
Journal of Fractional Calculus and Applications

Vol. 13(1) Jan. 2022, pp. 42-57.

ISSN: 2090-5858.

http://math-frac.org/Journals/JFCA/

————————————————————————————————

FRACTIONAL DIFFUSION EQUATION WITH REACTION

TERM DESCRIBED BY THE CAPUTO-LIOUVILLE

GENERALIZED FRACTIONAL DERIVATIVE

N. SENE

Abstract. In this present paper, we investigate a new model for fluids in the

context of fractional calculus. We study the fractional diffusion reaction equa-
tions. In our model, the reaction term describes a fractional heat equation.

We present the qualitative properties of the introduced models. We propose

the solution of the fractional diffusion reaction equations represented by the
Caputo-Liouville generalized fractional derivative. We combine in this work

the Laplace transformation and the Fourier transformation for getting the so-

lutions of the introduced models. Our contributions are to analyze the impact
of the fractional-order derivative and the reaction term on the diffusion pro-

cesses. We also interpret the effect of the Prandtl number Pr on the diffusion

processes.

1. Introduction

The integer order derivative doesn’t take into account many types of diffusion
processes. The importance of fractional derivatives in the diffusion equations is
to introduce into the literature new class of diffusion processes [23, 24, 25, 29] as
the super diffusive process, the subdiffusion process, ballistic diffusion, Richardson
diffusion, and hyper-diffusive process. Note that, we obtain the subdiffusion process
when the order of the fractional derivative is into (0, 1), see in [25, 29]. And we
get the super diffusion process when the order of the fractional derivative is outside
(0, 1). There exist many other examples like hyper-diffusion, ballistic diffusion
and others. The fractional diffusion equations have attracted many researchers in
the literature due to the various types of fractional derivatives and the diffusion
processes generated by these fractional derivatives.

There exist many types of fractional diffusion equations in the literature; see, in
[18, 23, 27]. It is observed in many investigations, the authors have proposed an-
alytical and numerical approaches. In [27], Sene introduces the numerical method
for solving the fractional diffusion equation with Caputo-Liouville generalized de-
rivative. Fazio et al. in [4] propose the numerical solution of the time-fractional
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advection-diffusion equations with a Source Term. In [5], Ferras et al. present
the numerical method for the solution of the time-fractional diffusion equation de-
scribed by the Caputo-Liouville derivative. In [6], Garg et al. address the numerical
solution of the fractional diffusion wave in two-dimensional spaces using the matrix
method. Tasbozan et al. in [30] propose a numerical approach to the fractional
diffusion equation for the force-free case. In [29], Sene et al. investigate the Mean
Square displacement of the fractional diffusion equation represented by a nonsin-
gular derivative. See also in [4, 7, 12, 15, 18, 19].

In this paper, we introduce new models in fractional calculus via the Caputo-
Liouville generalized fractional derivative. We investigate on the fractional diffusion-
reaction equations described by fractional-order derivatives. The reaction term sat-
isfies the fractional heat equation. The proposed model takes into account many
other models. We will come back to the models in the next sections. The appli-
cations of the numerical methods are not trivial for some categories of fractional
differential equations. The present issue is to propose a new methodology to find
the analytical solutions of the fractional diffusion equations with reaction terms.
We use the Fourier sine transformation in both equations to solve the equations of
the considered models. The fractional heat equation as a reaction term will have
a significant impact on the fractional diffusion-reaction equation. We also focus
on the effect of the fractional-order derivative on the diffusion equation and the
diffusion-reaction equation. We discuss the effects of the Prandtl number on the
diffusion processes. Another advantage of our used method is it’s more straight-
forward for us to give physical interpretations of the obtained solutions. We also
propose the mean square displacement of the constructive equations considered in
this paper. The Mean Square Displacement plays an important role in physics; it
permits in fractional calculus to characterize the type of diffusion processes gener-
ated by the values of the order of the fractional derivatives. Note that the types
of diffusion processes and the form of the analytical solutions motive our present
work.

We organize the paper as follows. In Section 2, we recall the fractional operators.
In Section 3, we present the constructive equations related to the fractional diffusion
equation with a reaction term and the frictional heat equation. In Section 4, we
study the qualitative properties of the fractional diffusion equations. In Section
5, we describe the solution procedures. In Section 6, we give the graphics, we
represent, and analyze the obtained solutions for different values of the order of the
fractional derivatives. In Section 7, we provide our conclusions and remarks.

2. Fractional calculus operators

This section addresses the definitions of fractional operators used to establish
this present work. The Laplace transform and the Mittag-Leffler function will be
proposed in this section.

We begin by the Caputo-Liouville fractional derivative. We have the following
definition [1, 14, 20].

Suppose the function h : (0,+∞) −→ R, the Caputo-Liouville derivative of the
function h of order α is described in the following form

Dc
αh(t) =

1

Γ(1− α)

∫ t

0+
(t− s)−αh′(s)ds, (1)
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for all t > 0, where the order α ∈ (0, 1), and Γ(...) is the gamma function.
Another fractional operator introduced in fractional calculus is the Riemann-

Liouville fractional derivative. We have the following definition [14, 20].
Let’s the function h : (0,+∞) −→ R, the Riemann-Liouville derivative of the

function h of order α is described by the following form

DRL
α h(t) =

1

Γ(1− α)

(
d

dt

)∫ t

0+

h(s)

(t− s)α
ds, (2)

for all t > 0, where the order α ∈ (0, 1) and Γ(...) is the gamma function.
We introduce the generalized forms of the above fractional derivatives introduced

by Thabet et al. in [8]. For the Caputo-Liouville generalized fractional derivative,
we have the following definition.

We suppose the function h : (0,+∞) −→ R, the Caputo-Liouville generalized
derivative of the function h of order α and ρ > 0 is described in the following
expression

Dα,ρ
c h(t) =

1

Γ(1− α)

∫ t

0+

(
tρ − sρ

ρ

)−α
h′(s)ds, (3)

for all t > 0, where the order α ∈ (0, 1), and Γ(...) represents the gamma function.
We can observe that when ρ = 1, we recover the Caputo-Liouville derivative as in
Eq. (1). Another remark is when ρ approaches 0, we get the so-called Caputo-
Hadamard fractional derivative, see the definition of this type of derivative in [13].

We continue Riemann-Liouville derivative. For the Riemann-Liouville general-
ized fractional derivative, we have the following definition.

We suppose the function h : (0,+∞) −→ R, the Riemann-Liouville generalized
derivative of the function h of order α and ρ > 0 is represented by the following
expression

Dα,ρh(t) =
1

Γ(1− α)

(
d

dt

)∫ t

0+

(
tρ − sρ

ρ

)−α
h(s)

ds

s1−ρ
, (4)

for all t > 0, where the order α ∈ (0, 1) and Γ(...) denotes the gamma function.
We have the same remarks. We can observe when ρ = 1, we recover the Riemann-
Liouville derivative as in Eq. (2). Another observation is when ρ approaches 0, we
get the so-called Hadamard fractional derivative; see the definition of Hadamard
derivative in [13]. The generalization of the fractional derivatives is an old problem.
Erdelyi and Kobar addressed the first generalizations of the Caputo-Liouville de-
rivative and the Riemann Liouville derivative in 1940 [3, 14, 17]. In general, many
fractional derivatives do not satisfy the Leibniz rule. One of the motivations of
the introduction of many fractional derivatives is to solve this issue. Note that Eq.
(4) give a generalized form of the Riemann-Liouville derivative and the Hadamard
derivative.

The Laplace transform of the Caputo-Liouville generalized fractional derivative
will play an important role. We recall its definition in the next lines. We repre-
sent the ρ-Laplace transform of the Caputo-Liouville generalized derivative as the
following form

Lρ {Dα,ρ
c h(t)} = sαLρ {h(t)} − sα−1h(0). (5)

We represent the ρ-Laplace transform of a function h as the following relationship

Lρ {h(t)} (s) =

∫ ∞
0

e−s
tρ

ρ h(t)
dt

t1−ρ
. (6)
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We finish this section by recalling the definition of the Mittag-Leffler function.
The Mittag-Leffler function [2, 16] is essential in fractional calculus, notably in the
representation of the solutions of the fractional differential equations. The following
equation represents the Mittag-Leffler function with two parameters

Eα,β (z) =

∞∑
k=0

zk

Γ(αk + β)
, (7)

where α > 0, β ∈ R and z ∈ C.

3. Fractional diffusion equation with reaction term

The diffusion-reaction equation combines the diffusion term plus the reaction
term and is represented in general in the form

∂v

∂τ
= ν

∂2v

∂x2
+ q(x, τ), (8)

where v = v(x, τ) is the state variable representing the density of the material at
x ∈ Rn and τ ∈ R+, or the fluid motion, ν is the diffusion coefficient, and q is a
smooth function which describes the type of reaction at x ∈ Rn and τ ∈ R+. In this
paper, we address the fractional version of the diffusion-reaction represented by Eq.
(8). To this end, we replace the partial derivative with respect to the variable τ by
the Caputo-Liouville generalized fractional operator of order α, ρ with respect to
the variable τ , too. Then, we represent Eq. (8) as the following form

Dα,ρ
τ v = ν

∂2v

∂x2
+ q(x, τ). (9)

The motivation of this replacement is to generalize the classical model and to cap-
ture more diffusion processes as sub-diffusion, super-diffusion, ballistic diffusion,
and hyper-diffusion. An interesting aspect of our modeling is the form of the re-
action term. In this paper, we consider the reaction described by q = βu where β
represents a perturbation parameter and u represents an exogenous input satisfying
the solution of the fractional heat equation represented by

PrDα,ρ
c u =

∂2u

∂x2
, (10)

where Pr is the Prandtl number. The following equation represents the fractional
model after the introduction of the dimensionless variables considered in our work

Dα,ρ
c v = ν

∂2v

∂x2
+ βu(x, τ), (11)

PrDα,ρ
c u =

∂2u

∂x2
, (12)

with the initial conditions given by

v(x, 0) = u(x, 0) = 0, (13)

and furthermore, the fractional heat equation satisfies the additional boundary
condition given by

u(0, τ) = 1, (14)

and furthermore, we assume that u(∞, τ) = v(∞, τ) = 0. In this present paper,
we consider both Eq. (11) and Eq. (12). In other words, we consider a fluid
model. We propose the solution of the fractional diffusion equation (12) using
Fourier transformation. After, we use the solution of Eq. (12) into Eq. (11), and
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we determine the solution of the fractional diffusion equation with reaction term
Eq. (11) using the Fourier transformation again. Before the determination of the
solutions, we propose qualitative studies for Eq. (11) and Eq. (12). In other words,
the existence and uniqueness have been investigated in the next section to justify
the problem consisting of getting the solutions. We can apply our problem in many
domains. For example, we recover a non-Newtonian viscoelastic fluid model with
β = −σH2

0/ρ, where σ denotes the electrical conductivity of fluid, H2
0 represents

the uniform magnetic field, and ρ represents the density of the material. Note the
MHD flow near a wall suddenly set in motion. We can consider our problem as a
Casson fluid model too and many others.

4. Qualitative properties of the fractional diffusion reaction
equation

This section treats the existence and uniqueness of the proposed model described
by Eq. (11) and Eq. (12). The procedure of demonstration is not new but necessary
in our problem. Because we investigate the analytical solution of the fractional
diffusion equation with reaction. Note that it is not needed to study the analytical
solutions when we are not sure the solution of the given model exists.

We begin the study with the fractional heat equation defined by Eq. (12). Let’s
the function

η (u, x) =
∂2u

∂x2
. (15)

In our study, we omitted the parameter Pr, which hasn’t any impact on the prob-
lem of existence and uniqueness. Or we can reason with Pr = 1. We use the
assumptions, that the functions u and v are continuous, and for the rest of the pa-
per we assume that there exists a constant m such that the following relationship
is held

‖η (u, x)− η (v, x)‖ ≤ m ‖u− v‖ . (16)

From which we can deduce the function, η is Lipschitz continuous. The constant
m represents the Lipschitz constant. We apply the generalized fractional integral
into Eq. (15). It gives us the solution of the fractional diffusion equation defined
by Eq. (12), we have that

u(x, τ)− u(x, 0) = Iα,ρη (u, x) . (17)

We define from Eq. (17), the Picard’s operator is given by the following form

Mu(x, τ) = Iα,ρψ (x, u) . (18)

For precision, note that we have replaced u(x, 0) = 0 into Eq. (17). From which we
obtain the relation in Eq. (18). Our objective is now to prove the function M is well
defined. We apply the Euclidean norm into Eq. (18), we obtain the relationship
described as follows

‖Mu(x, τ)− u(x, 0)‖ = ‖Iα,ρη (u, x)‖ ,
≤ Iα,ρ ‖η (u, x)‖ ,

≤ ρ1−α

Γ(α)
‖η (u, x(τ))‖

∫ τ

0

(
τρ − sρ

ρ

)α−1
ds

s1−ρ
. (19)
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Using the Eq. (19), the function η is bounded. The condition t ≤ T , Eq. (19), we
obtain the following relation

‖Mu(x, τ)− u(x, 0)‖ ≤ ρ1−α

Γ(α)

(
T ρ

ρ

)α
c. (20)

That is, the function M is well defined. We now provide a condition under which
the function M is a contraction. We have the following relations

‖Mu(x, τ)−Mv(x, τ)‖ = ‖Iα,ρ (η (u, x)− η (x, v))‖ ,
≤ Iα,ρ ‖(η (u, x)− η (v, x))‖ ,

≤ ρ1−α

Γ(α)
‖η (u, x)− η (v, x)‖ Iα,ρ(1). (21)

From Eq. (21), we have the relationship described in the following form

‖Mu(x, τ)−Mv(x, τ)‖ ≤ ρ1−α

Γ(α+ 1)

(
T ρ

ρ

)α
m ‖u− v‖ . (22)

We conclude that the function M is a contraction when the following condition is
held

ρ1−α

Γ(α+ 1)

(
T ρ

ρ

)α
k < 1. (23)

From the Banach fixed Theorem, the Mu = u admits a unique solution. Thus,
the solution of the fractional diffusion equation is represented in Eq. (12) exists.
Therefore, we can investigate the solution of the fractional heat diffusion equation
defined by Eq. (12).

Let’s prove now the existence and the uniqueness of the Eq. (11). We consider
the function

σ (u, x) =
∂2u

∂x2
+ βu(x, τ). (24)

The objective is to prove the function σ is Lipschitz continuous. We apply the
Euclidean norm into Eq. (24). Using the assumptions, that the functions u and v
are continuous, and for the rest of the paper we assume that there exists a constant
κ such that the following relationships are held

‖σ (u, x)− σ (v, x)‖ ≤ κ ‖u− v‖ . (25)

We deduce from Eq. (25) the function σ is Lipschitz continuous. We have as
Lipschitz constant κ. We apply the generalized fractional integral into Eq. (24).
We get the following solution of the fractional diffusion equation (11), we have that

u(x, τ)− u(x, 0) = Iα,ρσ (u, x) . (26)

We define from Eq. (26), the Picard’s operator is given by the following form

Nu(x, τ) = Iα,ρσ (x, u) . (27)

For precision, note that u(x, 0) = 0, into Eq. (26). We obtain the relation in Eq.
(27). Our objective is now to prove the function M is well defined. We apply the
Euclidean norm into Eq. (27), we obtain the relation described as follows

‖Nu(x, τ)− u(x, 0)‖ = ‖Iα,ρσ (u, x)‖ ,
≤ Iα,ρ ‖σ (u, x)‖ ,

≤ ρ1−α

Γ(α)
‖σ (u, x)‖ Iα,ρ(1). (28)
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Using Eq. (25), in which the function σ is bounded and with the condition t ≤ T ,
we obtain the following

‖Nu(x, τ)− u(x, 0)‖ ≤ ρ1−α

Γ(α)

(
T ρ

ρ

)α
d. (29)

That is, the function N is well defined. We now provide a condition under which
the function M is a contraction. We have the relations

‖Nu(x, τ)−Nv(x, τ)‖ = ‖Iα,ρ (σ (u, x)− σ (x, v))‖ ,
≤ Iα,ρ ‖(σ (u, x)− σ (v, x))‖ ,

≤ ρ1−α

Γ(α)
‖σ (u, x)− σ (v, x)‖ Iα,ρ(1).

From Eq. (25), we have the relationships described in the following form

‖Nu(x, τ)−Nv(x, τ)‖ ≤ ρ1−α

Γ(α+ 1)

(
T ρ

ρ

)α
κ ‖u− v‖ . (30)

We conclude that the function N is a contraction when the following condition is
held

ρ1−α

Γ(α+ 1)

(
T ρ

ρ

)α
<

1

κ
. (31)

From the Banach fixed Theorem, the Nu = u admit unique solution, which is the
solution of the fractional equation represented in Eq. (11). Thus, we can investigate
the solution of Eq. (11).

5. Solution procedures and means square displacement

In this section, we propose the analytical solutions and the mean square dis-
placement of the proposed model Eqs. (11)-(12). We use the Fourier and Laplace
transformations. The method is useful and practical to get the solutions of the
fluid models. We begin our resolution by solving the fractional heat equation (12).
The solution of Eq. (12) is already done in previous works, see in [26, 27]. We first
apply the Fourier transform, we have

Dα,ρ
c u(q, s) =

2q

Prπs
u(0, τ)− q2

Pr
u(q, s). (32)

We recall in the next line, the Laplace transform of Eq. (32), we obtain the following
relationship

sαū(q, s)− sα−1ū(q, 0) +
q2

Pr
ū(q, s) =

2q

Prπs
,

sαū(q, s) +
q2

Pr
ū(q, s) =

2q

Prπs
,

ū(q, s) =
2q

Prπs
(
sα + q2

Pr

) ,
ū(q, s) =

2

qπ

{
1

s
− sα−1

sα + q2

Pr

}
. (33)
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Applying the inverse of the Laplace transformation Eq.(33) and its inverse of Fourier
transform, thus the solution of the fractional heat equation (12) is given by

u(x, τ) = 1− 2

π

∫ +∞

0

sin qx

q
Eα

(
− q

2

Pr

(
τρ

ρ

)α)
dq. (34)

The proofs are already in [26, 27]. We obtain a particular case when α = 1. We
represent the solution as the following form

u(x, τ) = 1− erf

 x

2
√

1
Pr

τρ

ρ

 . (35)

We will analyze, for this case, the impact of the order ρ in the diffusion processes.
The novelty in our paper is the procedure for getting the solution to Eq. (11). The
first step consists of applying the Fourier and the Laplace transformation on Eq.
(11) as in Eqs.(32)-(33), we get the following relations

sαv̄(q, s)− sα−1v̄(q, 0) + νq2v̄(q, s) =
2νq

πs
+ βū(q, s),

sαv̄(q, s) + νq2v̄(q, s) =
2νq

πs
+ βū(q, s),

2νq

πs (sα + νq2)
+

2qβ

Prπs
(
sα + q2

Pr

)
(sα + νq2)

= v̄(q, s). (36)

Note that we rewrite Eq. (36) as the following form

v̄(q, s) =
2νq

πs (sα + νq2)
+

2β

Prqπs
(
ν − 1

Pr

) { 1

sα + q2

Pr

− 1

sα + νq2

}
. (37)

When we apply the inverse of the Laplace and the Fourier transformations, we get
the solution of the fractional equation described by Eq. (11). We have the form

v(x, τ) = m(x, τ) + n(x, τ)− p(x, τ), (38)

where the function m is given by the following equation

m(x, τ) = 1− 2

π

∫ +∞

0

sin qx

q
Eα

(
−νq2

(
τρ

ρ

)α)
dq. (39)

Note that when the orders of the fractional derivative satisfy the condition α = ρ =
1. We express the function m in the following form

m(x, τ) = 1− erf
(

x

2
√
ντ

)
= erfc

(
x

2
√
ντ

)
. (40)

The function n is given by the following equation

n(x, τ) =
2β

Prπ
(
ν − 1

Pr

) ∫ +∞

0

sin qx

q
ταEα,1+α

(
− q

2

Pr

(
τρ

ρ

)α)
dq. (41)

Note that when the order α = ρ = 1, we represent the function n as the following
form

n(x, τ) =
2β

Prπ
(
ν − 1

Pr

) ∫ +∞

0

sin qx

q
τE1,2

(
− q

2

Pr
(τ)

)
dq. (42)
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The following term represents the similarity variable of the fractional heat equation
(12)

θ(x, τ) =
x

2
√

1
Pr τ

, (43)

see in [28]. We make some comments on this function (43). The similarity variable
is essential in the diffusion equations because it can be used to express the exact
solution of the fractional diffusion equation without using the present method. Note
that the solution with the similarity variable is not the subject of research in our
paper. Our article provided the form of the similarity variable. We can use it to
determine the exact solution of the fractional heat equation in future work. Finally,
we represent the function n as the following form

p(x, τ) =
2β

Prπ
(
ν − 1

Pr

) ∫ +∞

0

sin qx

q
ταEα,1+α

(
−νq2

(
τρ

ρ

)α)
dq. (44)

We finish this section by recalling the solution of the proposed model in two special
cases. Let’s be the case α = 1, and we suppose the order ρ is an arbitrary positive
number. Then the solution of the fractional diffusion equation perturbed by the
fractional heat equation is represented as the following form

v(x, τ) = erfc (δ) + n(x, τ)− p(x, τ), , (45)

where the function δ(x, τ) = x

2
√
ν τ

ρ

ρ

represents a similarity variable. In the next

section, we will study the impact of the order ρ on the diffusion processes using Eq.
(45). Does the fractional-order affect the diffusion processes of the proposed model?
We will answer the question in the graphical representation section. Furthermore,
the paper brings a new procedure of getting the solutions to the proposed model.
We will also analyze the impact of the Prandtl number on the diffusion processes.

The second part of this paper consists of determining the mean square displace-
ment for fractional heat equation (12) and the fractional reaction equation (11), for
brief physical interpretations. In this subsection, the initial condition is given in
Eq. (13) is reconsidered in the form

u(x, 0) = v(x, 0) = δ(x), (46)

where δ represents the Dirac function, we not consider the condition (13) in this
part. Note that the following equation gives the formula from which we obtain the
mean square displacement [24, 25] in terms of Laplace transform

< x2 > (s) = lim
q→0
−d

2ū(q, s)

dq2
, (47)

for the fractional heat equation (12). The mean square displacement [24, 25] for
the fractional reaction equation (11) in terms of Laplace transform follows from the
following relationship

< x2 > (s) = lim
q→0
−d

2v̄(q, s)

dq2
. (48)

Combining the Fourier transform of Eq. (12) and Eq. (46), the mean square
displacement for the fractional heat equation in the context of Caputo-Liouville
generalized fractional derivative is given by

< x2 > (τ) = L−1ρ
[

lim
q→0
−d

2ū(q, s)

dq2

]
= 2Pr

(
τρ

ρ

)α
, (49)
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where ū(q, s) = sα−1

sα+Prq2 . From Eq. (49), we give the following physical interpreta-

tion. The fractional heat equation (12) generates the following diffusion processes.
We obtain the normal diffusion when the orders respect the relation αρ = 1. The
sub-diffusion process is obtained with a relationship αρ < 1. The super-diffusion
process is generated with the relation 1 < αρ < 2. The ballistic diffusion is obtained
with the condition αρ = 2 and the hyper-diffusion process with αρ > 2. We use
the Fourier transform of fractional diffusion-reaction (11) and with Eq. (48), thus
the main square displacement is given by the following relationship

< x2 > (τ) = L−1ρ
[

lim
q→0
−d

2v̄(q, s)

dq2

]
= 2ν

(
τρ

ρ

)α
+ 2β (ν + Pr)

(
τρ

ρ

)2α

, (50)

where the details of the Fourier transform is given by

ū(q, s) =
sα−1

sα + νq2
+

sα−1

s2α + (ν + Pr) q2sα + Prνq4
. (51)

For a short time diffusion process, the value of the mean square displacement
described in Eq. (50), is equals to the first term of the sum in Eq. (50) that is

< x2 > (τ) ≈ 2ν

(
τρ

ρ

)α
. (52)

In a physical view, we obtain the same diffusion processes as in fractional heat equa-
tion: the normal diffusion, the subdiffusion, the superdiffusion, the hyper diffusion,
the ballistic diffusion processes.

For a long time of the diffusion process, note that Eq. (50) is dominated by the
second member into the sum. Thus it can be rewritten as the form

< x2 > (τ) ≈ 2β (ν + Pr)

(
τρ

ρ

)2α

. (53)

In a physical view, we obtain the normal diffusion when the orders respect the
relation αρ = 1/2. We have the sub-diffusion process when the relationship αρ <
1/2 is held. We get the super-diffusion process in the condition 1/2 < αρ < 1. The
ballistic diffusion and hyper-diffusion processes are obtained respectively under the
conditions αρ = 1 and αρ > 1.

6. Graphics and discussions

In this section, we make some analyses related to the presented model. We
analyze the impact of the order ρ and the Prandtl number Pr in the diffusion
processes. In this section, the order ρ satisfies the conditions ρ ≤ 1 and ρ ≥ 1. The
Prandtl number describes the values Pr = 5, 6, 7, 8, 9. In this section, we fix the
order α = 1, ν = 1, and the time to τ = 0.1s. We will also analyze the effect of the
fractional heat equation (12) on the fractional diffusion-reaction equation (11).

In Figure 1, we fix the Prandtl number to Pr = 5. We depict the solutions
of the fractional heat equation represented by Eq. (12) for different values of the
fractional order ρ. The order ρ satisfies the condition ρ ≤ 1. We note when the
order ρ increases into (0, 1], we remark all the curves decrease rapidly following
the direction of the arrow with the increase of the state variable x. Physically,
we explain these behaviors by the fact we are in the sub-diffusion process context.
In conclusion, the order ρ has a significant impact on the diffusion process for the
fractional heat equation (12). The order ρ has an acceleration effect in the diffusion
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Figure 1. Solution of fractional heat equation for ρ ≤ 1.

processes. When it increases, the solutions decrease and converge rapidly to the
normal diffusion.

In Figure 2, we fix the Prandtl number to Pr = 5. We depict the solutions of
the fractional diffusion equation represented by Eq. (11). The previous fractional
heat equation (12) is the reaction term for Eq. (11), for different values of the
order ρ. The order ρ satisfies the condition ρ ≤ 1. Note in the previous graphical
representation; we consider the fractional heat equation (12) as the reaction term
of Eq. (11). We notice when the order ρ increases into (0, 1], all the curves decrease
with retardation, see in Figure 1. In other words, the fractional heat equation (12)
as a reaction term decelerates the diffusion process in Eq. (11). Physically, the
decrease in the solutions of Eq. (11) is generated by the sub-diffusion process into
the fractional diffusion equation (12). The effect of the order ρ does not change.

In Figure 3, we fix the Prandtl number to Pr = 5. We depict the solutions of the
fractional heat equation represented by Eq. (11) for different values of the order ρ.
The order ρ satisfies the condition ρ ≥ 1. We remark when the order ρ increases
and satisfies the condition ρ ≥ 1, all the curves decrease fastly and do not converge
to the normal diffusion. All the trajectories converge to zero. Physically, we explain
the fast decrease in the solution of Eq. (12) by the super-diffusion process. The
order ρ accelerate the diffusion process fastly in Eq. (12). The arrow indicates the
effect ρ, see in Figure 3.

In Figure 4, we fix the Prandtl number to Pr = 5. We depict the solutions of
the fractional diffusion-reaction equation represented by Eq. (11). We conserve the
previous fractional heat equation (12) as the reaction term. The order ρ satisfies
the following condition ρ ≥ 1. We notice when the order ρ increases and satisfies
the condition posed ρ ≥ 1, all the curves decrease with a retardation effect and
converge to zero. Note here we have a slight decrease in the curves of the solutions
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Figure 2. Solution of fractional diffusion reaction equation for ρ ≤ 1.
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Figure 3. Solution of fractional heat equation for ρ ≥ 1.

of Eq. (11). In other words, when we consider the fractional heat equation (12)
as a reaction term, we notice a retardation effect in the diffusion process of Eq.
(11). Physically, the decrease in the solutions of Eq. (11) is generated by the
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Figure 4. Solution of fractional diffusion reaction equation for ρ ≥ 1.

super-diffusion process of the fractional heat equation (12). See the arrow for the
direction of the diffusion process, and the effect of the order ρ does not change.

Consider the order ρ = 0.6 fixed and the Prandtl number increase in tolerable
values Pr ∈ {5; 6; 7; 8; 9}. In Figure 5, we depict the solutions of the fractional heat
equation (12) under the previous assumptions. We note all the curves decrease
and converge to zero. The Prandtl value has the same effect as the order ρ when
it satisfies the condition ρ ≤ 1. The increase in the Prandtl number generates a
decrease in all the solutions of Eq. (12).

Consider the order ρ = 0.6 fixed and the Prandtl number increase in tolerable
values Pr ∈ {5; 6; 7; 8; 9}. In Figure 6, we depict the solutions of the fractional
diffusion equation (11) with reaction term (12), under the previous assumptions.
We note all the curves decrease and but do not converge to zero. In other words,
according to one another, the solutions increase when the Prandtl number increases.
We note when we fix the order ρ = 0.6, and the Prandtl number increases, we notice
after a certain time, the Prandtl number does not impact the diffusion process. The
solutions of Eq. (11) become globally asymptotically stable after a certain time. We
observe when the Prandtl number converges to his extreme value, all the solutions
converge to the normal diffusion.

In conclusion, we note the order ρ has an acceleration effect in the fractional reac-
tion equation when the fractional heat equation generates the sub-diffusion process.
The order ρ has a retardation effect into the fractional reaction equation when the
fractional heat equation generates the super-diffusion process. The Prandtl num-
ber Pr impacts the solution of the fractional diffusion-reaction equation (11) at the
beginning of the diffusion process. We notice that after a certain time, it hasn’t
any impact on the solution of the fractional diffusion-reaction equation (11).
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Figure 5. Solution of fractional heat equation for Pr ∈ {5; 6; 7; 8; 9}.
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Figure 6. Solution of fractional diffusion reaction equation for
Pr ∈ {5; 6; 7; 8; 9}.

7. Conclusion

In this paper, we have introduced a new method for getting the solution of the
fractional diffusion equation with a reaction term. The reaction term considered
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in this paper as input satisfies the fractional heat equation. We have analyzed the
impact of the order ρ into the diffusion processes. We have noted a retardation
effect into the diffusion process when the order ρ satisfies the condition ρ ≤ 1
and acceleration impact when it satisfies the condition ρ ≥ 1. We also note the
significant effect of the Prandtl number on the diffusion process of the fractional heat
equation. It hasn’t any impact on the diffusion process of the fractional diffusion-
reaction equation after a certain value of the state variable.
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