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RELATIVE (p, q, t)L-TH ORDER AND RELATIVE (p, q, t)L-TH

LOWER ORDER ORIENTED GROWTH PROPERTIES OF

COMPOSITE ENTIRE FUNCTIONS

TANMAY BISWAS

Abstract. In the paper we study some maximum term and maximum mod-
ulus oriented growth properties of composite entire functions on the basis of
their relative (p, q, t)L-th order and relative (p, q, t)L-th lower order of entire

function with respect to another entire function.

1. Introduction, Definitions and Notations.

Let C be the set of all finite complex numbers and f be an entire function

defined on C. The maximum modulus function and maximum term of f =
∞∑

n=0
anz

n

on |z| = r are respectively denoted as Mf (r) and µf (r) and defined as max (
|f(z)| : |z| = r) and max

n≥0
(|an|rn). When f is non-constant, then Mf (r) is strictly

increasing and continuous and its inverse Mf
−1 : (|f(0)|,∞) → (0,∞) exists and is

such that lim
s→+∞

Mf
−1(s) = ∞. Analogously, µ−1

f (r) is also an increasing function

of r. For x ∈ [0,∞) and k ∈ N, we define exp[k] x = exp(exp[k−1] x) and log[k] x =

log(log[k−1] x) where N is the set of all positive integers. We also denote log[0] x = x,

log[−1] x = expx, exp[0] x = x and exp[−1] x = log x. Further we assume that
throughout the present paper p, q, m, n, l always denote positive integers and t ∈
N∪ (−1, 0). Recently Shen et al.[19] introduce the definitions of the (m,n)-φ order
and (m,n)-φ lower order of a meromorphic function. For detail about meromorphic
function, one may see [11]. Using the inequality Tf (r) ≤ logMf (r) ≤ 3Tf (2r)
{cf.[11]}, for an entire function f , one may easily verify the following definition:

Definition 1 Let φ : [0,+∞) → (0,+∞) be a non-decreasing unbounded
function. The (m,n)-φ order ρ(m,n)(f, φ) and (m,n)-φ lower order λ(m,n)(f, φ) of
an entire function f are defined as:

ρ(m,n)(f, φ)
λ(m,n)(f, φ)

= lim
r→+∞

sup
inf

log[m] Mf (r)

log[n] φ(r)
,
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where m ≥ n.
If we take m = p, n = 1 and φ(r) = log[q−1] r, then the above definition

reduces to the following definition:
Definition 2 The (p, q)-th order and (p, q)-th lower order of an entire function

f are defined as:

ρ(p,q)(f)
λ(p,q)(f)

= lim
r→+∞

sup
inf

log[p] Mf (r)

log[q] r
.

Definition 2 avoids the restriction p ≥ q of the original definition of (p, q)-th
order (respectively (p, q)-th lower order) of entire functions introduced by Juneja
et al. [12].

However the above definition is very useful for measuring the growth of
entire functions. If p = l and q = 1 then we write ρ(l,1)(f) = ρ(l)(f) and λ(l,1)(f) =
λ(l)(f) where ρ(l)(f) and λ(l)(f) are respectively known as generalized order and
generalized lower order of entire function f . For details about generalized order
one may see [14]. Also for p = 2 and q = 1, we respectively denote ρ(2,1)(f) and
λ(2,1)(f) by ρ(f) and λ(f) which are classical growth indicators such as order and
lower order of entire function f .

With the help of the inequalities µf (r) ≤ Mf (r) ≤ R
R−rµf (R) (cf. [15] ),

for 0 ≤ r < R one may verify that

ρ(p,q)(f)
λ(p,q)(f)

= lim
r→+∞

sup
inf

log[p] µf (r)

log[q] r
.

Throughout the present paper we shall fix the function L ≡ L(r) is a pos-
itive continuous function increasing slowly i.e.,L(ar) ∼ L(r) as r → +∞ for every

positive constant ‘a’ i.e., lim
r→+∞

L(ar)
L(r) = 1 where L ≡ L(r) is a positive continuous

function increasing slowly. Considering L(r) = log r and a = 1020, one can easily

verify that lim
r→+∞

L(ar)
L(r) = 1. In this connection, Somasundaram and Thamizha-

rasi [13] introduced the notions of L-order and L-lower order for entire functions.
The more generalized concept of L-order and L-lower order for entire function
are (p, q, t)L-th order and (p, q, t)L-th lower order. If we take m = p, n = 1

and φ(r) = log[q−1] r · exp[t+1] L(r), then Definition 1 turn into the definitions of
(p, q, t)L-th order and (p, q, t)L-th lower order of an entire function f which are as
follows (see [4, p.4]):

ρLf (p, q, t)

λL
f (p, q, t)

= lim
r→+∞

sup
inf

log[p] Mf (r)

log[q] r + exp[t] L(r)
.

Using the inequalities µf (r) ≤ Mf (r) ≤ R
R−rµf (R) (cf. [15] ), for 0 ≤ r < R

one may verify that

ρLf (p, q, t)

λL
f (p, q, t)

= lim
r→+∞

sup
inf

log[p] µf (r)

log[q] r + exp[t] L(r)
.

Mainly the growth investigation of entire functions has usually been done
through their maximum moduli in comparison with those of exponential function.
But if one is paying attention to evaluate the growth rate of any entire with respect
to a new entire function, the notions of relative growth indicators [1, 2] will come.
Extending this notion, one may introduce the definitions of relative (p, q, t)L-th
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order and relative (p, q, t)L-th lower order of an entire function f with respect to
another entire function g in the following way:

Definition 3 [4] Let f and g be entire functions. The relative (p, q, t)L-order

denoted as ρ
(p,q,t)L
g (f) and relative (p, q, t)L-lower order denoted as λ

(p,q,t)L
g (f) of

an entire function f with respect to another entire function g are define by

ρ
(p,q,t)L
g (f)

λ
(p,q,t)L
g (f)

= lim
r→+∞

sup
inf

log[p] M−1
g (Mf (r))

log[q] r + exp[t] L(r)
.

In [8] an alternative definition of relative (p, q, t)L-th order and relative
(p, q, t)L-th lower order of f with respect to g in terms of their maximum terms is
given in the following way:

Definition 4 [8] The growth indicators ρ
(p,q,t)L
g (f) and λ

(p,q,t)L
g (f) of an entire

function f(z) with respect to another entire function g(z) are defined as:

ρ
(p,q,t)L
g (f)

λ
(p,q,t)L
g (f)

= lim
r→+∞

sup
inf

log[p] µ−1
g (µf (r))

log[q] r + exp[t] L(r)
.

In fact, equivalence of Definition 3 and Definition 4 is established in[8].
However, Song et al. [18] have proved that if f and g are transcendental

entire functions with 0 < λ(f) ≤ ρ(f) < ∞, then

lim
r→+∞

log[2] Mf◦g(r)

log[2] Mf (r)
= +∞.

Singh et al. [17] have proved the following theorems:
Theorem A. Let f and g be entire functions of positive lower order and of finite
order, then

lim
r→+∞

log[2] Mf◦g(r)

log[2] Mf (rA)
= +∞

for every positive constant A.
Theorem B. Let f and g be entire functions of finite order wit h 0 < ρ(g) ≤
ρ(f) < ∞. Then

lim
r→+∞

log[2] Mf◦g(r)

log[2] Mf (exp rρ(f))
= 0.

In the paper we extend the above results under some different conditions
and study some maximum term and maximum modulus oriented growth properties
of composite entire functions on the basis of their relative (p, q, t)L-th order and
relative (p, q, t)L-th lower order of entire function with respect to another entire
function. In fact some recent works related to the growth of composite entire
functions have also been explored in [3] to [8]. We do not explain the standard
definitions and notations in the theory of entire functions as those are available in
[20].

2. Lemmas.

In this section we present some lemmas which will be needed in the sequel.
Lemma 1 [15] Let f and g be entire functions. Then for every α > 1 and

0 < r < R,

µf◦g(r) ≤
α

α− 1
µf

( αR

R− r
µg(R)

)
.
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Lemma 2 [16] If f and g are any two entire functions. Then for all sufficiently
large values of r,

µf◦g(r) ≥
1

2
µf

( 1

16
µg

(r
4

))
.

Lemma 3 [9] Let f and g are any two entire functions with g(0) = 0. Also let

β satisfy 0 < β < 1 and c(β) = (1−β)2

4β . Then for all sufficiently large values of r,

Mf (c(β)Mg(βr)) ≤ Mf◦g(r) ≤ Mf (Mg(r)).

In addition if β = 1
2 , then for all sufficiently large values of r,

Mf◦g(r) ≥ Mf

(1
8
Mg

(r
2

))
.

Lemma 4 [10] If f is entire and α > 1, 0 < β < α, then for all sufficiently large
r,

µf (αr) ≥ βµf (r).

3. Theorems.

In this section we present the main results of the paper.

Theorem 1 Let f , g and h be entire functions such that ρLg (m,n, t) < λ
(p,q,t)L
h (f) ≤

ρ
(p,q,t)L
h (f) < +∞. Then for any β > 1,

(i) lim
r→+∞

log[p] µ−1
h (µf◦g(r))

log[p+q−m] µ−1
h (µf (r))

= 0 if q + 1 ≤ m and

exp[t] L(µg(βr)) = o(exp[m−q−1]((log[q−1] r) exp[t+1] L(r))α) as r → +∞ and for

some α < λ
(p,q,t)L
h (f)

and

(ii) lim
r→+∞

log[p] µ−1
h (µf◦g(r))

log[p−1] µ−1
h (µf (r))

= 0 if q + 1 > m and

exp[t] L(µg(βr)) = o(((log[q−1] r) exp[t+1] L(r))α) as r → +∞ and for some α <

λ
(p,q,t)L
h (f).
Proof Let us consider β > 1, and ξ > α

α−1 . Now taking R = βr in Lemma 1
and in view of Lemma 4 we have for all sufficiently large values of r that

µf◦g(r) ≤ µf

( αβξ

(β − 1)
µg(βr)

)
.

Since µ−1
h (r) is an increasing function of r, it follows from above that for all suffi-

ciently large values of r we have

log[p] µ−1
h (µf◦g(r)) ≤ log[p] µ−1

h

(
µf

( αβξ

(β − 1)
µg(βr)

))
,

i.e., log[p] µ−1
h (µf◦g(r)) ≤

(ρ
(p,q,t)L
h (f) + ε)(log[q] µg(βr) + exp[t] L(µg(βr))) +O(1). (1)

Case I. Let q + 1 ≤ m. Then we have from (1) for all sufficiently large values
of r that

log[p] µ−1
h (µf◦g(r)) ≤ (ρ

(p,q,t)L
h (f) + ε)×

(exp[m−q−1]((log[n−1] βr) exp[t+1] L(r))(ρ
L
g (m,n,t)+ε)+exp[t] L(µg(βr))+O(1)). (2)
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Case II. Let q + 1 > m. Then for all sufficiently large values of r we get from
(1) that

log[p] µ−1
h (µf◦g(r)) ≤ (ρ

(p,q,t)L
h (f) + ε)×

(((log[n−1] βr) exp[t+1] L(r))(ρ
L
g (m,n,t)+ε) + exp[t] L(µg(βr)) +O(1)). (3)

Now we obtain for all sufficiently large values of r that

log[p−1] µ−1
h (µf (r)) ≥ ((log[q−1] r) exp[t+1] L(r))(λ

(p,q,t)L
h (f)−ε) (4)

i.e., log[p+q−m] µ−1
h (µf (r)) ≥ exp[m−q−1]((log[q−1] r) exp[t+1] L(r))(λ

(p,q,t)L
h (f)−ε).

(5)
Now from (2) and (5) we get for all sufficiently large values of r that

log[p] µ−1
h (µf◦g(r))

log[p+q−m] µ−1
h (µf (r))

≤
(ρ

(p,q,t)L
h (f) + ε)

exp[m−q−1]((log[q−1] r) exp[t+1] L(r))(λ
(p,q,t)L
h (f)−ε)

×

(exp[m−q−1]((log[n−1] βr) exp[t+1] L(r))(ρ
L
g (m,n,t)+ε)+exp[t] L(µg(βr))+O(1)). (6)

Since ρLg (m,n, t) < λ
(p,q,t)L
h (f), we can choose ε(> 0) in such a way that

ρLg (m,n, t) + ε < λ
(p,q,t)L
h (f)− ε. (7)

Now let exp[t] L(µg(βr)) = o(exp[m−q−1]((log[q−1] r) exp[t+1] L(r))α) as r → +∞
and for some α < λ

(p,q,t)L
h (f).

As α < λ
(p,q,t)L
h (f) we can choose ε(> 0) in such a way that

α < λ
(p,q,t)L
h (f)− ε. (8)

Since exp[t] L(µg(βr)) = o(exp[m−q−1]((log[q−1] r) exp[t+1] L(r))α) as r → +∞ we
get using (8) that

exp[t] L(µg(βr))

exp[m−q−1]((log[q−1] r) exp[t+1] L(r))α
→ 0 as r → +∞

i.e.,
exp[t] L(µg(βr))

exp[m−q−1]((log[q−1] r) exp[t+1] L(r))(λ
(p,q,t)L
h (f)−ε)

→ 0 as r → +∞. (9)

Now in view of (6), (7) and (9) we obtain that

lim
r→+∞

log[p] µ−1
h (µf◦g(r))

log[p+q−m] µ−1
h (µf (r))

= 0.

Thus the first part of the theorem is established. Similarly in view of (3) and
(4), one can easily verify the second part of the theorem.

The following theorem can be carried out in the line of Theorem 1 and with
the help of Lemma 3 and therefore its proof is omitted:

Theorem 2 Let f , g and h be entire functions such that ρLg (m,n, t) < λ
(p,q,t)L
h (f) ≤

ρ
(p,q,t)L
h (f) < +∞. Then for any β > 1,

(i) lim
r→+∞

log[p] M−1
h (Mf◦g(r))

log[p+q−m] M−1
h (Mf (r))

= 0 if q + 1 ≤ m and
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exp[t] L(Mg(r)) = o(exp[m−q−1]((log[q−1] r) exp[t+1] L(r))α) as r → +∞ and for

some α < λ
(p,q,t)L
h (f)

and

(ii) lim
r→+∞

log[p] M−1
h (Mf◦g(r))

log[p−1] M−1
h (Mf (r))

= 0 if q + 1 > m and

exp[t] L(Mg(r)) = o(((log[q−1] r) exp[t+1] L(r))α) as r → +∞ and for some α <

λ
(p,q,t)L
h (f).
Remark 1 Theorem 1 and Theorem 2 remain valid with “limit inferior ” instead

of “ limit ”, if we take λL
g (m,n, t) < λ

(p,q,t)L
h (f) ≤ ρ

(p,q,t)L
h (f) < +∞ instead of

ρLg (m,n, t) < λ
(p,q,t)L
h (f) ≤ ρ

(p,q,t)L
h (f) < +∞ and the other conditions remain the

same.
Theorem 3 Let f , g, h and k be entire functions with ρ

(p,q,t)L
h (f) < ∞,

λ
(l,n,t)L
k (g) > 0 and ρLg (m,n, t) < +∞ where q + 1 ≥ m. Then for any β > 1,

(i) if exp[t] L(µg(βr)) = o(log[l] µ−1
k (µg(r))) as r → +∞, then

lim sup
r→+∞

log[p+1] µ−1
h (µf◦g(r))

log[l] µ−1
k (µg(r)) + exp[t] L(µg(βr))

≤
ρLg (m,n, t)

λ
(l,n,t)L
k (g)

and
(ii) if exp[t] L(Mg(r)) = o(log[l] M−1

k (Mg(r))) as r → +∞, then

lim sup
r→+∞

log[p+1] M−1
h (Mf◦g(r))

log[l] M−1
k (Mg(r)) + exp[t] L(Mg(r))

≤
ρLg (m,n, t)

λ
(l,n,t)L
k (g)

.

Proof Since log
(

1+exp[t] L(µg(βr))+O(1)

log[q] µg(βr)

)
<

1+exp[t] L(µg(βr))+O(1)

log[q] µg(βr)
we have from

(1) for all sufficiently large values of r that

log[p+1] µ−1
h (µf◦g(r)) ≤ log(ρ

(p,q,t)L
h (f) + ε) + log[q+1] µg(βr)

+ log
(1 + exp[t] L(µg(βr)) +O(1)

log[q] µg(βr)

)

i.e., log[p+1] µ−1
h (µf◦g(r)) ≤ log(ρ

(p,q,t)L
h (f) + ε) + + log[q+1] µg(βr)

+
1 + exp[t] L(µg(βr)) +O(1)

log[q] µg(βr)

i.e., log[p+1] µ−1
h (µf◦g(r)) ≤ log[m] µg(βr)

+ log(ρ
(p,q,t)L
h (f) + ε) +

1 + exp[t] L(µg(βr)) +O(1)

log[q] µg(βr)

i.e., log[p+1] µ−1
h (µf◦g(r)) ≤ (ρLg (m,n, t) + ε)[log[n](βr) + exp[t] L(βr)]

+ log(ρ
(p,q,t)L
h (f) + ε) +

1 + exp[t] L(µg(βr)) +O(1)

log[q] µg(βr)

i.e., log[p+1] µ−1
h (µf◦g(r)) ≤ (ρLg (m,n, t) + ε)[log[n] r + exp[t] L(r) +O(1)]
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+ log(ρ
(p,q,t)L
h (f) + ε) +

1 + exp[t] L(µg(βr)) +O(1)

log[q] µg(βr)
. (10)

Again we have for all sufficiently large values of r that

log[l] µ−1
k (µg(r)) ≥ (λ

(l,n,t)L
k (g)− ε)(log[n] r + exp[t] L(r))

i.e., log[n] r + exp[t] L(r) ≤
log[l] µ−1

k (µg(r))

(λ
(l,n,t)L
k (g)− ε)

. (11)

Hence from (10) and (11), it follows for all sufficiently large values of r that

log[p+1] µ−1
h (µf◦g(r)) ≤ O(1) +

(ρLg (m,n, t) + ε

λ
(l,n,t)L
k (g)− ε

)
· log[l] µ−1

k µg(r)

+ log(ρ
(p,q,t)L
h (f) + ε) +

1 + exp[t] L(µg(βr)) +O(1)

log[q] µg(βr)

i.e.,
log[p+1] µ−1

h (µf◦g(r))

log[l] µ−1
k (µg(r)) + exp[t] L(µg(βr))

≤ O(1)

log[l] µ−1
k (µg(r)) + exp[t] L(µg(βr))

+

(ρLg (m,n, t) + ε

λ
(l,n,t)L
k (g)− ε

)
·

log[l] µ−1
k µg(r)

log[l] µ−1
k (µg(r)) + exp[t] L(µg(βr))

+
log(ρ

(p,q,t)L
h (f) + ε) log[q] µg(βr) + 1 + exp[t] L(µg(βr)) +O(1)

(log[l] µ−1
k (µg(r)) + exp[t] L(µg(βr))) log

[q] µg(βr)

i.e.,
log[p+1] µ−1

h µf◦g(r)

log[l] µ−1
k (µg(r)) + exp[t] L(µg(βr))

≤
O(1)

exp[t] L(µg(βr))

log[l] µ−1
k (µg(r))

exp[t] L(µg(βr))
+ 1

+

(
ρL
g (m,n,t)+ε

λ
(l,n,t)L
k (g)−ε

)
1 +

exp[t] L(µg(βr))

log[l] µ−1
k (µg(r))

+
1 +

O(1)+1+log[q] µg(βr)·log(ρ(p,q,t)L
h (f)+ε)

exp[t] L(µg(βr))(
1 +

log[l] µ−1
k (µg(r))

exp[t] L(µg(βr))

)
log[q] µg(βr)

. (12)

Since exp[t] L(µg(βr)) = o(log[l] µ−1
k (µg(r))) as r → +∞ and ε(> 0) is arbitrary we

obtain from (12) that

lim sup
r→+∞

log[p+1] µ−1
h (µf◦g(r))

log[l] µ−1
k (µg(r)) + exp[t] L(µg(βr))

≤
ρLg (m,n, t)

λ
(l,n,t)L
k (g)

.

Thus from above, the first part of the theorem is established.
Similarly, the second part of the theorem can be established from Lemma 3 and

therefore their proofs are omitted.
Remark 2 Theorem 3 remains valid with “limit inferior ” instead of “ limit

superior”, if we take λ
(p,q,t)L
h (f) < +∞ instead of ρ

(p,q,t)L
h (f) < +∞ and the other

conditions remain the same.
Remark 3 In Theorem 3, if we replace either “λ

(l,n,t)L
k (g)” by “ρ

(l,n,t)L
k (g)”, or

“ρLg (m,n, t)” by “λL
g (m,n, t)”, then Theorem 3 remains valid with “limit inferior”

replaced by “limit superior”.
Now we state the following theorem without its proof as it can be carried

out in the line of Theorem 3:
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Theorem 4 Let f , g and h be entire functions with 0 < λ
(p,q,t)L
h (f) ≤ ρ

(p,q,t)L
h (f) <

+∞ and ρLg (m,n, t) < +∞ where q + 1 ≥ m and q = n. Then for any β > 1,

(i) if exp[t] L(µg(βr)) = o(log[p] µ−1
h (µf (r))) as r → +∞, then

lim sup
r→+∞

log[p+1] µ−1
h (µf◦g(r))

log[p] µ−1
h (µf (r)) + exp[t] L(µg(βr))

≤
ρLg (m,n, t)

λ
(p,q,t)L
h (f)

and
(ii) if exp[t] L(Mg(r)) = o(log[p] M−1

h (Mf (r))) as r → +∞, then

lim sup
r→+∞

log[p+1] M−1
h Mf◦g(r)

log[p] M−1
h (Mf (r)) + exp[t] L(Mg(r))

≤
ρLg (m,n, t)

λ
(p,q,t)L
h (f)

.

Remark 4 Theorem 4 remains valid with “limit inferior ” instead of “limit
superior”, if we take either “0 < λ

(p,q,t)L
h (f) < +∞” or “0 < ρ

(p,q,t)L
h (f) < +∞”

instead of “0 < λ
(p,q,t)L
h (f) ≤ ρ

(p,q,t)L
h (f) < +∞” and the other conditions remain

the same.
Remark 5 In Theorem 4, if we replace “ρLg (m,n, t)” by “λL

g (m,n, t)”, then
Theorem 4 remains valid with “limit inferior” replaced by “limit superior”.

Theorem 5 Let f, g and h be any functions such that 0 < λ
(p,q,t)L
h (f) ≤

ρ
(p,q,t)L
h (f) < +∞, ρLg (m,n, t) > 0 where m > q ≥ n. Then for a real number

x,

lim sup
r→+∞

log[p] µ−1
h (µf◦g(r))

(log[p] µ−1
h (µf (r)))1+x

= ∞

and

lim sup
r→+∞

log[p] M−1
h (Mf◦g(r))

(log[p] M−1
h (Mf (r)))1+x

= ∞.

Proof If x is such that 1 + x ≤ 0, then the theorem is obvious. So we suppose
that 1 + x > 0. Now in view of Lemma 2 and Lemma 4, we have for all sufficiently
large values of r that

µf◦g(r) ≥ µf

( 1

48
µg

(r
4

))
.

Since µ−1
h (r) is an increasing function, it follows from above for a sequence of values

of r tending to infinity that

log[p] µ−1
h (µf◦g(r)) ≥ log[p] µ−1

h

(
µf

( 1

48
µg

(r
4

)))

i.e., log[p] µ−1
h (µf◦g(r)) ≥ (λ

(p,q,t)L
h (f)− ε)

[
log[q]

( 1

48
µg

(r
4

))
+exp[t] L

( 1

48
µg

(r
4

))]

i.e., log[p] µ−1
h (µf◦g(r)) ≥ (λ

(p,q,t)L
h (f)− ε)

[
log[q]

( 1

48
µg

(r
4

))
+exp[t] L

(
µg

(r
4

))]
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i.e., log[p] µ−1
h (µf◦g(r)) ≥ (λ

(p,q,t)L
h (f)− ε)

[
log[m−1]

( 1

48
µg

(r
4

))
+exp[t] Lµg

(r
4

))]
i.e., log[p] µ−1

h (µf◦g(r)) ≥ (λ
(p,q,t)L
h (f)− ε)

[
log[n−1]

(r
4

))
exp[t+1] L(r)

]ρL
g (m,n,t)−ε

+O(1) + exp[t] L
(
µg

(r
4

))
. (13)

where we choose 0 < ε < min{λ(p,q,t)L
h (f), ρLg (m,n, t)}.

Also for all sufficiently large values of r we get that

log[p] µ−1
h (µf (r)) ≤ (ρ

(p,q,t)L
h (f) + ε)(log[q] r + exp[t] L(r))

i.e., (log[p] µ−1
h (µf (r)))

1+x ≤ (ρ
(p,q,t)L
h (f) + ε)1+x · [log[q] r + exp[t] L(r)]1+x. (14)

Therefore from (13) and (14), it follows for a sequence of values of r tending to
infinity that

log[p] µ−1
h (µf◦g(r))

(log[p] µ−1
h (µf (r)))1+x

≥

O(1) + (λ
(p,q,t)L
h (f)− ε)

((
log[n−1]

(
r
4

))
exp[t+1] L(r)

)ρL
g (m,n,t)−ε

+ exp[t] L
(
µg

(
r
4

))
(ρ

(p,q,t)L
h (f) + ε)1+x · (log[q] r + exp[t] L(r))1+x

,

thus the first part of the theorem follows from above.
Since M−1

h (r) is an increasing function of r, by similar reasoning as above the
second part of the theorem follows from Lemma 3 and therefore the proof is omitted.

Remark 6 The conclusion of Theorem 5 can also be drawn if we take 0 <
ρ
(p,q,t)L
h (f) < +∞ instead of 0 < λ

(p,q,t)L
h (f) ≤ ρ

(p,q,t)L
h (f) < +∞ and λL

g (m,n, t) >

0 > 0 instead of ρLg (m,n, t) > 0.
Remark 7 The conclusion of Theorem 5 can also be drawn if we take 0 <

λ
(p,q,t)L
h (f) < +∞ instead of 0 < λ

(p,q,t)L
h (f) ≤ ρ

(p,q,t)L
h (f) < +∞ and λL

g (m,n, t) >

0 > 0 instead of ρLg (m,n, t) > 0.
Using the same technique of Theorem 5 one may easily verify the following

theorem:
Theorem 6 Let f , g, h and k be any four entire functions such that λ

(p,q,t)L
h (f) >

0, ρ
(l,n,t)L
k (g) < +∞, ρLg (m,n, t) > 0 where m > q. Then for a real number x,

lim sup
r→+∞

log[p] µ−1
h (µf◦g(r))

(log[l] µ−1
k (µg(r)))1+x

= +∞

and

lim sup
r→+∞

log[p] M−1
h (Mf◦g(r))

(log[l] M−1
k (Mg(r)))1+x

= +∞.

Remark 8 The conclusion of Theorem 6 can also be drawn if we take “ρ
(p,q,t)L
h (f) >

0, ρ
(l,n,t)L
k (g) < +∞” instead of “λ

(p,q,t)L
h (f) > 0, ρ

(l,n,t)L
k (g) < +∞” and λL

g (m,n, t) >

0 instead of ρLg (m,n, t) > 0.
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Remark 9 The conclusion of Theorem 6 can also be drawn if we take “λ
(p,q,t)L
h (f) >

0, λ
(l,n,t)L
k (g) < +∞” instead of “λ

(p,q,t)L
h (f) > 0, ρ

(l,n,t)L
k (g) < +∞” and λL

g (m,n, t) >

0 instead of ρLg (m,n, t) > 0.
Remark 10 Theorem 5 and Theorem 6 remain valid with “limit” instead of “

limit superior”, if we take λL
g (m,n, t) > 0 instead of ρLg (m,n, t) > 0 and the other

conditions remain the same.

4. Conclusion

The main purpose of this paper is to extend and to modify the notion of
(m,n)-φ order and (m,n)-φ lower order to relative (p, q, t)L -th order and relative
(p, q, t)L -th lower order of higher dimentions in case of entire functions. Actually
we are trying to generalize some growth properties of entire functions using the
concept of relative (p, q, t)L -th order and relative (p, q, t)L -th lower order.

The results of this paper in connection with Nevanlinna’s Value Distribution
theory of entire functions on the basis of relative (p, q, t)L -th order and relative
(p, q, t)L -th lower order may have a wide range of applications in Complex Dynam-
ics, Factorization Theory of entire functions of single complex variable, the solution
of complex differential equations etc. In fact, Complex Dynamics is a thrust area in
modern function theory and it is solely based on the study of fixed points of entire
functions as well as the normality of them. Factorization theory of entire functions
is another branch of applications of Nevanlinna’s theory which actually deals how
a given entire function can be factorized into other simpler entire functions in the
sense of composition.

Acknowledgment

The author is extremely grateful to the anonymous learned referee for his
keen reading, valuable suggestion and constructive comments for the improvement
of the paper.

References

[1] L. Bernal-Gonzaléz, Crecimiento relativo de funciones enteras. Aportaciones al estudio de las

funciones enteras con ı́ndice exponencial finito, Doctoral Thesis, 1984, Universidad de Sevilla,
Spain.

[2] L. Bernal, Orden relative de crecimiento de funciones enteras , Collect. Math., 39, 209-229,
1988.

[3] T. Biswas, Growth analysis of composite entire functions from the view point of relative
(p,q)-th order, Korean Journal of Mathematics, 26, 3, 405-424, 2018.

[4] T. Biswas, Some results relating to sum and product theorems of relative (p, q, t)L-th order
and relative (p, q, t)L-th type of entire functions, Korean Journal of Mathematics, 26, 2,

215-269, 2018.
[5] T. Biswas, Measures of comparative growth analysis of composite entire functions on the basis

of their relative (p,q)-th type and relative (p,q)-th weak type, Journal of the Korean Society
of Mathematical Education Series B: The Pure and Applied Mathematics, 26, 1, 13-33, 2019.

[6] T. Biswas, Relative (p, q)-φ order and relative (p, q)-φ type oriented growth analysis of com-
posite entire functions, Honam Mathematical Journal, 41, 2, 243-268, 2019.

[7] T. Biswas, Relative (p,q)-th order based on some growth measurement of composite entire
functions, International Journal of Nonlinear Science, 28, 1, 40-51, 2019.

[8] T. Biswas, On some growth analysis of entire and meromorphic functions in the light of their
relative (p, q, t)L-th order with respect to another entire function , An. Univ. Oradea, fasc.
Mat., Tom XXVI, Issue No.1 ,59-80, 2019.

[9] J. Clunie, The composition of entire and meromorphic functions, Mathematical Essays dedi-
cated to A. J. Macintyre,Ohio University Press ,75-92, 1970.



JFCA-2022/13(1) GROWTH PROPERTIES OF COMPOSITE ENTIRE FUNCTIONS 105

[10] S. K. Datta and A. R. Maji, Relative Order of Entire Functions in Terms of Their Maximum

Terms Int. Journal of Math. Analysis, 5, 43, 2119 - 2126, 2011.
[11] W.K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford, 1964.
[12] O. P. Juneja, G. P. Kapoor and S. K. Bajpai, On the (p,q)-order and lower (p,q)-order of an

entire function, J. Reine Angew. Math., 282, 53-67, 1976.

[13] D. Somasundaram and R. Thamizharasi, A note on the entire functions of L-bounded index
and L type, Indian J. Pure Appl. Math., 19 , 3, 284-293, 1988.

[14] D. Sato, On the rate of growth of entire functions of fast growth, Bull. Amer. Math. Soc.,
69, 411-414, 1963.

[15] A. P. Singh, On maximum term of composition of entire functions, Proc. Nat. Acad. Sci.
India, Vol. 59(A), Part I, 103-115, 1989.

[16] A. P. Singh and M. S. Baloria, On the maximum modulus and maximum term of composition
of entire functions, Indian J. Pure Appl. Math., 22, 12, 1019-1026, 1991.

[17] A. P. Singh and M. S. Baloria, Comparative growth of composition of entire functions. Indian
J. Pure Appl. Math., 24, 3, 181-188, 1993.

[18] G. D. Song and C. C. Yang, On the composition of entire functions. Indian J. Pure Appl.
Math.,15, 1, 67-43, 1984.

[19] X. Shen, J. Tu and H. Y. Xu, Complex oscillation of a second-order linear differential equation
with entire coefficients of [p, q] − φ order, Adv. Difference Equ. 2014, 2014: 200, 14 pages,
http://www.advancesindifferenceequations.com/content/2014/1/200.

[20] G. Valiron, Lectures on the General Theory of Integral Functions, Chelsea Publishing Com-
pany, New York, 1949.

Tanmay Biswas
Rajbari, Rabindrapalli, R. N. Tagore Road, P.O.- Krishnagar, Dist-Nadia, PIN- 741101,
West Bengal, India

E-mail address: tanmaybiswas math@rediffmail.com


