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NEW UNIQUE EXISTENCE RESULT OF APPROXIMATE

SOLUTION TO INITIAL VALUE PROBLEM FOR FRACTIONAL

DIFFERENTIAL EQUATION OF VARIABLE ORDER

S. ZHANG, L. HU

Abstract. In this paper, we introduce the concept of continuous approximate
solution which is new in term of variable order differential equations. By

using the Banach Contraction Principle, we obtain the unique existence of
approximate solution to an initial value problem for differential equation of
variable order involving the derivative argument on half-axis. Finally, we give
an example to illustrate our results.

1. Introduction

In this paper, we study the unique existence of approximate solution to the
following initial value problem of variable order{

D
p(t)
0+ x(t) = f(t, x,D

q(t)
0+ x), 0 < t < +∞,

x(0) = 0,
(1)

where 0 < q(t) < p(t) < 1, f(t, x,D
q(t)
0+ x) are given real functions, and D

p(t)
0+ , D

q(t)
0+

denote the Riemann-Liouville fractional derivatives of variable order p(t) and q(t)
[1]-[4]

D
p(t)
0+ x(t) =

d

dt
I
1−p(t)
0+ x(t) =

d

dt

∫ t

0

(t− s)−p(t)

Γ(1− p(t))
x(s)ds, t > 0. (2)

D
q(t)
0+ x(t) =

d

dt
I
1−q(t)
0+ x(t) =

d

dt

∫ t

0

(t− s)−q(t)

Γ(1− q(t))
x(s)ds, t > 0,

and I
1−p(t)
0+ x(t) is the Riemann-Liouville fractional integral of variable order 1−p(t)

for function x(t) [1]-[4], defined by

I
1−p(t)
0+ x(t) =

1

Γ(1− p(t))

∫ t

0

(t− s)−p(t)x(s)ds, t > 0, (3)

I
1−q(t)
0+ x(t) has the same meaning, for details, please refer to [1]-[4].
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The operators of variable order, which fall into a more complex category, are the
derivatives and integrals whose orders are the functions of certain variables. There
are several definitions of variable order fractional integrals and derivatives [1]-[4].

The problems denoted by the operator of variable order are apparently more
complicated than the ones denoted by the operator of constant order. Recently,
some authors have considered the applications of derivatives of variable order in
various sciences such as anomalous diffusion modeling, mechanical applications,
and multi-fractional Gaussian noises. Among these, there are many works that
deal with the operator of variable order and numerical methods for some class of
variable order fractional differential equations, for instance, [1]-[20]. But, to the
best of our knowledge, there are few works dealing with the existence of solutions
to differential equations of variable order, [21], [22], [26].

We notice that, in (2) and (3), if the order p(t) is a constant function q, then
the Riemann-Liouville variable order fractional derivatives and integrals are the
Riemann-Liouville fractional derivative and integral, respectively [27]. It is well
known that the Riemann-Liouville fractional integral has the the law of expo-
nents. With this the law of exponents, one obtains the transformation between
the Riemann-Liouville fractional derivative and integral [27]. Using these prop-
erties, one can transform differential equations of fractional order into equivalent
integral equations, so that some nonlinear functional analysis (for instance, some
fixed point theorems) have been applied in considering existence of solution of the
differential equations of fractional order [28]-[30]. However from [1], [2], [8], [23],
[24], [25] and [26], we notice that the law of exponents doesn’t hold. Thus, we

are not sure, for general function p(t), f(t), what D
p(t)
0+ I

p(t)
0+ f(t) and I

p(t)
0+ D

p(t)
0+ f(t)

equal. Consequently, we can’t transform the initial value problem (1) into an inte-
gral equation, so that we can hardly consider the existence of solutions of (1), by
means of nonlinear functional analysis (for instance, some fixed point theorems).

In [13], authors consider the variable order fractional functional boundary value
problems of the form{

D
α(x)
0+ u(x) + cos(x)u′(x) + 4u(x) + 5u(x2) = f(x), 0 ≤ x ≤ 1,

u(0) = 0, u(1) = 1,
(4)

where α(x) = 6+cos(x)
4 , D

α(x)
0+ is the Riemann-Liouville variable order derivative of

order 1 < α(x) < 2 [1]-[4]

D
α(t)
0+ u(x)) =

d2

dx2

∫ x

0

(x− s)1−α(t)

Γ(2− α(t))
u(s)ds, x > 0, (5)

When f(x) = 2x2−α(x)

Γ(3−α(x)) + 5x4 + 4x2 + 2x cos(x), the exact solution of boundary

value problem (4) is

u(x) = x2.

Also, in (4), according to (5), if we take f(x) = 6x6 + 5x4 + 4x2 + 2x cos(x) or
f(x) = x3, then, we can’t obtain its exact solution. And we don’t even known
whether the solution exists or not exist.

In [13], the variable order fractional functional boundary value problems of the
form is also considered{

Dα(x)u(x) + exu′(x) + 2u(x) + 8u(ex−1) = f(x), 0 ≤ x ≤ 1,
u(0) = 4, u(1) = 9,

(6)
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where α(x) = 6+cos(x)
4 , Dα(x) is the Riemann-Liouville variable order derivative

defined by (5). When f(x) = 2x2−α(x)

Γ(3−α(x)) + 2(x2 + 4x+ 4) + 8(4ex−1 + e2x−2 + 4) +

e2(2x+ 4), the exact solution of boundary value problem (6) is

u(x) = x2 + 4x+ 4.

Also, in (6), if we take f(x) = x2α(x)+2(x2+4x+4)+8(4ex−1+e2x−2+4)+e2(2x+4)
or f(x) = 1, then, we can’t obtain its exact solution, we can’t even known whether
the solution exists or not exist.

Hence, an important question arises: how to solve the existence result of solu-
tions to differential equations of variable order? In this paper, we will answer this
question. Based on some facts on the solution of differential equations of integer
order (fractional order) and some analysis of the initial value problem (1), we intro-
duce the concept of continuous approximate solution to the initial value problem
(1). And then, according to our discussion and analysis, we explore the unique
existence of continuous approximate solution of the initial value problem (1). This
paper is organized as follows. In section 2, we state some results which will play
a very important role in obtaining our main results. In section 3, we set forth our
main result. Finally, some examples are given.

2. Some preliminaries on approximate solution

we notice that the law of exponents doesn’t hold for variable order fractional
integrals (3). This leads to the fact that the Riemann-Liouville type variable order
fractional derivative and integral of variable order are not inverse to each other,
which is in contrast to the case of constant order fractional calculus. For examples,

Example 2.1. Let p(t) = t
4+

1
4 , q(t) =

3
4−

t
4 , f(t) = 1, 0 ≤ t ≤ 4. Now, we calculate

I
p(t)
0+ I

q(t)
0+ f(t)|t=2, I

q(t)
0+ I

p(t)
0+ f(t)|t=2 and I

p(t)+q(t)
0+ f(t)|t=2 which are defined in (3).

For 0 ≤ t ≤ 4, we have

I
p(t)
0+ I

q(t)
0+ f(t) =

∫ t

0

(t− s)
t
4+

1
4−1

Γ( t4 + 1
4 )

∫ s

0

(s− τ)
3
4−

s
4−1

Γ( 34 − s
4 )

dτds =

∫ t

0

(t− s)
t
4−

3
4 s

3
4−

s
4

Γ( t4 + 1
4 )Γ(

7
4 − s

4 )
ds.

We get

I
p(t)
0+ I

q(t)
0+ f(t)|t=2 =

∫ 2

0

(2− s)−
1
4 s

3
4−

s
4

Γ( 34 )Γ(
7
4 − s

4 )
ds ≈ 1.91596,

and

I
q(t)
0+ I

p(t)
0+ f(t) =

∫ t

0

(t− s)
3
4−

t
4−1

Γ( 34 − t
4 )

∫ s

0

(s− τ)
s
4+

1
4−1

Γ( s4 + 1
4 )

dτds =

∫ t

0

(t− s)−
1
4−

t
4 s

s
4+

1
4

Γ( 34 − t
4 )Γ(

5
4 + s

4 )
ds.

So

I
q(t)
0+ I

p(t)
0+ f(t)|t=2 =

∫ 2

0

(2− s)−
3
4 s

s
4+

1
4

Γ( 14 )Γ(
5
4 + s

4 )
ds ≈ 2.02906,

and

I
p(t)+q(t)
0+ f(t)|t=2 =

∫ 2

0

(2− s)p(2)+q(2)−1

Γ(p(2) + q(2))
ds =

∫ 2

0

ds = 2.

Therefore,

I
q(t)
0+ I

p(t)
0+ f(t)|t=2 ̸= I

p(t)
0+ I

q(t)
0+ f(t)|t=2 ̸= I

p(t)+q(t)
0+ f(t)|t=2,
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I
q(t)
0+ I

p(t)
0+ f(t)|t=2 ̸= I

p(t)+q(t)
0+ f(t)|t=2,

which illustrate that the law of exponentsof the Riemann-Liouville variable order
fractional integral of continuous function doesn’t holds for constant function.

Example 2.2. Let p(t) =

{
1
2 , 0 ≤ t ≤ 1,
1
3 , 1 < t ≤ 4,

q(t) =

{
1
2 , 0 ≤ t ≤ 1,
2
3 , 1 < t ≤ 4,

and f(t) =

1, 0 ≤ t ≤ 4. We’ll calculate I
p(t)
0+ I

q(t)
0+ f(t)|t=3, I

q(t)
0+ I

p(t)
0+ f(t)|t=3 and I

p(t)+q(t)
0+ f(t)|t=3

which are defined in (3).
For 1 ≤ t ≤ 4, we have

I
p(t)
0+ I

q(t)
0+ f(t) =

∫ 1

0

(t− s)p(t)−1

Γ(p(t))

∫ s

0

(s− τ)
1
2−1

Γ( 12 )
dτds

+

∫ t

1

(t− s)p(t)−1

Γ(p(t))
(

∫ s

0

(s− τ)
2
3−1

Γ( 23 )
dτ)ds

=

∫ 1

0

(t− s)p(t)−1s
1
2

Γ(p(t))Γ(32 )
ds+

∫ t

1

(t− s)p(t)−1s
2
3

Γ(53 )Γ(p(t))
ds.

Thus, we have

I
p(t)
0+ I

q(t)
0+ f(t)|t=3 =

∫ 1

0

(3− s)−
2
3 s

1
2

Γ(13 )Γ(
3
2 )

ds+

∫ 3

1

(3− s)−
2
3 s

2
3

Γ( 53 )Γ(
1
3 )

ds

≈ 3.01744.

By the same way, we get

I
q(t)
0+ I

p(t)
0+ f(t)|t=3 =

∫ 1

0

(3− s)−
1
3 s

1
2

Γ( 23 ))Γ(
3
2 )

ds+

∫ 3

1

(3− s)−
1
3 s

2
3

Γ( 53 )Γ(
2
3 )

ds

≈ 3.68119

and

I
p(t)+q(t)
0+ f(t)|t=3 =

∫ 3

0

(3− s)p(3)+q(3)−1

Γ(p(3) + q(3))
ds =

∫ 3

0

ds = 3.

Therefore, we obtain

I
q(t)
0+ I

p(t)
0+ f(t)|t=3 ̸= I

p(t)
0+ I

q(t)
0+ f(t)|t=3 ̸= I

p(t)+q(t)
0+ f(t)|t=3,

I
q(t)
0+ I

p(t)
0+ f(t)|t=3 ̸= I

p(t)+q(t)
0+ f(t)|t=3,

which illustrate that the law of exponentsof the Riemann-Liouville variable order
fractional integral of piecewise constant function defined in the same partition,
doesn’t hold for constant function.

Without the the law of exponents, we can assure that the Riemann-Liouville
variable order fractional integral of non-constant continuous functions p(t) for x(t)
doesn’t have the properties for the Riemann-Liouville fractional derivative and in-
tegral. In fact, from Examples 2.1, 2.2, we could verify this result.

Example 2.3. Let p(t) = t
4 + 1

4 , f(t) = 1, 0 ≤ t ≤ 3. Now, we consider

I
p(t)
0+ D

p(t)
0+ f(t)|t=2 and D

p(t)
0+ I

p(t)
0+ f(t)|t=2 .
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By (2) and (3), we have

I
p(t)
0+ D

p(t)
0+ f(t) =

∫ t

0

(t− s)
t
4+

1
4−1

Γ( t4 + 1
4 )

d

ds

∫ s

0

(s− τ)−
s
4−

1
4

Γ( 34 − s
4 )

dτds

=

∫ t

0

(t− s)
t
4−

3
4

Γ( t4 + 1
4 )

d

ds

s
3
4−

s
4

Γ(74 − s
4 )
ds

= −
∫ t

0

(t− s)
t
4−

3
4

Γ( t4 + 1
4 )

s
3
4−

s
4 (s ln s− 3 + s− sΓ

′
( 7
4−

s
4 )

Γ( 7
4−

s
4 )

)

4Γ( 74 − s
4 )

ds,

which implies that

I
p(t)
0+ D

p(t)
0+ f(t)|t=2 = −

∫ 2

0

(2− s)−
1
4

Γ(34 )

s
3
4−

s
4 (s ln s− 3 + s− sΓ

′
( 7
4−

s
4 )

Γ( 7
4−

s
4 )

)

4Γ(74 − s
4 )

ds

= 0.62725 ̸= f(t)|t=2 = 1,

which implies that we hardly say for sure that I
p(t)
0+ D

p(t)
0+ has similar result for the

Riemann-Liouville fractional derivative and integral[27], that is,

Iα0+D
α
0+g(t) = g(t), 0 ≤ t ≤ b, (7)

where 0 < α < 1, g ∈ C[0, b], 0 < b < +∞.
On the other hand, from Example 2.1, we know

I
1−p(t)
0+ I

p(t)
0+ f(t) =

∫ t

0

(t− s)
t
4−

3
4 s

3
4−

s
4

Γ( t4 + 1
4 )Γ(

7
4 − s

4 )
ds.

Thus, we get

D
p(t)
0+ I

p(t)
0+ f(t) =

d

dt
I
1−p(t)
0+ I

p(t)
0+ f(t) =

d

dt

∫ t

0

(t− s)
t
4−

3
4 s

3
4−

s
4

Γ( t4 + 1
4 )Γ(

7
4 − s

4 )
ds, t > 0,

which illustrates that D
p(t)
0+ I

p(t)
0+ f(t)|t=2 is not clear.

Hence, we don’t be sure whether D
p(t)
0+ I

p(t)
0+ has similar result for the Riemann-

Liouville fractional derivative and integral[27], that is,

Dα
0+I

α
0+h(t) = h(t), 0 < t ≤ b, (8)

where 0 < α < 1, h ∈ L(0, b), 0 < b < +∞.

Example 2.4. Let p(t) =


1
2 , 0 ≤ t ≤ 1,

1
3 , 1 < t ≤ 4,

f(t) = 1, 0 ≤ t ≤ 4. Now, we con-

sider I
p(t)
0+ D

p(t)
0+ f(t)|t=3 and D

p(t)
0+ I

p(t)
0+ f(t)|t=3.

By (2) and (3), for 2 ≤ t ≤ 4, we have

I
p(t)
0+ D

p(t)
0+ f(t) =

∫ t

0

(t− s)p(t)−1

Γ(p(t))

d

ds

∫ s

0

(s− τ)−p(s)

Γ(1− p(s))
dτds

=

∫ 1

0

(t− s)p(t)−1

Γ(p(t)

d

ds

∫ s

0

(s− τ)−
1
2

Γ( 12 )
dτds+

∫ t

1

(t− s)p(t)−1

Γ(p(t))

d

ds

∫ s

0

(s− τ)−
1
3

Γ(23 )
dτds
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=

∫ t

0

(t− s)p(t)−1s−
1
2

Γ(p(t))Γ(12 )
ds+

∫ t

1

(t− s)p(t)−1s−
1
3

Γ(p(t))Γ(23 )
ds,

thus, we get

I
p(t)
0+ D

p(t)
0+ f(t)|t=3 =

∫ 1

0

(3− s)−
2
3 s−

1
2

Γ(13 )Γ(
1
2 )

ds+

∫ 3

1

(3− s)−
2
3 s−

1
3

Γ( 13 )Γ(
2
3 )

ds

≈ 1.00029 ̸= f(t)|t=3 = 1,

which implies that (7) is invalid for I
p(t)
0+ D

p(t)
0+ .

On the other hand, from Example 2.2 and similar arguments, it is difficult to

say with certainly (8) is valid for D
p(t)
0+ I

p(t)
0+ .

According to the definition of solution of differential equations of integer order
(fractional order), function x : [0,+∞) → R is called a solution of the initial value
problem (1.1), if x(t) satisfies the equation of (1.1) with x(0) = 0. However, by
the arguments above, we have extreme difficulties in considering the existence of
solutions of variable order fractional differential equations. So, we will consider the
existence of its continuous approximate solution. In this section, we give some pre-
liminaries on approximate solution to the initial value problem (1). The following
result is necessary in our next analysis of the main result.

Lemma 2.5. Let p : [0,+∞) → (0, 1) and q : [0,+∞) → (0, 1) be continuous
functions, and that p(t), q(t) satisfy

lim
t→+∞

p(t) = η1, lim
t→+∞

q(t) = η2, 0 ≤ η1 < 1, 0 ≤ η2 < 1. (9)

Then there are positive constant T , natural number n∗ and intervals [0, T1], (T1, T2], · · · ,
(Tn∗−1, T ] (T,+∞)(n∗ ∈ N) and piecewise constant functions α : [0,+∞) → (0, 1)
and β : [0,+∞) → (0, 1) defined

α(t) =



p1, t ∈ [0, T1],

p2, t ∈ (T1, T2],
...
pn∗ , t ∈ (Tn∗−1, T ],

ρ1, t ∈ (T,+∞),

β(t) =



q1, t ∈ [0, T1],

q2, t ∈ (T1, T2],
...
qn∗ , t ∈ (Tn∗−1, T ],

ρ2, t ∈ (T,+∞),

(10)

where 0 < qi < pi < 1, 0 < ρ2 < ρ1 < 1, i = 1, 2, · · · , n∗, such that for arbitrary
small ε > 0,

|p(t)− α(t)| < ε, |q(t)− β(t)| < ε, 0 ≤ t < +∞. (11)

Proof. By (9), for ∀ ε > 0, there exists T 1, T 2 > 0, such that

|p(t)− η1| <
ε

2
, t > T 1; |q(t)− η2| <

ε

2
, t > T 2.

We take

T = max{T 1, T 2}, (12)

then, for ∀ ε > 0, we have that

|p(t)− η1| <
ε

2
, |q(t)− η2| <

ε

2
, t > T. (13)
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For ∀ ε > 0, we take

ρ1 = p(T + 1), ρ2 = q(T + 1). (14)

For ∀ ε > 0, by (13)-(14), we have{
|p(t)− ρ1| = |p(t)− p(T + 1)| ≤ |p(t)− η1|+ |η1 − p(T + 1)| < ε

2 + ε
2 = ε, t > T,

|q(t)− ρ2| = |q(t)− q(T + 1)| ≤ |q(t)− η2|+ |η2 − q(T + 1)| < ε
2 + ε

2 = ε, t > T.

We know that p : [0, T ] → (0, 1), q : [0, T ] → (0, 1) are continuous functions. Since
p(t), q(t) are right continuous at point 0, then, for arbitrary small ε > 0, there exists
δ0 > 0 such that

|p(t)− p(0)| < ε, |q(t)− q(0)| < ε, for 0 ≤ t ≤ δ0.

We take point δ0
.
= T1 (if T1 < T , we consider continuities of p(t), q(t) at point

T1, otherwise, we end this procedure). Since p(t), q(t) are right continuous at point
T1, so for arbitrary small ε > 0, there exists δ1 > 0 such that

|p(t)− p(T1)| < ε, |q(t)− q(T1)| < ε, for T1 ≤ t ≤ T1 + δ1.

We take point T1 + δ1
.
= T2 (if T2 < T , we consider continuities of p(t), q(t) at

point T2, otherwise, we end this procedure). Since p(t), q(t) are right continuous at
point T2, so, for arbitrary small ε > 0, there exists δ2 > 0 such that

|p(t)− p(T2)| < ε, |q(t)− q(T2)| < ε, for T2 ≤ t ≤ T2 + δ2.

We take point T2 + δ2
.
= T3 (if T3 < T , we consider continuities of p(t), q(t) at

point T3, otherwise, we end this procedure). Since p(t), q(t) are right continuous at
point T3, so, for arbitrary small ε > 0, there exists δ3 > 0 such that

|p(t)− p(T3)| < ε, |q(t)− q(T3)| < ε, for T3 ≤ t ≤ T3 + δ3.

Since [0, T ] is a finite interval, then, continuing this analysis procedure, we can
obtain there are δn∗−2 > 0, δn∗−1 > 0 (n∗ ∈ N) such that Tn∗−2+δn∗−2

.
= Tn∗−1 <

T , Tn∗−1 + δn∗−1 ≥ T , such that for arbitrary small ε > 0, it holds

|p(t)− p(Tn∗−1)| < ε, |q(t)− q(Tn∗−1)| < ε for Tn∗−1 ≤ t ≤ Tn∗ = T,

From previous arguments, we let

p(0)
.
= p1, p(T1)

.
= p2, p(T2)

.
= p3, p(T3)

.
= p4, · · · , p(Tn∗−1)

.
= pn∗ , (15)

q(0)
.
= q1, q(T1)

.
= q2, q(T2)

.
= q3, q(T3)

.
= q4, · · · , q(Tn∗−1)

.
= qn∗ . (16)

Thus, by (15)-(16) and arguments above, we get piecewise constant functions α, β :
[0,+∞) → (0, 1) as following

α(t) =



p1, t ∈ [0, T1],

p2, t ∈ (T1, T2],
...
pn∗ , t ∈ (Tn∗−1, T ],

ρ1, t ∈ (T,+∞),

β(t) =



q1, t ∈ [0, T1],

q2, t ∈ (T1, T2],
...
qn∗ , t ∈ (Tn∗−1, T ],

ρ2, t ∈ (T,+∞),
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and that, for arbitrary small ε > 0, α(t), β(t) satisfy

|p(t)− p1| < ε, |q(t)− q1| < ε, for t ∈ [0, T1],

|p(t)− p2| < ε, |q(t)− q2| < ε, for t ∈ (T1, T2],
...

|p(t)− pn∗ | < ε, |q(t)− qn∗ | < ε, for t ∈ (Tn∗−1, T ],

|p(t)− ρ1| < ε, |q(t)− ρ2| < ε, for t ∈ (T,+∞),

which implies that (11) holds. Thus, we complete this proof. �

For α(t), β(t) obtained in Lemma 2.1, we get the following initial value problem{
D

α(t)
0+ x(t) = f(t, x,D

β(t)
0+ x), 0 < t < +∞,

x(0) = 0.
(17)

According to Example 2.3, we can’t transform the initial value problem (1)
into an integral equation, we have obstacles in consider existence of solutions of
differential equations of variable order. Hence, here, we consider its approximate
solutions of (1) in the following sense: If p(t), q(t), α(t), β(t) satisfy (11), then a
solution x : [0,+∞) → R of (17) is called a approximate solution of the initial
value problem (1).

For the initial value problem (17), according to the definition of solution of
differential equations of integer order (fractional order), function x : [0,+∞) → R
is called a solution of the initial value problem (17), if x(t) satisfies the equation
of (17) with x(0) = 0. However, it follows from Example 2.4 that we also can’t
transform the initial value problem (17) into an integral equation, hence in order
to obtain our main results, we need to carry on essential analysis to the equation
of (17).

For the initial value problem (17), by (10), in the interval [0, T1], we have the
initial value problem{

Dp1

0+x(t) = f(t, x,Dq1
0+x), 0 < t ≤ T1,

x(0) = 0.
(18)

By (10), the equation (17) in the interval (T1, T2] can be written by

D
α(t)
0+ x(t) =

d

dt

∫ t

0

(t− s)−p2

Γ(1− p2)
x(s)ds

=
d

dt

∫ T1

0

(t− s)−p2x(s)

Γ(1− p2)
ds+

d

dt

∫ t

T1

(t− s)−p2x(s)

Γ(1− p2)
ds

= f

(
t, x,

d

dt

∫ T1

0

(t− s)−q2x(s)

Γ(1− q2)
ds+

d

dt

∫ t

T1

(t− s)−q2x(s)

Γ(1− q2)
ds

)
.

In order to consider the existence of solution to (17) in the interval [T1, T2], we let

x(t) =

{
0, if x1(t) ≡ 0 for t ∈ [0, T1],
x1(T1)

∫ t
0
|x1(s)|ds∫ T1

0 |x1(s)|ds
, if x1(t) is not identically vanishing for t ∈ [0, T1],

(19)
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here, x1 : [0, T1] → R is continuous solution of the initial value problem (18). Thus,
if x1(s) ≡ 0, 0 ≤ s ≤ T1, then by (19), we let

{
d
dt

∫ T1

0
(t−s)−q2x(s)

Γ(1−q2)
ds = 0

.
= φx1(t),

d
dt

∫ T1

0
(t−s)−p2x(s)

Γ(1−p2)
ds = 0

.
= ψx1(t),

(20)

if x1(s) is not identically vanishing for 0 ≤ s ≤ T1, by (19) and integration by parts,
we let

d
dt

∫ T1

0
(t−s)−q2x(s)

Γ(1−q2)
ds =

x1(T1)
∫ T1
0 (t−s)−q2 |x1(s)|ds

Γ(1−q2)
∫ T1
0 |x1(s)|ds

− x1(T1)(t−T1)
−q2

Γ(1−q2)

.
= φx1(t),

d
dt

∫ T1

0
(t−s)−p2x(s)

Γ(1−p2)
ds =

x1(T1)
∫ T1
0 (t−s)−p2 |x1(s)|ds

Γ(1−p2)
∫ T1
0 |x1(s)|ds

− x1(T1)(t−T1)
−p2

Γ(1−p2)

.
= ψx1(t).

(21)
Hence, we may consider the initial value problem defined in the interval [T1, T2]

as following{
Dp2

T1+
x(t) = f(t, x,Dq2

T1+
x+ φx1(t))− ψx1(t), T1 < t ≤ T2,

x(T1) = x1(T1).
(22)

By (10), the equation (17) in the interval (T2, T3] can be written by

D
α(t)
0+ x(t) =

d

dt

∫ t

0

(t− s)−p3

Γ(1− p3)
x(s)ds

=
d

dt

∫ T2

0

(t− s)−p3x(s)

Γ(1− p3)
ds+

d

dt

∫ t

T2

(t− s)−p3x(s)

Γ(1− p3)
ds

= f(t, x,
d

dt

∫ T2

0

(t− s)−q3x(s)

Γ(1− q3)
ds+

d

dt

∫ t

T2

(t− s)−q3x(s)

Γ(1− q3)
ds).

In order to consider the existence of solution to (17) in the interval [T2, T3], we let

x(t) =



0, if x1(t) ≡ 0 for t ∈ [0, T1],
x1(T1)

∫ t
0
|x1(s)|ds∫ T1

0 |x1(s)|ds
, if x1(t) is not identically vanishing for t ∈ [0, T1],

0, if x2(t) ≡ 0 for t ∈ [T1, T2],
x2(T2)

∫ t
T1

|x2(s)|ds∫ T2
T1

|x2(s)|ds
, if x2(t) is not identically vanishing for t ∈ [T1, T2],

(23)
here, x1 : [0, T1] → R is continuous solution of the initial value problem (18) and
x2 : [T1, T2] → R is continuous solution of the initial value problem (22). Thus, if
x1(s) ≡ 0, 0 ≤ s ≤ T1, x2(s) ≡ 0, T1 ≤ s ≤ T2, then by (23), we let

{
d
dt

∫ Ti

Ti−1

(t−s)−q3x(s)
Γ(1−q3)

ds = 0
.
= φxi(t), i = 1, 2, T0 = 0,

d
dt

∫ Ti

Ti−1

(t−s)−p3x(s)
Γ(1−p3)

ds = 0
.
= ψxi(t), i = 1, 2, T0 = 0,

(24)
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if x1(s) is not identically vanishing for 0 ≤ s ≤ T1, x2(s) is not identically vanishing
for T1 ≤ s ≤ T2, then by (23) and integration by parts, we let

d
dt

∫ Ti

Ti−1

(t−s)−q3x(s)
Γ(1−q3)

ds =
xi(Ti)

∫ Ti
Ti−1

(t−s)−q3 |xi(s)|ds

Γ(1−q3)
∫ Ti
Ti−1

|xi(s)|ds
− xi(Ti)(t−Ti)

−q3

Γ(1−q3)

.
= φxi(t),

d
dt

∫ Ti

Ti−1

(t−s)−p3x(s)
Γ(1−p3)

ds =
xi(Ti)

∫ Ti
Ti−1

(t−s)−p3 |xi(s)|ds

Γ(1−p3)
∫ Ti
Ti−1

|xi(s)|ds
− xi(Ti)(t−Ti)

−p3

Γ(1−p3)

.
= ψxi(t),

(25)
i = 1, 2, T0 = 0.

Hence, we may consider the initial value problem defined in the interval [T2, T3]
as following{

Dp3

T2+
x(t) = f(t, x,Dq3

T2+
x+ φx1(t) + φx2(t))− ψx1(t)− ψx2(t), T2 < t ≤ T3,

x(T2) = x2(T2).
(26)

Similarly, the equation of (17) in the interval (Ti−1, Ti] (i = 4, 5, · · · , n∗, Tn∗ =
T ) can be written by

D
α(t)
0+ x(t) =

d

dt

∫ t

0

(t− s)−pi

Γ(1− pi)
x(s)ds

=
d

dt

∫ Ti−1

0

(t− s)−pix(s)

Γ(1− pi)
ds+

d

dt

∫ t

Ti−1

(t− s)−pix(s)

Γ(1− pi)
ds

= f

(
t, x,

d

dt

∫ Ti−1

0

(t− s)−qix(s)

Γ(1− qi)
ds+

d

dt

∫ t

Ti−1

(t− s)−qix(s)

Γ(1− qi)
ds

)
.

By the same reasons and ways, we let

x(t) =



0, if x1(t) ≡ 0 for t ∈ [0, T1],
x1(T1)

∫ t
0
|x1(s)|ds∫ T1

0 |x1(s)|ds
, if x1(t) is not identically vanishing for t ∈ [0, T1]

0, if x2(t) ≡ 0 for t ∈ [T1, T2],
x2(T2)

∫ t
T1

|x2(s)|ds∫ T2
T1

|x2(s)|ds
, if x2(t) is not identically vanishing for , t ∈ [T1, T2],

· · · ,
0, if xi−11(t) ≡ 0 for t ∈ [Ti−2, Ti−1],
xi−1(Ti−1)

∫ t
Ti−2

|xi−(s)|ds∫ Ti−1
Ti−2

|xi−1(s)|ds
, if xi−1(t) is not identically vanishing for t ∈ [Ti−2, Ti−1],

here, x1 : [0, T1] → R is continuous solution of the initial value problem (18),
x2 : [T1, T2] → R is continuous solution of the initial value problem (22), · · · ,
xj : [Tj−1, Tj ] → R is continuous solution of the initial value problem defined in
[Tj−1, Tj ] (j = 3, · · · , i− 1). Thus, if xj(s) ≡ 0, Tj−1 ≤ s ≤ Tj , then by expression
of x(t) above, we let  d

dt

∫ Tj

Tj−1

(t−s)−qix(s)
Γ(1−qi)

ds = 0
.
= φxj (t),

d
dt

∫ Tj

Tj−1

(t−s)−pix(s)
Γ(1−pi)

ds = 0
.
= ψxj (t),
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if xj(s) is not identically vanishing for Tj−1 ≤ s ≤ Tj , by expression of x(t) above
and integration by parts, we let

d
dt

∫ Tj

Tj−1

(t−s)−qix(s)
Γ(1−qi)

ds =
xj(Tj)

∫ Tj
Tj−1

(t−s)−qi |xj(s)|ds

Γ(1−qi)
∫ Tj
Tj−1

|xj(s)|ds
− xj(Tj)(t−Tj)

−qi

Γ(1−qi)

.
= φxj (t),

d
dt

∫ Tj

Tj−1

(t−s)−pix(s)
Γ(1−pi)

ds =
xj(Tj)

∫ Tj
Tj−1

(t−s)−pi |xj(s)|ds

Γ(1−pi)
∫ Tj
Tj−1

|xj(s)|ds
− xj(Tj)(t−Tj)

−pi

Γ(1−pi)

.
= ψxj (t),

j = 1, 2, · · · , i− 1, i = 4, 5, · · · , n∗ (T0 = 0).
Hence, we may consider the initial value problem in the interval [Ti−1, Ti] as

following {
Dpi

Ti−1+
x(t) = f(t, x,Dqi

Ti−1+
x+

∑i−1
j=1 φxj )−

∑i−1
j=1 ψxj (t),

x(Ti−1) = xi−1(Ti−1).
(27)

By (10), the equation of (17) in the interval (T,+∞) can be written by

D
α(t)
0+ x(t) =

d

dt

∫ t

0

(t− s)−ρ1

Γ(1− ρ1)
x(s)ds

=
d

dt

∫ T

0

(t− s)−ρ1x(s)

Γ(1− ρ1)
ds+

d

dt

∫ t

T

(t− s)−ρ1x(s)

Γ(1− ρ1)
ds

= f

(
t, x,

d

dt

∫ T

0

(t− s)−ρ2x(s)

Γ(1− ρ2)
ds+

d

dt

∫ t

T

(t− s)−ρ2x(s)

Γ(1− ρ2)
ds

)
.

By the same reasons and ways, we let

x(t) =



0, if x1(t) ≡ 0 for t ∈ [0, T1],
x1(T1)

∫ t
0
|x1(s)|ds∫ T1

0 |x1(s)|ds
, if x1(t) is not identically vanishing for , t ∈ [0, T1]

0, if x2(t) ≡ 0 for t ∈ [T1, T2],
x2(T2)

∫ t
T1

|x2(s)|ds∫ T2
T1

|x2(s)|ds
, if x2(t) is not identically vanishing for t ∈ [T1, T2],

· · · ,
0, if xn∗(t) ≡ 0 for , t ∈ [Tn∗−1, T ],
xn∗ (T )

∫ t
Tn∗−1

|xn∗ (s)|ds∫ T
Tn∗−1

|xn∗ (s)|ds , if xn∗(t) is not identically vanishing for t ∈ [Tn∗−1, T ],

here, x1 : [0, T1] → R is continuous solution of the initial value problem (18),
xi : [Ti−1, Ti] → R(i = 2, 3, · · · , n∗(Tn∗ = T )) are continuous solutions of the
initial value problems (22), (26), (27). Thus, if xi(s) ≡ 0, Ti−1 ≤ s ≤ Ti, then by
expression of x(t) above, we let

{
d
dt

∫ Ti

Ti−1

(t−s)−ρ2x(s)
Γ(1−ρ2)

ds = 0
.
= φxi(t),

d
dt

∫ Ti

Ti−1

(t−s)−ρ1x(s)
Γ(1−ρ1)

ds = 0
.
= ψxi(t),

(28)
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if xi(s) is not identically vanishing for Ti−1 ≤ s ≤ Ti, by expression of x(t) above
and integration by parts, we let

d
dt

∫ Ti

Ti−1

(t−s)−ρ2x(s)
Γ(1−ρ2)

ds =
xi(Ti)

∫ Ti
Ti−1

(t−s)−ρ2 |xi(s)|ds

Γ(1−ρ1)
∫ Ti
Ti−1

|xi(s)|ds
− xi(Ti)(t−Ti)

−ρ2

Γ(1−ρ2)

.
= φxi(t),

d
dt

∫ Ti

Ti−1

(t−s)−ρ1x(s)
Γ(1−ρ1)

ds =
xi(Ti)

∫ Ti
Ti−1

(t−s)−ρ1 |xi(s)|ds

Γ(1−ρ1)
∫ Ti
Ti−1

|xi(s)|ds
− xi(Ti)(t−Ti)

−ρ1

Γ(1−ρ1)

.
= ψxi(t),

(29)
i = 1, 2, · · · , n∗(T0 = 0, Tn∗ = T ).

Hence, we may consider the initial value problem defined in the interval [T,+∞)
as following {

Dρ1

T+x(t) = f(t, x,Dρ2

T+x+
∑n∗

i=1 φxi)−
∑n∗

i=1 ψxi(t),
x(T ) = xn∗(T ).

(30)

Now, based on the arguments above, we present the definition of solution to the
initial value problem (17), which is crucial in our work.

Definition 2.6. If the initial value problems (18), (22), (26), (27) and (30) exist
solutions x1 : [0, T1] → R, x2 : [T1, T2] → R, x3 : [T2, T3] → R, xi : [Ti−1, Ti] →
R(i = 4, · · · , n∗, Tn∗ = T )and xn∗+1 : [T,+∞) → R, respectively, then we call
function x : [0,+∞) → (−∞,+∞) defined by

x(t) =



x1(t), 0 ≤ t ≤ T1,

x2(t), T1 ≤ t ≤ T2,

x3(t), T2 ≤ t ≤ T3,
...
xn∗(t), Tn∗−1 ≤ t ≤ T,

xn∗+1(t), T ≤ t < +∞

(31)

is a solution of the initial value problem (17).

Definition 2.7. If x1(t), x2(t), · · · , xn∗+1(t) are unique, then we say x(t) defined
in (31) is one unique solution of the initial value problem (17).

The following is the definition of the (unique )approximate solution of the initial
value problem (1).

Definition 2.8. If there are T > 0, natural number n∗ ∈ N and intervals [0, T1],
(T1, T2], · · · , (Tn∗−1, T ], (T,+∞) and piecewise functions defined in (10) satisfying
(11), and that the initial value problem (17) exists one (unique) solution, then,
we say this solution of the initial value problem (17) is one (unique) approximate
solution of the initial value problem (1).

Remark 2.9. The differential equations of fractional order or integer order, in gen-
eral, its solution in given interval is affected by the state of the solution in the
preceding intervals. For instance, the differential equation

D
1
2
0+x(t) = t−

1
3 +

t4x3

1 + x2
, 0 < t ≤ 2. (32)
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We know that

x(t) =
1

Γ(12 )

∫ t

0

(t− s)−
1
2 (s−

1
3 +

s4x3(s)

1 + x2(s)
)ds, 0 ≤ t ≤ 2 (33)

is a solution of (32). Then by (33), in the interval [1, 32 ], x(t) should be

x(t) =

∫ t

0

(t− s)−
1
2 (s−

1
3 + s4x3(s)

1+x2(s) )

Γ( 12 )
ds

=

∫ 1

0

(t− s)−
1
2 (s−

1
3 + s4x3

1+x2(s) )

Γ(12 )
ds+

∫ t

1

(t− s)−
1
3 (s−

1
2 + s4x3(s)

1+x2(s) )

Γ( 12 )
ds,

which illstrates that the state of x(t) in [1, 32 ], must be affected by the state of x(t)
in [0, 1].

Remark 2.10. From the Definition 2.6, we see that, in interval [T2, T3], solution
x(t) of the initial value problem (17), is x3(t), which is solution of the equation
of (26), obvious, the state of x3(t) is affected by the state of x1(t), x2(t), that is,
the state of x3(t) is affected by he state of x(t) in interval [0, T2]. Thus, according
the Definition 2.8, in the interval [T2, T3], the state of approximate solution x(t) of
the equation of (1) must be affected by the state of x(t) in interval [0, T2]. Hence,
according to Remark 2.9, Definitions 2.6 and 2.8 are suitable and reasonable.

Remark 2.11. In our previous analysis, we chose functions (20)((21)), (24) ((25))
etc, so that we obtain the initial value problems (22), (26) etc. Such choosing must
meet the following two reasons at the same time. The first reason is operability, for
instance, choosing function (20)((21)), we can calculate out functions φx1(t), φx2(t)
and ψx1

(t), ψx2
(t), and then we obtain the initial value problem (22) defined in

[T1, T2]. The second reason is for fitting Remark 2.9. If we take x(t) = x1(T1)
for 0 ≤ t ≤ T1 (here x1(t) is the solution of the initial value problem (18)), then,

although we may easily calculate out functions φx1(t) =
x1(T1)(t

−q1−(t−T1)
−q1 )

Γ(1−q1)
and

ψx1(t) = x1(T1)(t
−p1−(t−T1)

−p1 )
Γ(1−p1)

, and then we have the initial value problem (22)

with such φx1(t) and ψx1(t), But, as a result, we see that the state of solution of
the equation of (22) is only affected by x1(T1), and doesn’t by affected by the state
of x1(t), 0 ≤ t ≤ T1. Hence this choosing of functions x(t) in known intervals, is
suitable.

3. Existence of approximate solution

In this section, according to arguments and analysis in the section 2, we consider
the unique existence of continuous approximate solution of the initial value problem
(1). Throughout this paper, we assume that

(A1) Let p : [0,+∞) → (0, 1) and q : [0,+∞) → (0, 1) be continuous functions,
2q(t) < p(t) for all t ∈ [0,+∞), and that p(t), q(t) satisfy

lim
t→+∞

p(t) = η1, lim
t→+∞

q(t) = η2, 0 ≤ 2η2 < η1 < 1.

(A2) let trf : [0,+∞) × R2 → R be a continuous function, 0 ≤ r < p(t) − 2q(t),
0 ≤ t < +∞. Assume that there are positive constants c1 > 0, c2 > 0, λ > 1 such
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that

tr|f(t, (1+ tλ)x1, (1+ tλ)y1)−f(t, (1+ tλ)x2, (1+ tλ)y2)| ≤ c1|x1−x2|+ c2|y1−y2|.

(A3) there exists 0 ≤ µ < λ− 1 such that limt→+∞
tr|f(t,0,0)|

1+tµ < +∞, where r, λ

are the constants appearing in (A2).

Our main result is as following.

Theorem 3.1. Let conditions (A1), (A2), (A3) hold, then the initial value problem
(1.1) exists one unique approximate solution.

Proof. From the Definition 2.8, we only need to consider the unique existence of
the solution of the initial value problem (17). And by the Definition 2.6, we only
need to consider the unique existence of the solution of the initial value problems
(18), (22), (26), (27) and (30).

For convenience, we let

Mq = max{max0≤t≤T |Γ(1− q(t))|,Γ(1− ρ2)},

Mp,q = max{max0≤t≤T | 1
Γ(p(t)−q(t)) |,Γ(ρ1 − ρ2)}

Mp,q,r = max{max0≤t≤T | 1
p(t)−q(t)−r |,

1
ρ1−ρ2−r},

mp,q = min0≤t≤T+1(p(t)− 2q(t)),

(34)

where T, ρ1, ρ2 are the constants in (12), (14).
It follows from the continuities of functions p(t), q(t) and Gamma function that

Mp ,Mp,q, Mp,q,r, mp,q exist. By (A1) and (A2), we know that 0 ≤ r < mp,q.
Take R ∈ N such that

R >

{
1,

[
4(T + 1)2

(
c2 + c1Mq

)
Mp,qMp,q,r

] 1
mp,q−r

}
, (35)

where T, ρ1, ρ2 are the constants in (12), (14), c1, c2, r are the constants in (A2),
Mp,Mp,q,Mp,q,r, mp,q are the constants in (34).

Let C[Ti−1, Ti] denote the Banach spaces of continuous functions on [Ti−1, Ti]
with the norm

∥x∥ = max
Ti−1≤t≤Ti

|x(t)|, x ∈ C[Ti−1Ti],

Cqi [Ti−1, Ti] = {x|x ∈ C(Ti−1, Ti], (t − Ti−1)
qix ∈ C[Ti−1, Ti]} denote the Banach

spaces with the norm

∥x∥Cqi
= max

t∈[Ti−1,Ti]
(t− Ti−1)

qie−R2(t−Ti−1)
pi−qi−r

|x(t)|, x ∈ Cqi [Ti−1, Ti],

Ti (T0 = 0, Tn∗ = T ) are the constants obtained in the Lemma 2.5, pi, qi are the
constants in (15), (16), i = 1, 2 · · · , n∗, n∗ ∈ N . r is the constant in (A2), R is the
positive integer satisfying (35).

Let

E =

{
x|x ∈C(T,+∞),

(t− t)ρ2x ∈ C[T,+∞), sup
t≥T

(t− T )ρ2e−R2(t−T )ρ1−ρ2−r |x(t)|
1 + tλ

<∞
}
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with the norm

∥x∥E = sup
t≥T

(t− T )ρ2e−R2(t−T )ρ1−ρ2−r |x(t)|
1 + tλ

,

where T, ρ1, ρ2 are the constants in (12), (14), λ is the constant in (A2), R is the
positive integer satisfying (35). By the same arguments as in Lemma 2.2 [30], we
know that (E, ∥ · ∥E) is a Banach space.

We first investigative the initial value problem (18){
Dp1

0+x(t) = f(t, x,Dq1
0+x), 0 < t ≤ T1,

x(0) = 0.

We have the following claim.
Claim 1. If y ∈ Cq1 [0, T1] is a solution of the following integral equation

y(t) = Ip1−q1
0+ f(t, Iq10+y(t), y(t)), 0 < t ≤ T1, (36)

then, x(t) = Iq10+y(t) ∈ C[0, T1] must be a solution of the initial value problem (18).
In fact, if y ∈ Cq1 [0, T1] is a solution of the integral (36), then, applying operator

Iq10+ on both sides of (36), from property of the Rieamnn-Liouville calculus, it holds

Iq10+y(t) = Iq10+I
p1−q1
0+ f(t, Iq10+y(t), y(t)) = Ip1

0+f(t, I
q1
0+y(t), y(t)).

Let
Iq10+y(t) = x(t), 0 ≤ t ≤ T,

thus, x ∈ C[0, T1], and y(t) = Dq1
0+x(t) ∈ Cq1 [0, T1]. As a result, we have that

x(t) = Ip1

0+f(t, x(t), D
q1
0+x(t)), 0 ≤ t ≤ T1,

according to assumptions of function f , we get x(0) = 0 and

Dp1

0+x(t) = f(t, x(t), Dq1
0+x(t)), 0 < t ≤ T1,

that is, x ∈ C[0, T1] is a solution of the initial value problem (18).
Define operator F : Cq1 [0, T1] → Cq1 [0, T1] by

Fy(t) = Ip1−q1
T0+ f(t, Iq10+y(t), y(t)), 0 ≤ t ≤ T1.

By the assumptions of function f , we know that F : Cq1 [0, T1] → Cq1 [0, T1] is well
defined. Next, we will verify that F is a contraction operator.

For y1, y2 ∈ Cq1 [0, T1], by (A2) and (34), we get

|Fy1(t)− Fy2(t)|

≤ 1

Γ(p1 − q1)

∫ t

0

(t− s)p1−q1−1 s−r

1 + sλ
(
c1|Iq20+y1(s)− Iq20+y2(s)|

+c2|y1(s)− y2(s)|
)
ds

≤ 1

Γ(p1 − q1)

∫ t

0

(t− s)p1−q1−1s−r

(
c1|Iq20+y1(s)− Iq20+y2(s)|+ c2|y1(s)− y2(s)|

)
ds

≤
c1∥y1 − y2∥Cq1

Γ(q1)Γ(p1 − q1)

∫ t

0

(t− s)p1−q1−1s−r

∫ s

0

(s− τ)q1−1τ−q1eR
2τp1−q1−r

dτds
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+
c2∥y1 − y2∥Cq1

Γ(p1 − q1)

∫ t

0

(t− s)p1−q1−1s−q1−reR
2sp1−q1−r

ds

≤
c1∥y1 − y2∥Cq1

Γ(1− q1)

Γ(p1 − q1)

∫ t

0

(t− s)p1−q1−1sq1s−q1−reR
2sp1−q1−r

ds

+
c2∥y1 − y2∥Cq1

Γ(p1 − q1)

∫ t

0

(t− s)p1−q1−1s−q1−reR
2sp1−q1−r

ds

≤ (c1MqT
q1 + c2)Mp,q∥y1 − y2∥Cq1

∫ t

0

(t− s)p1−q1−1s−q1−reR
2sp1−q1−r

ds

≤ (c1Mq + c2)(T + 1)Mp,q∥y1 − y2∥Cq1

∫ t

0

(t− s)p1−q1−1s−q1−reR
2sp1−q1−r

ds.

Next, using a similar method as in [25], by (A1) and (34), we estimate the integral
above. ∫ t

0

(t− s)p1−q1−1s−q1−reR
2sp1−q1−r

ds

=
R−1∑
i=1

∫ it
R

(i−1)t
R

(t− s)p1−q1−1s−q1−reR
2sp1−q1−r

ds

+

∫ t

(R−1)t
R

(t− s)p1−q1−1s−q1−reR
2sp1−q1−r

ds

≤
R−1∑
i=1

∫ it
R

(i−1)t
R

R1−p1+q1(R− i)p1−q1−1tp1−q1−1s−q1−reR
2sp1−q1−r

ds

+

(
R− 1

R

)−q1−r

t−q1−reR
2tp1−q1−r

∫ t

(R−1)t
R

(t− s)p1−q1−1ds

≤
R−1∑
i=1

∫ it
R

(i−1)t
R

R1−p1+q1tp1−q1−1s−q1−reR
2sp1−q1−r

ds

+
Rq1+reR

2tp1−q1−r

tq1+r

∫ t

(R−1)t
R

(t− s)p1−q1−1ds

= R1−p1+q1

∫ (R−1)t
R

0

tp1−q1−1s−q1−reR
2sp1−q1−r

ds

+
Rr−p1+2q1tp1−2q1−r

p1 − q1
eR

2tp1−q1−r

≤ R1−p1+q1t−q1

∫ (R−1)t
R

0

sp1−q1−r−1eR
2sp1−q1−r

ds



JFCA-2022/13(1) NEW UNIQUE EXISTENCE RESULT 157

+
Rr−p1+2q1t−q1tp1−q1−r

p1 − q1 − r
eR

2tp1−q1−r

≤ R1−p1+2q1t−q1

R2(p1 − q1 − r)
eR

2(
(R−1)t

R )p1−q1−r

+
Rr−p1+2q1t−q1(T + 1)

p1 − q1 − r
eR

2tp1−q1−r

≤ Mp,q,rR
r−p1+2q1t−q1eR

2tp1−q1−r

+Mp,q,rR
r−p1+2q1t−q1(T + 1)eR

2tp1−q1−r

≤ 2(T + 1)Mp,q,rt
−q1Rr−mp,qeR

2tp1−q1−r

.

By (35), we have

tq1e−R2tp1−q1−r

|Fy1(t)− Fy2(t)|

≤ 2(c1Mq + c2)(T + 1)2Mp,qMp,q,rR
r−mp,q∥y1 − y2∥Cq1

≤ 1

2
∥y1 − y2∥Cq1

,

which implies that

∥Fy1 − Fy2∥Cq1
≤ 1

2
∥y1 − y2∥Cq1

.

Hence, F has one unique fixed point y1 ∈ Cq1 [0, T1]. Thus, by the arguments
above, we obtain x1(t) = Iq10+y1(t) ∈ C[0, T1] is one unique solution of the initial
value problem (18).

In the next analysis, without loss of generality, we assume x1(t) is not identically
vanishing in t ∈ [0, T1]. Thus, by previous arguments, Definitions 2.6 and 2.8, we
consider the initial value problem equation (22){

Dp2

T1+
x(t) = f(t, x,Dq2

T1+
x+ φx1(t))− ψx1(t), T1 ≤ t ≤ T2,

x(T1) = x1(T1),

where x1 = Iq10+y1 ∈ C[0, T1] is the unique solution of the initial value problem (18),
y1 ∈ Cq1 [0, T1] is the unique solution of the integral equation (36),

φx1(t) =
x1(T1)

∫ T1

0
(t− s)−q2 |x1(s)|ds

Γ(1− q2)
∫ T1

0
|x1(s)|ds

− x1(T1)(t− T1)
−q2

Γ(1− q2)
,

ψx1(t) =
x1(T1)

∫ T1

0
(t− s)−p2 |x1(s)|ds

Γ(1− p2)
∫ T1

0
|x1(s)|ds

− x1(T1)(t− T1)
−p2

Γ(1− p2)
.

Let

hx1(t) =
x1(T1)

∫ T1

0
(t− s)−p2 |x1(s)|ds

Γ(1− p2)
∫ T1

0
|x1(s)|ds

,

by calculating, we get

Ip2

T1+
ψx1

(t) = Ip2

T1+
hx1

(t)− x1(T1). (37)

Similar to the previous arguments, we can obtain the following result.
Claim 2. If y ∈ Cq2 [T1, T2] is a solution of the following integral equation

y(t) = Ip2−q2
T1+

f(t, Iq2T1+
y(t), y(t)+φx1(t))− Ip2−q2

T1+
hx1(t)+

x1(T1)(t− T1)
−q2

Γ(1− q2)
, (38)
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then, x = Iq2T1+
y ∈ C[T1, T2] must be a solution of the initial value problem (22).

In fact, if y ∈ Cq2 [T1, T2] is a solution of the integral (38), then, applying oper-
ator Iq2T1+

on both sides of (38), from property of the Riemann-Liouville fractional
calculus, it holds

Iq2T1+
y(t) = Ip2

T1+
f(t, Iq2T1+

y(t), y(t) + φx1(t))− Ip2

T1+
hx1(t) + x1(T1),

let

Iq2T1+
y(t) = x(t), T1 ≤ t ≤ T2,

thus, x ∈ C[T − 1, T2] and D
q2
T1+

x = y ∈ Cq2 [T1, T2], as a result, we have

x(t) = Ip2

T1+
f(t, x(t), Dq2

0+x(t) + φx1)− Ip2

T1+
hx1(t) + x1(T1), T1 ≤ t ≤ T2,

according to assumptions of function f and continuity of function x1(t), we get
x(T1) = x1(T1), and by (37), it holds

Dp2

T1+
x(t) = f(t, , x(t), Dq2

T1+
x(t) + φx1(t))− ψx1(t), T1 < t ≤ T2,

that is, x ∈ C[T1, T2] is a solution of the initial value problem (22).
Define operator F : Cq2 [T1, T2] → Cq2 [T1, T2] by

Fy(t) = Ip2−q2
T1+

f(t, Iq2T1+
y(t), y(t) + φx1(t))− Ip2−q2

T1+
hx1(t) +

x1(T1)(t− T1)
−q2

Γ(1− q2)
.

By the assumptions of function f and x1 ∈ C[0, T1], we know that F : Cq2 [T1, T2] →
Cq2 [T1, T2] is well defined. Next, we will verify that F is a contraction operator.

For y1, y2 ∈ Cq2 [T1, T2], by (A1), (A2), (34), (35), using ways similar to the ways
used previously, we get

|Fy1(t)− Fy2(t)|

≤
c1∥y1 − y2∥Cq2

Γ(q2)Γ(p2 − q2)

∫ t

T1

(t− s)p2−q2−1s−r

∫ s

T1

(s− τ)q2−1eR
2(τ−T1)

p2−q2−r

dτ

(τ − T1)q2
ds

+
c2∥y1 − y2∥Cq2

Γ(p2 − q2)

∫ t

T1

(t− s)p2−q2−1s−r(s− T1)
−q2eR

2(s−T1)
p2−q2−r

ds

≤
c1∥y1 − y2∥Cq2

Γ(1− q2)

Γ(p2 − q2)

∫ t

T1

(t− s)p2−q2−1sq2s−q2−reR
2(s−T1)

p2−q2−r

ds

+
c2∥y1 − y2∥Cq2

Γ(p2 − q2)

∫ t

T1

(t− s)p2−q2−1(s− T1)
−q2−reR

2(s−T1)
p2−q2−r

ds

≤ (c1MqT
q2 + c2)Mp,q∥y1 − y2∥Cq2

∫ t

T1

(t− s)p2−q2−1eR
2(s−T1)

p2−q2−r

(s− T1)q2+r
ds

≤ (c1Mq + c2)(T + 1)Mp,q∥y1 − y2∥Cq2

∫ t

T1

(t− s)p2−q2−1eR
2(s−T1)

p2−q2−r

(s− T1)q2+r
ds,

and ∫ t

T1

(t− s)p2−q2−1(s− T1)
−q2−reR

2(s−T1)
p2−q2−r

ds
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=
R−1∑
i=1

∫ i(t−T1)
R +T1

(i−1)(t−T1)
R +T1

(t− s)p2−q2−1(s− T1)
−q2−reR

2(s−T1)
p2−q2−r

ds

+

∫ t

(R−1)(t−T1)
R +T1

(t− s)p2−q2−1(s− T1)
−q2−reR

2(s−T1)
p2−q2−r

ds

≤ 2(T + 1)Mp,q,r(t− T1)
−q2Rr−mp,qeR

2(t−T1)
p2−q2−r

,

and

(t− T1)
q2e−R2(t−T1)

p2−q2−r

|Fy1(t)− Fy2(t)|

≤ 2(c1Mq + c2)(T + 1)2Mp,qMp,q,rR
r−mp,q∥y1 − y2∥Cq2

≤ 1

2
∥y1 − y2∥Cq2

,

which implies that

∥Fy1 − Fy2∥Cq2
≤ 1

2
∥y1 − y2∥Cq2

.

Hence, F has one unique fixed point y2 ∈ Cq2 [T1, T2]. Thus, by previous arguments,
we obtain x2 = Iq2T1+

y2 ∈ C[T1, T2] is one unique solution of the initial value problem
(22).

By the similar way, we obtain that the initial value problem (26) has one solution
x3 ∈ C[T2, T3], and the initial value problem (27) has one unique solution xi =
IqiTi−1+

yi ∈ C[Ti−1, Ti], where yi ∈ Cqi [Ti−1, Ti] is one unique solution of the integral

equation defined in the interval [Ti−1, Ti], i = 4, · · · , n∗, Tn∗ = T .
In the next analysis, without loss of generality, we assume xi(t) is not identically

vanishing in t ∈ [Ti−1, Ti], i = 1, 2, · · · , n∗, T0 = 0, Tn∗ = T . By the previous
arguments and Definitions 2.6 and 2.8, now we consider the initial value problem
(30){

Dρ1

T+x(t) = f(t, x,Dρ2

T+x+ φx1(t) + · · ·+ φxn∗ (t))− ψx1(t)− · · · − ψxn∗ (t),
x(T ) = xn∗(T ),

where

φxj (t) =
xj(Tj)

∫ Tj

Tj−1
(t− s)−ρ2 |xj(s)|ds

Γ(1− ρ2)
∫ Tj

Tj−1
|xi(s)|ds

− xj(Tj)(t− Tj)
−ρ2

Γ(1− ρ2)

and

ψxj (t) =
xj(Tj)

∫ Tj

Tj−1
(t− s)−ρ1 |xj(s)|ds

Γ(1− ρ1)
∫ Tj

Tj−1
|xi(s)|ds

− xj(Tj)(t− Tj)
−ρ1

Γ(1− ρ1)
,

where j = 1, 2, · · · , n∗ (T0 = 0, Tn∗ = T ).
Let

hxn∗ (t) =
xn∗(T )

∫ T

Tn∗−1
(t− s)−ρ1 |xn∗(s)|ds

Γ(1− ρ1)
∫ T

Tn∗−1
|xn∗(s)|ds

,

by calculating, we get

Iρ1

T+ψxn∗ (t) = Iρ1

T+hxn∗ (t)− xn∗(T ).

By a similar way, we can obtain the following result.
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Claim 3. If y ∈ E is a fixed point of the operator F : E → E defined as
following

Fy(t) =Iρ1−ρ2

T+ f(t, Iρ2

T+y(t), y(t) + φx1(t) + · · ·+ φxn∗ (t))

− Iρ1−ρ2

T+ (ψx1 + · · ·+ ψxn∗−1
)(t)

− Iρ1−ρ2

T+ hxn∗ (t) +
xn∗(T )(t− T )−ρ2

Γ(1− ρ2)
, T ≤ t < +∞.

Then, x = Iρ2

T+y ∈ C[T,+∞) must be a solution of the initial value problem (30).
Now, we verify that F : E → E is well defined. First, by the standard arguments,

we know that Fx ∈ C(T,+∞), (t−T )ρ2Fx ∈ C[T,+∞) for x ∈ E. Second, we will

verify that supt≥T
(t−T )ρ2e−R2(t−T )ρ1−ρ2−r

|Fx(t)|
1+tλ

< +∞ for x ∈ E.
In fact, for y ∈ E, it holds

|φxj (t)| ≤
∥xj∥2C[Tj−1,Tj ]

∫ Tj

Tj−1
(t− s)−ρ2ds

Γ(1− ρ2)
∫ Tj

Tj−1
|xj(s)|ds

+
∥xj∥C[Tj−1,Tj ](t− Tj)

−ρ2

Γ(1− ρ2)

≤
∥xj∥2C[Tj−1,Tj ]

∫ Tj

Tj−1
(t− T )−ρ2ds

Γ(1− ρ2)
∫ Tj

Tj−1
|xj(s)|ds

+
∥xj∥C[Tj−1,Tj ](t− T )−ρ2

Γ(1− ρ2)

≤
[

T∥xj∥2C[Tj−1,Tj ]

Γ(1− ρ2)
∫ Tj

Tj−1
|xj(s)|ds

+
∥xj∥C[Tj−1,Tj ]

Γ(1− ρ2)

]
(t− T )−ρ2

.
= Lj(t− T )−ρ2 .

Using the same analysis, we get

|ψxj (t)| ≤ [
T∥xj∥2C[Tj−1,Tj ]

Γ(1− ρ1)
∫ Tj

Tj−1
|xj(s)|ds

+
∥xj∥C[Tj−1,Tj ]

Γ(1− ρ1)
](t− T )−ρ1

.
= Kj(t− T )−ρ1 .

From (A3), there exists positive M such that

tr|f(t, 0, 0)|
1 + tµ

≤M, t ≥ 0. (39)

Thus, by (A2), it holds

|f(t, Iρ2

T+y(t), y(t) + φx1(t) + · · ·+ φxn∗ (t))|

≤ t−r

1 + tλ
[c1|Iρ2

T+y(t)|+ c2(|y(t)|+ |φx1(t)|+ · · ·+ |φxn∗ (t)|)] + |f(t, 0, 0)|

≤ c1t
−r

Γ(ρ2)

∫ t

T

(t− s)ρ2−1

1 + sλ
|y(s)|ds+ c2t

−r(|y(t)|+ |φx1(t)|+ · · ·+ |φxn∗ (t)|
1 + tλ

+|f(t, 0, 0)|

≤ c1t
−r∥y∥E
Γ(ρ2)

∫ t

T

(t− s)ρ2−1(s− T )−ρ2eR
2(s−T )ρ1−ρ2−r

ds

+c2∥y∥Et−r(t− T )−ρ2eR
2(t−T )ρ1−ρ2−r
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+
c2(t− T )−r

1 + tλ
(|φx1(t)|+ · · ·+ |φxn∗ (t)|) + |f(t, 0, 0)|

≤ c1(t− T )−r∥y∥EeR
2(t−T )ρ1−ρ2−r

Γ(1− ρ2)

+c2∥y∥E(t− T )−ρ2−reR
2(t−T )ρ1−ρ2−r

+
L1c2(t− T )−r−ρ2

1 + tλ
+ · · ·+ Ln∗c2(t− T )−r−ρ2

1 + tλ
+ |f(t, 0, 0)|.

Next, we estimate these terms above,

(t− T )ρ2e−R2(t−T )ρ1−ρ2−r

Iρ1−ρ2

T+ |(t− T )−reR
2(t−T )ρ1−ρ2−r |

1 + tλ

=
(t− T )ρ2e−R2(t−T )ρ1−ρ2−r

1 + tλ

∫ t

T

(t− s)ρ1−ρ2−1(s− T )−reR
2(s−T )ρ1−ρ2−r

Γ(ρ1 − ρ2)
ds

≤ Γ(1− r)

(1 + (t− T )λ)Γ(1− ρ2 − r + ρ1)
(t− T )ρ1−r

≤ Γ(1− r)

Γ(1− ρ2 − r + ρ1)
<∞,

and

(t− T )ρ2e−R2(t−T )ρ1−ρ2−r

Iρ1−ρ2

T+ |(t− T )−ρ2−reR
2(t−T )ρ1−ρ2−r |

1 + tλ

≤ Γ(1− ρ2 − r)

Γ(1− 2ρ2 − r + ρ1)
<∞,

and

(t− T )ρ2e−R2(t−T )ρ1−ρ2−r

Iρ1−ρ2

T+ | (t−T )−r−ρ2

1+tλ
|

1 + tλ

=
(t− T )ρ2e−R2(t−T )ρ1−ρ2−r

(1 + tλ)Γ(ρ1 − ρ2)

∫ t

T

(t− s)ρ1−ρ2−1 (s− T )−r−ρ2

1 + sλ
ds

≤ (t− T )ρ2

(1 + (t− T )λ)Γ(ρ1 − ρ2)

∫ t

T

(t− s)ρ1−ρ2−1(s− T )−r−ρ2ds

=
(t− T )ρ1−ρ2−rΓ(1− r − ρ2)

(1 + (t− T )λ)Γ(1− r − 2ρ2 + ρ1)

≤ Γ(1− r − ρ2)

Γ(1− r − 2ρ2 + ρ1)
< +∞,

and

(t− T )ρ2e−R2(t−T )ρ1−ρ2−r

Iρ1−ρ2

T+ |f(t, 0, 0)|
1 + tλ
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≤ M(t− T )ρ2

(1 + tλ)Γ(ρ1 − ρ2)

∫ t

T

(t− s)ρ1−ρ2−1s−r(1 + sµ)ds

≤ M(t− T )ρ2

(1 + tλ)Γ(ρ1 − ρ2)

∫ t

T

(t− s)ρ1−ρ2−1(s− T )−r(1 + sµ)ds

≤ M(1 + tµ)Γ(1− r)(t− T )ρ1−r

(1 + tλ)Γ(1 + ρ1 − ρ2 − r)

≤ M(1 + tµ)Γ(1− r)tρ1−r

(1 + tλ)Γ(1 + ρ1 − ρ2 − r)

=
MΓ(1− r)tρ1−r

(1 + tλ)Γ(1 + ρ1 − ρ2 − r)
+

MΓ(1− r)tρ1−r+µ

(1 + tλ)Γ(1 + ρ1 − ρ2 − r)
< +∞.

Similarly,

(t− T )ρ2e−R2(t−T )ρ1−ρ2−r

Iρ1−ρ2

T+ |ψxj
(t)|

1 + tλ

≤ Kj(t− T )ρ2e−R2(t−T )ρ1−ρ2−r

(1 + (t− T )λ)Γ(ρ1 − ρ2)

∫ t

T

(t− s)ρ1−ρ2−1(s− T )−ρ1ds

≤ KjΓ(1− ρ1)

(1 + (t− T )λ)Γ(1− ρ2)
≤ KjΓ(1− ρ1)

Γ(1− ρ2)
< +∞.

All these estimations imply that

sup
t≥T

(t− T )ρ2e−R2(t−T )ρ1−ρ2−r |Fx(t)|
1 + tλ

< +∞.

Hence, F : E → E is well defined.
Now, for y1, y2 ∈ E, by a similar way, we get

|Fy1(t)− Fy2(t)|

≤c1Γ(1− ρ2)∥y1 − y2∥E
Γ(ρ1 − ρ2)

∫ t

T

(t− s)ρ1−ρ2−1s−reR
2(s−T )ρ1−ρ2−r

ds

+
c2∥y1 − y2∥E
Γ(ρ1 − ρ2)

∫ t

T

(t− s)ρ1−ρ2−1s−r(s− T )−ρ2eR
2(s−T )ρ1−ρ2−r

ds

≤c1Γ(1− ρ2)∥y1 − y2∥E
Γ(ρ1 − ρ2)

∫ t

T

(t− s)ρ1−ρ2−1(s− T )−reR
2(s−T )ρ1−ρ2−r

ds

+
c2∥y1 − y2∥E
Γ(ρ1 − ρ2)

∫ t

T

(t− s)ρ1−ρ2−1(s− T )−r(s− T )−ρ2eR
2(s−T )ρ1−ρ2−r

ds

≤(c1Mq(t− T )ρ2 + c2)Mp,q∥y1 − y2∥E

·
∫ t

T

(t− s)ρ1−ρ2−1(s− T )−ρ2−reR
2(s−T )ρ1−ρ2−r

ds.

By the similar arguments, we get the estimation∫ t

T

(t− s)ρ1−ρ2−1(s− T )−ρ2−reR
2(s−T )ρ1−ρ2−r

ds
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≤
R−1∑
i=1

∫ i(t−T )
R +T

(i−1)(t−T )
R +T

R1−ρ1+ρ2(t− T )ρ1−ρ2−1(s− T )−ρ2−reR
2(s−T )ρ1−ρ2−r

ds

+
Rρ2+reR

2(t−T )ρ1−ρ2−r

(t− T )ρ2+r

∫ t

(R−1)(t−T )
R +T

(t− s)ρ1−ρ2−1ds

= R1−ρ1+ρ2(t− T )−ρ2

∫ (R−1)(t−T )
R +T

0

(s− T )ρ1−ρ2−r−1eR
2(s−T )ρ1−ρ2−r

ds

+
Rr−ρ1+2ρ2(t− T )−ρ2(t− T )ρ1−ρ2−r

ρ1 − ρ2
eR

2(t−T )ρ1−ρ2−r

≤ R1−ρ1+ρ2(t− T )−ρ2

R2(ρ1 − ρ2 − r)
eR

2(t−T )ρ1−ρ2−r

+
Rr−ρ1+2ρ2(t− T )−ρ2(t− T )ρ1−ρ2−r

ρ1 − ρ2 − r
eR

2(t−T )ρ1−ρ2−r

≤ ((t− T )ρ1−ρ2−r + 1)(t− T )−ρ2Mp,q,rR
r−mp,qeR

2(t−T )ρ1−ρ2−r

.

As a result, we have

(t− T )ρ2e−R2(t−T )ρ1−ρ2−r

1 + tλ
|Fy1(t)− Fy2(t)|

≤ (t− T )ρ2e−R2(t−T )ρ1−ρ2−r

1 + (t− T )λ
|Fy1(t)− Fy2(t)|

≤ Mp,qMp,q,r(c1Mq(t− T )ρ2 + c2)((t− T )ρ1−ρ2−r + 1)

1 + (t− T )λ
Rr−mp,q∥y1 − y2∥E

=
c1Mp,qMp,q,rMq((t− T )ρ1−r + (t− T )ρ2)

1 + (t− T )λ
Rr−mp,q∥y1 − y2∥E

+
c2Mp,qMp,q,r((t− T )ρ1−ρ2−r + 1)

1 + (t− T )λ
Rr−mp,q∥y1 − y2∥E

≤ 2Mp,qMp,q,r(c1Mq + c2)R
r−mp,q∥y1 − y2∥E

≤ 2(T + 1)2Mp,qMp,q,r(c1Mq + c2)R
r−mp,q∥y1 − y2∥E ≤ 1

2
∥y1 − y2∥E .

Hence, F has one unique fixed point yn∗+1 ∈ E. Thus, by the previous arguments,
we obtain xn∗+1 = Iρ2

T+
yn∗+1 is one unique solution of the initial value problem

(30).
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Thus, according to the Definition 2.8, we obtain that the initial value problem
(1) has one unique approximate solution x ∈ C[0,+∞) as following

x(t) =



x1(t), 0 ≤ t ≤ T1,

x2(t), T1 ≤ t ≤ T2,

x3(t), T2 ≤ t ≤ T3,
...
xn∗(t), Tn∗−1 ≤ t ≤ T,

xn∗+1(t), T ≤ t < +∞.

Thus we complete this proof. �

Example 3.2. Now, we consider the following initial value problem for linear
equation

D
1
2+

t
700000(1+t2)

0+ x(t) = t
1
4 , x(0) = 0, 0 < t < +∞. (40)

By the definition of the Riemann-Liouville variable order fractional derivative,
we don’t have a way to obtain its exact solution, we don’t even have method to
study the existence result of solution. Next, according to the Definition 2.8, we
seek its continuous approximate solution.

For given arbitrary small ε = 1
1000 , there exists T = 1.8

ε = 1800, so that∣∣∣∣p(t)− 1

2

∣∣∣∣ = t

700000(1 + t2)
<

1

t
≤ 1

T
=

ε

1.8
< ε, t ≥ T,

Now, we consider the function p(t) restricted on the interval [0, T ] = [0, 1800].
By the right continuity of function p(t) at point 0, for ε = 1

1000 , taking δ0 = 600,
when 0 ≤ t ≤ δ0 = 600, we have

|p(t)− p(0)| =
∣∣∣∣ t

700000(1 + t2)

∣∣∣∣ ≤ t

700000
≤ δ0

700000
<

1

1000
= ε.

We get t1 = δ0 = 600. By the right continuity of function p(t) at point t1, for
ε = 1

1000 , taking δ1 = 600, when 0 ≤ t − t1 ≤ δ1, by the differential mean value
theorem, we have

|p(t)− p(t1)| =
∣∣∣∣ t

700000(1 + t2)
− t1

700000(1 + t21)

∣∣∣∣
≤

∣∣∣∣ 1− ξ2

700000(1 + ξ2)2

∣∣∣∣|t− t1|

≤ 1 + ξ2

700000(1 + ξ2)2
|t− t1|

≤ 1

700000
|t− t1|

≤ δ1
700000

<
1

1000
= ε,
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where t1 < ξ < t. We let t2 = t1 + δ1 = 1200. By the right continuity of function
p(t) at point t2, for ε =

1
1000 , taking δ2 = 600, when 0 ≤ t − t2 ≤ δ2, by the same

reasons above, we have

|p(t)− p(t2)| =
∣∣∣∣ t

700000(1 + t2)
− t2

700000(1 + t22)

∣∣∣∣ ≤ δ2
700000

<
1

1000
= ε,

we see that t3 = t2 + δ2 = 1800 = T , hence, we get intervals [0, 600], (600, 1200],
(1200, 1800], (1800,+∞) and piecewise constant function α(t) defined by

α(t) =



p1 = p(0) = 1
2 , t ∈ [0, 600],

p2 = p(600) = 1
2 + 3

3500×360001 , t ∈ (600, 1200],

p3 = p(1200) = 1
2 + 3

1750×1440001 , t ∈ (1200, 1800],

ρ = 1
2 , t ∈ (1800,+∞).

Thus, according analysis above, first, we consider the initial value problem{
Dp1

0+x(t) = t
1
4 , 0 < t ≤ 600,

x(0) = 0,
(41)

by the fact of the Riemann-Liouville fractional calculus, we get solution of the initial

value problem (41) is x1(t) =
Γ( 5

4 )

Γ( 7
4 )
t
3
4 , 0 ≤ t ≤ 600, obvious, x1 ∈ C[0, 600].

Second, we seek the solution of the initial value problem{
Dp2

600+x(t) = t
1
4 − ψx1(t), 600 < t ≤ 1200,

x(600) =
Γ( 5

4 )

Γ( 7
4 )
600

3
4 ,

(42)

where x1(t) =
Γ( 5

4 )

Γ( 7
4 )
t
3
4 is the unique solution of the initial value problem (41),

ψx1(t) =
x1(600)

∫ 600

0
(t− s)−p2 |x1(s)|ds

Γ(1− p2)
∫ 600

0
|x1(s)|ds

− x1(600)(t− 600)−p2

Γ(1− p2)

.
= hx1(t)−

x1(600)(t− 600)−p2

Γ(1− p2)
.

Obvious, hx1 ∈ C[600, 1200], thus, the solution of the initial value problem (42) is

x2(t) =

∫ t

600

(t− s)p2−1

Γ(p2)
(s

1
4 − hx1(s))ds+ x1(600).

Obvious, x2 ∈ C[600, 1200].
Third, we seek the solution of the initial value problem{

Dp3

1200+x(t) = t
1
4 − ψx1(t)− ψx2(t), 1200 < t ≤ 1800,

x(1200) = x2(1200),
(43)
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where x1 ∈ C[0, 600] is the unique solution of the initial value problem (41), x2 ∈
C[600, 1200] is the unique solution of the initial value problem (42),



ψx1(t) =
x1(600)

∫ 600
0

(t−s)−p3 |x1(s)|ds
Γ(1−p3)

∫ 600
0

|x1(s)|ds
− x1(600)(t−600)−p3

Γ(1−p3)
,

ψx2(t) =
x2(1200)

∫ 1200
600

(t−s)−p3 |x2(s)|ds
Γ(1−p3)

∫ 1200
600

|x2(s)|ds
− x2(1200)(t−1200)−p3

Γ(1−p3)

.
= hx2

(t)− x2(1200)(t−1200)−p3

Γ(1−p3)
,

thus, the solution of the initial value problem (43) is

x3(t) =

∫ t

1200

(t− s)p3−1

Γ(p3)
(s

1
4 − ψx1(s)− hx2(s))ds+ x2(1200).

Obvious, x3 ∈ C[1200, 1800].
Finally, we seek the solution of the initial value problem

{
Dρ

1800+x(t) = t
1
4 − ψx1(t)− ψx2(t)− ψx3(t), 1800 < t < +∞,

x(1800) = x3(1800),
(44)

where x1 ∈ C[0, 600] x2 ∈ C[600, 1200] and x3 ∈ C[1200, 1800] are unique solutions
of the initial value problems (41)-(43),



ψx1(t) =
x1(600)

∫ 600
0

(t−s)−ρ|x1(s)|ds
Γ(1−ρ)

∫ 600
0

|x1(s)|ds
− x1(600)(t−600)−ρ

Γ(1−ρ) ,

ψx2(t) =
x2(1200)

∫ 1200
600

(t−s)−ρ|x2(s)|ds
Γ(1−ρ)

∫ 1200
600

|x2(s)|ds
− x2(1200)(t−1200)−ρ

Γ(1−ρ) ,

ψx3(t) =
x3(1800)

∫ 1800
1200

(t−s)−ρ|x3(s)|ds
Γ(1−ρ)

∫ 1800
1200

|x3(s)|ds
− x3(1800)(t−1800)−ρ

Γ(1−ρ)

.
= hx3(t)−

x3(1800)(t−1800)−ρ

Γ(1−ρ) ,

thus, the solution of the initial value problem (44) is

x4(t) =

∫ t

1800

(t− s)ρ−1

Γ(ρ)
(s

1
4 − ψx1(s)− ψx1(s)− hx3(s))ds+ x3(1800),

obvious, x4 ∈ C[1800,+∞).
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Hence, by the Definition 2.8, we obtain that the initial value problem (40) exists
the unique continuous approximate solution x : [0,+∞) → R defined by

x(t) =



x1(t) =
Γ( 5

4 )

Γ( 7
4 )
t
3
4 , 0 ≤ t ≤ 600,

x2(t) =
∫ t

600
(t−s)p2−1

Γ(p2)
(s

1
4 − hx1(s))ds+ x1(600)], 600 ≤ t ≤ 1200,

x3(t) =
∫ t

1200
(t−s)p3−1

Γ(p3)
(s

1
4 − ψx1(s)− hx2(s))ds

+x2(1200), 1200 ≤ t ≤ 1800,

x4(t) =
∫ t

1800
(t−s)ρ−1

Γ(ρ) (s
1
4 − ψx1(s)− ψx1(s)− hx3(s))ds

+x3(1800), 1800 ≤ t < +∞.

Example 3.3. Now, we consider the initial value problem as following D
1
2+

t
700000(1+t2)

0+ x(t) =
Γ( 3

2 )x
4

12(1+t2)4(1+x4) +
Γ( 7

6 )(D

1
5
+ t

1400000(1+t2+t3)
0+ x)2

12(1+t2)2(1+(D

1
5
+ t

1400000(1+t2+t3)
0+ x)2)

,

x(0) = 0,
(45)

where 0 < t < +∞. We let

p(t) =
1

2
+

t

700000(1 + t2)
, q(t) =

1

5
+

t

1400000(1 + t2 + t3)
,

f(t, x(t), y(t)) =
Γ(32 )x

4(t)

12(1 + t2)4(1 + x4(t))
+

Γ(76 )y
2(t)

12(1 + t2)2(1 + y2(t))
,

where 0 < t < +∞, x(t), y(t) ∈ R. Obviously, we get p(t) > 2q(t), 0 ≤ t < +∞,
limt→+∞ p(t) = 1

2 > 2 limt→+∞ q(t) = 2
5 , thus, p satisfies (A1) with η1 = 1

2 , η2 = 1
5 .

And that, for all 0 ≤ t < +∞, x(t), y(t) ∈ R, from the differentiation mean theorem,
we get

|f(t, (1 + t2)x1, (1 + t2)y1)− f(t, (1 + t2)x2, (1 + t2)y2)|

≤
Γ( 32 )

12
| x41
1 + (1 + t2)4x41

− x42
1 + (1 + t2)4x42

|

+
Γ(76 )

12
| y21(t)

1 + (1 + t2)2y21
− y22

1 + (1 + t2)2y22
)|

≤
Γ( 32 )

3
|x1 − x2|+

Γ(76 )

3
|y1 − y1|,

which implies that f satisfies (A2) with r = 0, λ = 2, c1 =
Γ( 3

2 )

3 , c2 =
Γ( 7

6 )

3 .

In addition, f(t, 0, 0) = 0 satisfies limt→+∞
tr|f(t,0,0)|

1+tµ = 0, which implies that f

satisfies (A3) with r = 0, µ = 0. By the same arguments done in section 2, we
get intervals [0, 600], (600, 1200], (1200, 1800], (1800,+∞) and piecewise constant
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functions α(t), β(t) defined by

α(t) =



p1 = p(0), t ∈ [0, 600],

p2 = p(600), t ∈ (600, 1200],

p3 = p(1200), t ∈ (1200, 1800],

ρ1 = 1
2 , t ∈ (1800,+∞),

β(t) =



q1 = q(0), t ∈ [0, 600],

q2 = q(600), t ∈ (600, 1200],

q3 = q(1200), t ∈ (1200, 1800],

ρ2 = 1
5 , t ∈ (1800,+∞).

By Theorem 3.1, the initial value problem (45) has one continuous unique approx-
imate solution x(t), 0 ≤ t < +∞.

4. conclusion

Based on some known results, the Riemann-Liouville variable order fractional
integral doesn’t have semigroup property. Hence the transform between the vari-
able order fractional integral and derivative is not clear, which brings us extreme
difficulties in considering the solutions of variable order differential equations. It is
interesting and meaningful for we to overcome the difficulties and obtain the solu-
tions of variable order differential equation. To the best of the authors’ knowledge,
this is the first paper dealing with variable order fractional differential equations
on half-axis. This paper enriches and extends the existing literatures. Finally, we
give an example to illustrate our results.

Acknowledgments

This research was funded by the National Natural Science Foundation of China
(12071302) and the Fundamental Research Funds for the Central Universities (2021YJSLX01).

References

[1] S.G.Samko, B.Boss, Integration and differentiation to a variable fractional order, Integral

Transforms and Special Functions, 1(4)(1993) 277-300.
[2] S.G.Samko, Fractional integration and differentiation of variable order, Analysis Mathemat-

ica, 21(1995) 213-236.
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