)
α−1

w) ≤ (f∞ (q) + ϵ)q (t)w + (1 + t)
α−1

ωϵ (t)Ψϵ (w) , for all t, w > 0,

where ωϵ and Ψϵ are the functions given by Hypothesis (1.2) for R = Rϵ.
Let Φϵ (t) = ΦRϵ,Rϵ (t) and

R2 =
Φϵ

1−∆(q) (f∞ (q) + ϵ)
, where

Φϵ = supt≥0

(
1

(1+t)α−1

∫ +∞
0

G(t, s) (1 + s)
α−1

Φϵ (s) ds
)
.

For all R > R2 we have ∆(q)(f∞ (α)+ϵ)R+Φϵ ≤ R.Let R̃2 > max(R̃1/γ∗, R2, Rϵ).

Thus for all u ∈ K ∩ ∂Ω2, where Ω2 =
{
u ∈ E : ∥u∥ < R̃2

}
, we have

∥Tu∥ = supt≥0

(
1

(1+t)α−1

∫ +∞
0

G(t, s)f(s, (1 + s)α−1 u(s)
(1+s)α−1 )ds

)
≤ supt≥0

(
1

(1+t)α−1

∫ t

0
G(t, s)((f∞ (q) + ϵ) (1 + s)

α−1
q(s) u(s)

(1+s)α−1

+(1 + s)
α−1

ωϵ (s)Ψϵ

(
u(s)

(1+s)α−1

)
ds
)

≤ (f∞ (q) + ϵ) supt≥0

(
1

(1+t)α−1

∫ t

0
G(t, s) (1 + s)

α−1
q(s)ds

)
∥u∥+Φϵ

(f∞ (q) + ϵ)∆ (q) ∥u∥+Φϵ ≤ ∥u∥.
We deduce from ii) of Theorem 2.1 that T admits a fixed point u ∈ K with

R̃1/γ∗ ≤ ∥u∥ ≤ R̃2 which is, by Lemma 4.3, a positive solution to the bvp (1.1).
Step 3. Unboundedness of the obtained positive solution
Let u be the positive solution obtained in Step1 or in Step 2. Then, for all t ≥ 0,

we have

u(t) = − 1
Γ(α)

∫ t

0
(t− s)

α−1
f(s, u(s))ds+ tα−1

Γ(α)

∫∞
0

f(s, u(s))ds and

u′(t) = − α−1
Γ(α)

∫ t

0
(t− s)

α−2
f(s, u(s))ds+ (α−1)tα−2

Γ(α)

∫∞
0

f(s, u(s))ds.

The above shows that u′(0) = 0 and u′ is increasing on I. Therefore, we have that
u′ (t) > 0 and limt→+∞ u′(t) = l > 0 and so, the solution u is increasing and
limt→+∞ u(t) = +∞.

The proof of the main theorem is complete.
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