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NEW UNIQUE EXISTENCE RESULT OF APPROXIMATE
SOLUTION TO INITIAL VALUE PROBLEM FOR FRACTIONAL
DIFFERENTIAL EQUATION OF VARIABLE ORDER

S. ZHANG, L. HU

ABSTRACT. In this paper, we introduce the concept of continuous approximate
solution which is new in term of variable order differential equations. By
using the Banach Contraction Principle, we obtain the unique existence of
approximate solution to an initial value problem for differential equation of
variable order involving the derivative argument on half-axis. Finally, we give
an example to illustrate our results.

1. INTRODUCTION

In this paper, we study the unique existence of approximate solution to the
following initial value problem of variable order

Dg_(:)x(t) = f(t,x,DgSf)x),O <t < oo, (1)
z(0) =0,

where 0 < ¢(t) < p(t) < 1, f(t, aaDSE:)m) are given real functions, and D§$)7 Dg(j)
denote the Riemann-Liouville fractional derivatives of variable order p(t) and ¢(t)
[1]-[4]

d 1- d [*(t— s) p(t)
Dp(t) _ [1 p(t) — / ~ 7 . 2
o x(t) = 7 1o z(t) = ¢ ), T (t))x(s)ds,t >0 (2)

d 1 d ' (t—s)"9®
DiPa(t)y = <1377 t:—/i ds, t

0+ x( ) dt 0+ 1’( ) dt 0 F(l _q(t))m(s) S, > 07

and Ié;p (t)m(t) is the Riemann-Liouville fractional integral of variable order 1—p(t)
for function x(t) [1]-[4], defined by

1

1700t = ST /0 (t — 5) P a(s)ds, t > 0, 3)

Ié;qu(t) has the same meaning, for details, please refer to [1]-[4].
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The operators of variable order, which fall into a more complex category, are the
derivatives and integrals whose orders are the functions of certain variables. There
are several definitions of variable order fractional integrals and derivatives [1]-[4].

The problems denoted by the operator of variable order are apparently more
complicated than the ones denoted by the operator of constant order. Recently,
some authors have considered the applications of derivatives of variable order in
various sciences such as anomalous diffusion modeling, mechanical applications,
and multi-fractional Gaussian noises. Among these, there are many works that
deal with the operator of variable order and numerical methods for some class of
variable order fractional differential equations, for instance, [1]-[20]. But, to the
best of our knowledge, there are few works dealing with the existence of solutions
to differential equations of variable order, [21], [22], [26].

We notice that, in (2) and (3), if the order p(t) is a constant function g, then
the Riemann-Liouville variable order fractional derivatives and integrals are the
Riemann-Liouville fractional derivative and integral, respectively [27]. It is well
known that the Riemann-Liouville fractional integral has the the law of expo-
nents. With this the law of exponents, one obtains the transformation between
the Riemann-Liouville fractional derivative and integral [27]. Using these prop-
erties, one can transform differential equations of fractional order into equivalent
integral equations, so that some nonlinear functional analysis (for instance, some
fixed point theorems) have been applied in considering existence of solution of the
differential equations of fractional order [28]-[30]. However from [1], [2], [8], [23],
[24], [25] and [26], we notice that the law of exponents doesn’t hold. Thus, we
are not sure, for general function p(t), f(t), what Dgsf)lg(f)f(t) and Igf)Dg(j)f(t)
equal. Consequently, we can’t transform the initial value problem (1) into an inte-
gral equation, so that we can hardly consider the existence of solutions of (1), by
means of nonlinear functional analysis (for instance, some fixed point theorems).

In [13], authors consider the variable order fractional functional boundary value
problems of the form

D37 u(w) + cos(@)ul(2) + dula) +5u(a?) = f@),0< e <1y
w(0) =0,u(l) =1,

where a(z) = Feoste) Dgf) is the Riemann-Liouville variable order derivative of

order 1 < a(z) < 2 [1]-[4]

2 7 g)l-a)
Dgf)u(iﬂ)) = %/0 (F(Z%.[(t»u(s)ds7 x>0, (5)

When f(z) = Fz(x;_—i:((;;) + 52* 4 422 4 2x cos(x), the exact solution of boundary
value problem (4) is
u(z) = 22

Also, in (4), according to (5), if we take f(x) = 62° + 5a? + 422 + 2z cos(x) or
f(x) = 23, then, we can’t obtain its exact solution. And we don’t even known
whether the solution exists or not exist.

In [13], the variable order fractional functional boundary value problems of the
form is also considered

[ D vt ) e = b0z a S
uw(0) = 4,u(1) =9,
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, D*®) ig the Riemann-Liouville variable order derivative

defined by (5). When f(z) = 13(9”;:7;(;;) +2(2% +4x +4) + 8(4e L + €272 1 4) +

e?(2x + 4), the exact solution of boundary value problem (6) is

where a(r) = H#S(x)

u(z) = 2% + 4o + 4.

Also, in (6), if we take f(x) = 22a(x)+2(z? +42+4)+8(4e® 1 +e22 72 +4) +e2(22+4)
or f(z) =1, then, we can’t obtain its exact solution, we can’t even known whether
the solution exists or not exist.

Hence, an important question arises: how to solve the existence result of solu-
tions to differential equations of variable order? In this paper, we will answer this
question. Based on some facts on the solution of differential equations of integer
order (fractional order) and some analysis of the initial value problem (1), we intro-
duce the concept of continuous approximate solution to the initial value problem
(1). And then, according to our discussion and analysis, we explore the unique
existence of continuous approximate solution of the initial value problem (1). This
paper is organized as follows. In section 2, we state some results which will play
a very important role in obtaining our main results. In section 3, we set forth our
main result. Finally, some examples are given.

2. SOME PRELIMINARIES ON APPROXIMATE SOLUTION

we notice that the law of exponents doesn’t hold for variable order fractional
integrals (3). This leads to the fact that the Riemann-Liouville type variable order
fractional derivative and integral of variable order are not inverse to each other,
which is in contrast to the case of constant order fractional calculus. For examples,

Example 2.1. Let p(t) = £+1, ¢(t) = 2 4, f(®) =1,0 <t < 4. Now, we calculate

Ioj_)lgf) F(®)|t=2, Igs_t)lp(t f(t)|t=2 and Io+ )+a t)f( t)|t=2 which are defined in (3).
For 0 <t <4, we have

t B AR . | s N8 + _ai—2 3_s
I0+)Iq(t)f( t) = / (t—s)ira / (s—71)i % drds — / (t—s)a 4734 z s,
0 ) 0 0 (Z Z)

T+ G- P+ DG -
We get
2 2 3)745171
12O 180 £(4)),2n / ( ds ~ 1.91596
o DTG -9
and

3
4
SO 3 1
igiTa
79 rp(t) (t) |12 :/ <F(1)I)‘(5 ey ds ~ 2.02906
0 4 4 4
and
9 _ S)p(2)+q(2
(e _:/( /d_2
f( )l =2 0 F(p(2) o
Therefore,

Iq(t I;D ( )lt o # Ip(t Iq t) ( )lt o # I;D(t +q t)f<t)|t:2,
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O (1) iza # 9T £(1) s,

which illustrate that the law of exponentsof the Riemann-Liouville variable order
fractional integral of continuous function doesn’t holds for constant function.

1
=, 0<t<1

Example 2.2. Letp(t):{ =L 2 q) =
5, 1<t <4,

1,0 < ¢ < 4. We'll caleulate I5 18 £(1)]1=s, 180 120
which are defined in (3).
For 1 <t <4, we have

1 — s 1_
p(t) 7a(t) ) L A CEk ke
Ioy Ioy f(t) —/0 T(p(0)) /0 drds

t (t _ S)p(t)—l s (s _ T)§—1
+f e, e
(

0<t<1,
121524 and f(t) =

)]s and 10O £ (1)) 1=y

)

(SIS

—~

Thus, we have

1 _z2 1 3 2 2
3—5) 552 (3—5) 553
Ip(t)IQ(t)f(t)h:g :/ (7ds+/ Y % ds
oo o T(I(E) 1 TRT(3)
~ 3.01744.
By the same way, we get
1 ~11 3 _1 2
¢ 3—8) 382 (3—5) 383
BB fOl=s = / STt +/ -
o ot o TENTE) 1 TRrE)
~ 3.68119

and

3 3 3)—1 3

3 S)p( )+a(3)
IP(t)"F‘Z(t) - :/ ( ds :/ ds = 3.
o T W= = ) R T am) 0

Therefore, we obtain
IO IO £ (1)=s # BT F()]ms # 15071 ()]s,
LY FOlims # B F(0)]s,

which illustrate that the law of exponentsof the Riemann-Liouville variable order
fractional integral of piecewise constant function defined in the same partition,
doesn’t hold for constant function.

Without the the law of exponents, we can assure that the Riemann-Liouville
variable order fractional integral of non-constant continuous functions p(t) for z(t)
doesn’t have the properties for the Riemann-Liouville fractional derivative and in-
tegral. In fact, from Examples 2.1, 2.2, we could verify this result.

Example 2.3. Let p(t) = ﬁJr %, fit) = 1,0 < ¢ < 3. Now, we consider
150 DY f(t)] =2 and DYV f(2)]1—2 -
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By (2) and (3), we have

t ty41_q s _s_1
(t—s)sta=l g (s—7)"2171
IO DR (1) = /7— N —drds
0 0 4 4

t t_3 3_s
t—s)i"1 d si1
o T'(3+7) dsT(;—3%)
s s "(1_s
/ (t—s)iist i(sns =345 5(5%475))4
= —_ 87
o T(§+7) )
which implies that
a_s 3 _sr(E-%)
18 DY F()lh=2 = —/2 et IR ML 1 5 £
L o T(3) (7 - %)
= 0.62725 # f(t)|t=2 = 1,
which implies that we hardly say for sure that Igf)DgS:) has similar result for the

Riemann-Liouville fractional derivative and integral[27], that is,
I3y DG g(t) = 9(t),0 <t <, (7)

where 0 < a <1, g € C[0,0],0 < b < +o0.
On the other hand, from Example 2.1, we know

Io7P O r (1) /t (t—s)i-dsii
- S.
0+ 0+ 0 F(ﬁ + i)r(% _ i)
Thus we get
d [f (t—s)i-isi-1
Dyg t)fp(t) - Pt)jp t) / ds,t >0,
f) = dt Toy ft)=— T+ O35

which illustrates that Dgg:)lgf)f(t)h:g is not clear.

Hence, we don’t be sure whether Dggf)lgf) has similar result for the Riemann-
Liouville fractional derivative and integral[27], that is,

DG IS h(t) = h(t),0 < t <b, (8)
where 0 < o < 1, h € L(0,0),0 < b < +o0.

3, 0<t<1,
Example 2.4. Let p(t) = f(#) =1,0 <t < 4. Now, we con-
21 < t <4,

sider Igf)Dp(t f(t)|t=3 and Dp(t Ip f(@®)]e=s-

By (2) and (3), for 2 <t < 4, we have

o) o) g [T =8P d 8 (s — 1) 7P
Io: Doy f(t) —/0 TTOW) £/ T = p(3)) ~ < __drds
)

S et o B AR e SRy (i RPN
o R s irio - [ oy g
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t -1 -1 t 1 -1
t— p(t)—1 t— p(t)—1
0 1

L(p(t)T'(3) L(p(t)T'(3)
thus, we get
p(t) () _ tBos)dse P35 557
I Do f(t)|e=3 = /0 I’(%)I‘(%) d5—|—/1 F(%)I‘(%) ds

~ 1.00029 # f(t)|=3 = 1,

which implies that (7) is invalid for Ig_(:)Dgg_t).
On the other hand, from Example 2.2 and similar arguments, it is difficult to
say with certainly (8) is valid for Dgf)fgf).

According to the definition of solution of differential equations of integer order
(fractional order), function z : [0, +00) — R is called a solution of the initial value
problem (1.1), if x(¢) satisfies the equation of (1.1) with z(0) = 0. However, by
the arguments above, we have extreme difficulties in considering the existence of
solutions of variable order fractional differential equations. So, we will consider the
existence of its continuous approximate solution. In this section, we give some pre-
liminaries on approximate solution to the initial value problem (1). The following
result is necessary in our next analysis of the main result.

Lemma 2.5. Let p : [0,+00) — (0,1) and ¢ : [0,400) — (0,1) be continuous
functions, and that p(t), ¢(t) satisty
lim p(t) =m, lim q(t)=n:,0<m <LO0<nmp <L (9)

t——+o0
Then there are positive constant T, natural number n* and intervals [0, T1], (T1, T3], - - -
(Tyr—1,T) (T, 400)(n* € N) and piecewise constant functions « : [0, +o0) — (0, 1)
and 3 : [0, +00) — (0,1) defined

p1, te€l0,Ty], q, te€(0,Th],
p2, te (T, T, q@, te (T,
at)=4q Bt) =1 : (10)
Pn*, te (Tn*flvT]v Qnx, te (Tn*flaT]a
P1; te (T7 +OO)7 P2, te (T7 +OO)’
where 0 < q; < p; < 1,0 < pa < p1 < 1,4 =1,2,--- ,n* such that for arbitrary
small € > 0,
Ip(t) — a(t)| < e,|q(t) — Bt)| <e, 0<t<4o0. (11)

Proof. By (9), for V e > 0, there exists T, Ty > 0, such that
=
2

3

A>T,
2 2

p(t) —m| < 5,6 >Tr;q(t) —me| <

We take
T = max{T, T2}, (12)
then, for V ¢ > 0, we have that

€ €
Ip(t) —m| < §7|Q(t)*772| < §7t>T- (13)



JFCA-2022/13(1) NEW UNIQUE EXISTENCE RESULT 147

For V € > 0, we take
p1=p(T+1),p2 =q(T +1). (14)

For V e > 0, by (13)-(14), we have
{ p(t) — p1| = [p(t) — p(T + 1)| < |p(t) —m| + |m — p(T +1)| <
lq(t) — p2| = lq(t) — (T + 1)| < |q(t) —m2| + |n2 — (T +1)| <

We know that p : [0,7] — (0,1), ¢ : [0,7] — (0,1) are continuous functions. Since
p(t), ¢(t) are right continuous at point 0, then, for arbitrary small € > 0, there exists
do > 0 such that

=e,t>T,
=et>T.

IIRTNTTOY

t
T3

p(t) —p(0)] <&, [q(t) —q(0)] <&, for 0 <t<dp.

We take point §g = T3 (if T < T', we consider continuities of p(t), ¢(t) at point
T3, otherwise, we end this procedure). Since p(t), ¢(t) are right continuous at point
T1, so for arbitrary small € > 0, there exists §; > 0 such that

Ip(t) —p(Th)| < e, |q(t)—q(T1)| <e, for Ty <t <Ty+ .

We take point Ty + 01 = T3 (if T» < T', we consider continuities of p(t), ¢(t) at
point T, otherwise, we end this procedure). Since p(t), ¢(t) are right continuous at
point 15, so, for arbitrary small e > 0, there exists do > 0 such that

Ip(t) —p(T2)| <e, |qt) —q(T2)| <e, for Tp <t <Th+ 0.

We take point T + do = T3 (if T35 < T, we consider continuities of p(t), ¢(t) at
point T35, otherwise, we end this procedure). Since p(t), g(t) are right continuous at
point T3, so, for arbitrary small e > 0, there exists d3 > 0 such that

Ip(t) —p(T3)| <e, |qt) —q(T3)| <&, for Tz <t <Ts+ ds.

Since [0,77] is a finite interval, then, continuing this analysis procedure, we can
obtain there are §,«_o > 0, d,-—1 > 0 (n* € N) such that T« _o+0,+—9 = Tpe_1 <
T, Tp«_1 4 0,+_1 > T, such that for arbitrary small € > 0, it holds

p(t) = p(Tn-—1)| <&, la(t) — q(Tp-—1)| <& for Tpeqg <t <Tpe =T,
From previous arguments, we let
p(0) = p1,p(T1) = p2, p(T2) = p3,p(T3) = pa, -+, p(Tp<—1) = pn-,  (15)

q(0) = q1,q9(T1) = q2,9(T2) = 43, 9(T3) = qa, -+ , q(Tnr—1) = qu~- (16)

Thus, by (15)-(16) and arguments above, we get piecewise constant functions «, 3 :
[0, +00) — (0,1) as following

p1,  t€[0,T1], q,  t€[0,Th],

D2, te (TlaTQ]a q2, te (T17T2]7
a(t)y =1 : Blt)=4q

Pn~, te (Tn*—laT}a Gn~, te (Tn*—laT]a

P1s te (T7 +OO), P25 te (T,+OO),
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and that, for arbitrary small € > 0, «a(t), 5(t) satisfy
Ip(t) = p1l <elq(t) — @] <e, for t€[0,T1],

Ip(t) —p2| <e,lq(t) — q2| <e, for te (T1,T3],

[p(t) — pnx| < &, |q(t) — gn+| < e, for te (Tp«_1,T],

Ip(t) — p1| < &,]q(t) — p2| <&, for te (T,+00),
which implies that (11) holds. Thus, we complete this proof. O

For a(t), B(t) obtained in Lemma 2.1, we get the following initial value problem

{zﬁﬁmﬂ—fmnpﬂ%mo<t<+m, (17)

x(0) = 0.

According to Example 2.3, we can’t transform the initial value problem (1)
into an integral equation, we have obstacles in consider existence of solutions of
differential equations of variable order. Hence, here, we consider its approximate
solutions of (1) in the following sense: If p(t),q(t), a(t), 5(t) satisfy (11), then a
solution z : [0,+00) — R of (17) is called a approximate solution of the initial
value problem (1).

For the initial value problem (17), according to the definition of solution of
differential equations of integer order (fractional order), function z : [0, 4+00) — R
is called a solution of the initial value problem (17), if z(t) satisfies the equation
of (17) with x(0) = 0. However, it follows from Example 2.4 that we also can’t
transform the initial value problem (17) into an integral equation, hence in order
to obtain our main results, we need to carry on essential analysis to the equation
of (17).

For the initial value problem (17), by (10), in the interval [0, T3], we have the
initial value problem

DfLx(t) = f(t,x, D x),0 <t < T, (18)
x(0) = 0.
By (10), the equation (17) in the interval (T}, T3] can be written by
d [t (t—s)7P
DYty == [ =——a(s)d
Ty — g) P2 t — g) P2
L,
dt Jo I'(1—p2) dt Jy, T(1—p2)
d [T (t—s)—® d [t (t—s)®
_ f(m:,/ (t—s)7"als) ;o\ 7/ (S)st)_
dt Jo I'(1-q) dt Jy, T(1-q2)
In order to consider the existence of solution to (17) in the interval [T7, T5], we let
0, if xl(t) =0forte [O,Tl],
o(t) = W, if 21(t) is not identically vanishing for ¢ € [0, T}],
o lza1(s)lds

(19)
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here, ;1 : [0,71] — R is continuous solution of the initial value problem (18). Thus,

if z1(s) =0,0 < s < T, then by (19), we let

Ty (t—s)"Ra(s) 7, _
{ dt Jo Fs(l q295)3 ds = O_(pl’l(t)7 (20)

d T (t—s) P2z R
dt 01 ( F(lpr)( )d8_0_¢z1(t)7

if z1(s) is not identically vanishing for 0 < s < 77, by (19) and integration by parts,
we let

¢ (Ti (t=s)"a(s) g wa(T) (=) "2 ea()lds _ o (Ty)(E=T1) "

dt Jo T'(1—gq2) - F(l—qQ)foTl |1 (s)|ds T'(1—g2) = Py (t)7
d (T1(t—s)"P2a(s) g 21 (Th) Ji 1 (t=5) P22y (s)lds o (Th)(t— Tl) P2 = o (8).
dtJo " T(-p2) T T(1-pa) Jy wa(s)lds I(1-p2) o

(21)

Hence, we may consider the initial value problem defined in the interval [T}, T5]
as following

{Txiy?ﬁxmamem—%ﬁﬂkdﬁﬁ (22)

By (10), the equation (17) in the interval (75, T3] can be written by

alt) _ d ! (t_ s)—pa
Dy, x(t) = %/0 mm(s)ds
_d [Pl d [t s Tals)
N dt/o (1 —p3) d 7 /T2 (1 —ps) a
B d T2 (t —s)"Bx(s) d [*(t—s)"®x(s)
=it gy | ‘ﬁfi@fd+ﬁ/‘7ﬁia74“

In order to consider the existence of solution to (17) in the interval [T%, T3], we let

0, lfil,‘l t)y=0fort e [O,Tl],

)
W, if 21 (t) is not identically vanishing for ¢ € [0, T}],
o lzi(s)lds
)
)

(
(
z(t) =4 o, if (1) = 0 for ¢ € [T1, Ts),
2(T2) [ |@2(s)|ds
%, if xo(¢) is not identically vanishing for ¢ € [T7, T5],
T, |T2(s)|ds

(23)
here, x; : [0,71] — R is continuous solution of the initial value problem (18) and
2 : [T1, T3] — R is continuous solution of the initial value problem (22). Thus, if

z21(s) =0,0 < s <T1, x2(s) = 0,71 < s < Ty, then by (23), we let

(24)

d (Ti  (t=s)"Ba(s) 3. _ - . _
{ % T gy 45 =0=1¢g (t),i=1,2,T, =0,

0
t—s) P3x(s . .
afTi,1 WCZS O:¢x1(t)7lz 1,27T0:O’
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if z1(s) is not identically vanishing for 0 < s < Ty, x2(s) is not identically vanishing
for T < s < Ty, then by (23) and integration by parts, we let

(t—s)"Bx(s) 7o _ i(Ti)fgii—l(tis)iqg‘zi(s)lds zi (To)(t=T;) "3

il F(1=as) T(i=as) [r;  |ws(s)lds T = ¢a(t);
d (t—s)~ p?’z (8) 3o " (T)fT _ (=) P8 wi(s)|ds _ oz (TH(A=Ti)"P3 .
i dr NEDE L(1=ps) [z, |wi(s)lds T Yelt)
(25)
i=1,2,Ty = 0.

Hence, we may consider the initial value problem defined in the interval [T, T5]
as following

{ D%JJ t) = f(t T, D%Zer + (prl(t) + 9012(t)) - ¢:L’1 (t) - wxz(t)7T2 <t< TS»
X
(26

Similarly, the equation of (17) in the interval (T;_1,T;] (i = 4,5, ,n*, Tp+ =
T') can be written by

Dgf)x(t) = i/o Mw(s)ds

dt Jo T'(1—p;)
Ti—1 o\ —Pi t o\ —ps
Pl [ sl
dt 0 F(]. 7]?1) dt T 1 F(l 7])1)

oo [ )

By the same reasons and ways, we let

0, lf.]?l t EOfOI‘tE[O,Tl],
x1(Ty) [o |21(s)|ds
Jo e (s)lds

mz(Tg)f%l |z2(s)|ds
.’I,‘(t) = fglz |za(s)|ds ’
0, if J,'Z',ll(t) =0forte [Ti,Q,Tifl],
zi—1(Ti—1) qu%FQ |zi—(s)|ds

Ti—1
fTi—Q lzi—1(s)|ds

(t)
if 21 (¢) is not identically vanishing for ¢ € [0,T}]
if xo(t) =0 for t € [T, Ty],
if 2o(t) is not identically vanishing for ,t € [T3,Ts],

, if #;_1(¢) is not identically vanishing for ¢ € [T;_a, T;—1],

here, x1 : [0,71] — R is continuous solution of the initial value problem (18),
x9 @ [T1,T2] — R is continuous solution of the initial value problem (22), ---,
xj ¢ [Tj—1,T;] — R is continuous solution of the initial value problem defined in
[T;-1,T5] (j =3,---,i—1). Thus, if z;(s) =0,Tj_1 < s < Tj, then by expression
of z(t) above, we let

T; s) " %ix(s
& S s = 0= ¢y, (1),
d (15 (t—s)” p?z (s)
dt fT_,»_l T(1—p:) ds =0 = ¢y, (1),
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if 2;(s) is not identically vanishing for T;_; < s < Tj, by expression of x(t) above
and integration by parts, we let

a (t—s)~ ‘“r(s) _ () -]T L (t=5) Y[z (s)|ds oz (THE=T) "% .

R T a0 fr)_, la;(s)lds Ty = en ()
T; )

d (T (=) Pia(s) 5. ST el (A=) e (s)lds oy e—1y) P L

dt fT 1 T(1—ps) ds = ra- pt)fT |x] (s)|ds - T(1—p:) - djxj (t)7

j=1,2,---i—1,i=4,5---,n* (Ty =0).
Hence, we may consider the initial value problem in the interval [T;_1,T;] as
following

{ Df () = f(t, 2, D o+ 370 ¢ay) = 301 Yy (1), @
J?(Tz 1) = zi-1(Ti-1).

By (10), the equation of (17) in the interval (T, +00) can be written by

B i t(tfs)*p1
dt Jo T'(1—=p1)

d [T (t—s)""a(s) d t(tfs)fplff(s)s
/T (1 —p1) I

DM g (#)

o0t x(s)ds

@)y Ta-—pm “Ta

d [T (t—s)"P2u(s) d ' (t—s)"r2u(s)
f(”dt/ Mi—p) “T @)y Ta-p) ds)'

By the same reasons and ways, we let

O, if J,‘l(t) =0forte [O,Tl],
W, if 21 (¢) is not identically vanishing for ,¢ € [0, T}]
1(s S
Y if 2o(t) = 0 for t € [T1, To),
z2(T2) f}l |z2(s)|ds . . . L.
2(t) = —m————, if x5(t) is not identically vanishing for t € [T1, T3],

T2 Ja(s)]ds

0, if 2+ (t) =0 for ,t € [Tp-—1,T],

T+ (T) f;ﬂn*il |z,% (s)|ds
T e (5)lds

, if @« (¢) is not identically vanishing for t € [Ty,~—1, T,

here, z; : [0,71] — R is continuous solution of the initial value problem (18),
x; ¢ [Ti-1, 1) = R(@E = 2,3,--- ,n*(T,» = T)) are continuous solutions of the
initial value problems (22), (26), (27). Thus, if x;(s) = 0,T;—1 < s < T;, then by
expression of z(t) above, we let

T:  (t—s) P2x(s) s
{ g T s = 0= u,(8), (28)

t—s) Plx(s .
dt fTFl ( F()l—pl)( )dS =0= 11[}551 (t)’
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if x;(s) is not identically vanishing for T;_; < s < T;, by expression of z(t) above
and integration by parts, we let

d fo' (t_s)7p2x(s)d3 _ aci(T,i)f,lz;iil(t—s)*P2|m(s)|ds @ (T)(=T:)~r2 - (t)
dt JT; 1 T'(1—p2) F(l_pl)fgi,l |z (s)|ds T'(1—p2) T,

)

T, (ts)—Pla(s 2i(T3) frt  (t=s) P ai(s)lds o opy Ty -r1
I s = St BT =y, (),

T(1-p1) D(1=p1) [} | |@i(s)lds T(1-p

(29)
i1=1,2--- n*(To=0,T,- =T).
Hence, we may consider the initial value problem defined in the interval [T, +00)
as following

{ D?M(t) = f(t,z, D%x + 2?2*1 Pz;) — 27;1 Ve, (1), (30)
2(T) = xp+ (T).

Now, based on the arguments above, we present the definition of solution to the
initial value problem (17), which is crucial in our work.

Definition 2.6. If the initial value problems (18), (22), (26), (27) and (30) exist
solutions z1 : [0,T1] = R, 2o : [T1,Ts] = R, 23 : [T2, T3] = R, z; : [T;-1,T;] —
R(i = 4,--- ,n*, Tp» = T)and xp+41 : [T,+00) — R, respectively, then we call
function « : [0, 400) — (—00, +00) defined by

xl(t)vo S t S Tl)
xo(t), Ty <t <Ty,

a(t) = 3(t), T <t <Ts, (31)

Tp* (t)aTn*fl <t< T7

$n*+1(t),T S t < 400
is a solution of the initial value problem (17).

Definition 2.7. If x1(t), z2(t), -+ ,Zn+41(t) are unique, then we say x(t) defined
in (31) is one unique solution of the initial value problem (17).

The following is the definition of the (unique )approximate solution of the initial
value problem (1).

Definition 2.8. If there are T' > 0, natural number n* € N and intervals [0, 1],
(Ty,Tz], -+, (Tynx—1,T], (T, +00) and piecewise functions defined in (10) satisfying
(11), and that the initial value problem (17) exists one (unique) solution, then,
we say this solution of the initial value problem (17) is one (unique) approximate
solution of the initial value problem (1).

Remark 2.9. The differential equations of fractional order or integer order, in gen-
eral; its solution in given interval is affected by the state of the solution in the
preceding intervals. For instance, the differential equation

tha3

ZT _o<t<2 39
+1+m2 - (32)

ol

DE a(t) =t
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‘We know that

1 t 1, 1 stad(s)
1) = —— t—s) 2(s" 3 + —F-<)ds,0<t <2 33
)= gy ¢ s 0 < 1 (33)
is a solution of (32). Then by (33), in the interval [1, 2], (t) should be
4.3
t(t— 5)*%(5*% + 1:_9;2((2)))
z(t) = i ds
0 I'(3)
43 stz (s
) /1 (t—s)"3(s 5 + i) N /t (t—s)"3(s~% + 1+””2((5)))d5
0 L(3) 1 I'(3) ’

which illstrates that the state of z(t) in [1, 3], must be affected by the state of x(t)
in [0,1].

Remark 2.10. From the Definition 2.6, we see that, in interval [T, T3], solution
x(t) of the initial value problem (17), is x3(¢), which is solution of the equation
of (26), obvious, the state of x3(t) is affected by the state of x1(t), x2(t), that is,
the state of x3(t) is affected by he state of () in interval [0, T»]. Thus, according
the Definition 2.8, in the interval [T3, T5], the state of approximate solution x(t) of
the equation of (1) must be affected by the state of x(¢) in interval [0, T5]. Hence,
according to Remark 2.9, Definitions 2.6 and 2.8 are suitable and reasonable.

Remark 2.11. In our previous analysis, we chose functions (20)((21)), (24) ((25))
etc, so that we obtain the initial value problems (22), (26) etc. Such choosing must
meet the following two reasons at the same time. The first reason is operability, for
instance, choosing function (20)((21)), we can calculate out functions ¢, (t), Y, (t)
and ¥, (t),%.,(t), and then we obtain the initial value problem (22) defined in
[T1,T»]). The second reason is for fitting Remark 2.9. If we take z(t) = z1(T1)
for 0 < t < T (here z(t) is the solution of the initial value problem (18)), then,

(T (™ —(t=T1) ")
z o) and

, and then we have the initial value problem (22)

although we may easily calculate out functions ¢, (t) =
Vo, (t) = 21 (T) (Pt —(=T1)" ")
1

1—p1
with such @, (t) andpwwl(t), But, as a result, we see that the state of solution of
the equation of (22) is only affected by z1(71), and doesn’t by affected by the state
of z1(t),0 < t < Ty. Hence this choosing of functions x(t) in known intervals, is
suitable.

3. EXISTENCE OF APPROXIMATE SOLUTION

In this section, according to arguments and analysis in the section 2, we consider
the unique existence of continuous approximate solution of the initial value problem
(1). Throughout this paper, we assume that

(A1) Let p: [0,+00) — (0,1) and ¢ : [0,4+00) — (0,1) be continuous functions,
2q(t) < p(t) for all ¢t € [0, +00), and that p(t), ¢(t) satisfy

Jim p(t) =, Hm q(t) =12,0 < 202 <oy < 1.
(Ag) let t"f : [0,400) x R? — R be a continuous function, 0 < r < p(t) — 2q(t),
0 <t < +00. Assume that there are positive constants ¢; > 0,co > 0, A > 1 such
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that

I (LN oy, (L) yn) — F(E L+ ze, (L+)ye)| < ci]mr — 2|+ c2lyr — ol

t"]£(¢,0,0)

(Aj3) there exists 0 < p < A — 1 such that lim;_, 4 T | < 400, where r, A

are the constants appearing in (As).

Our main result is as following.

Theorem 3.1. Let conditions (A1), (Asz), (A3) hold, then the initial value problem
(1.1) exists one unique approximate solution.

Proof. From the Definition 2.8, we only need to consider the unique existence of
the solution of the initial value problem (17). And by the Definition 2.6, we only
need to consider the unique existence of the solution of the initial value problems
(18), (22), (26), (27) and (30).

For convenience, we let

My = max{maxo<i<r [I(1 = q(1))|, (1 = p2)},

M4 = max{maxo<i<7 | s =gy | (o1 — p2)}
(34)

Mjy,q,r = max{maxo<i<r |p(t)—¢11(t)—r E pl—;g—’r'}7

Myp,q = Ming<s<r11(p(t) — 2q(t)),
where T, p1, p2 are the constants in (12), (14).
It follows from the continuities of functions p(t), ¢(t) and Gamma function that
M, My 4, My q.r, My 4 exist. By (A1) and (Asg), we know that 0 <7 < m, 4.
Take R € N such that

R > {17 [4(T + 1)2(02 + Cqu)anMp,q,r] o }a (35)

where T, p1, p2 are the constants in (12), (14), ¢1,co,r are the constants in (As),
My, My, 4, My g.r, Mp,q are the constants in (34).
Let C[T;-1,T;] denote the Banach spaces of continuous functions on [T;_1,T;]
with the norm
o] = max |z(t)],x € C[T;1 T3],

T;—1<t<T;

Cu|Tiz1, T;) = {z|z € C(T3-1, T3, (t — Ti—1)%x € C[T;-1,T;]} denote the Banach
spaces with the norm
. _R2(t—T; 14T
||$||qu = tE[Trl”'lai<T~](t o Ti—l)qle R (=Ti-)ne |x(t)|7x €C i[Ti_l’Ti]’

T; (Tp = 0,T,- = T) are the constants obtained in the Lemma 2.5, p;, ¢; are the
constants in (15), (16), i =1,2--- ,n*, n* € N. r is the constant in (Ag), R is the
positive integer satisfying (35).

Let

E= {:E|x eC(T, +00),

t — TPz _RZ(t_T)M*rJz*T‘ ¢
(t—t)’”xeC[T,-i—oo),sup( )e 5 [zl < o0
t>T 1+t
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with the norm
(t = T)r2e BT ()|
> 14t
where T, p1, p2 are the constants in (12), (14), A is the constant in (Ag), R is the
positive integer satisfying (35). By the same arguments as in Lemma 2.2 [30], we
know that (E, || - ||g) is a Banach space.
We first investigative the initial value problem (18)
DY x(t) = f(t,x,D§\x),0 <t < T,
z(0) = 0.
We have the following claim.
Claim 1. If y € C,[0,T7] is a solution of the following integral equation

y(t) =I5 T f (4 I y(1),y(1),0 < ¢t < T, (36)

then, z(t) = I§} y(t) € C[0,T1] must be a solution of the initial value problem (18).
In fact, if y € C¢, [0, T1] is a solution of the integral (36), then, applying operator
I§’. on both sides of (36), from property of the Rieamnn-Liouville calculus, it holds

I§hy(t) = IS I f (6, Iy (), y(t)) =I5y f (¢, 15y (t), y(t)).

2]z = sup
t>T

7

Let
I y(t) =x(t),0 <t < T,
thus, 2 € C[0,71], and y(t) = D' x(t) € Cy, [0,T1]. As a result, we have that
w(t) = 153 f(t, x(t), Dy x(t), 0 <t <Th,
according to assumptions of function f, we get x(0) = 0 and
Dy a(t) = f(t,x(t), Dt x(t)),0 <t < T,

that is, © € C[0,T}] is a solution of the initial value problem (18).
Define operator F' : Cy, [0,T1] — Cy, [0,T1] by

Fy(t) = Ipo M f(t 53y (1), y(1), 0 < t < T

By the assumptions of function f, we know that F : Cy,[0,T1] — Cy, [0, T3] is well
defined. Next, we will verify that F' is a contraction operator.
For y1,y2 € Cy,[0,T1], by (A2) and (34), we get

|[Fy1(t) — Fya(t)]

t .
< ﬁ/o (t—s)Pl—ql—llisA (c1[IE y1(s) — I ya(s)]
+ealyi(s) — y2(s)|)ds
1 t
(Clugiyl(s) — I3 y2(s)| + calyr(s) — y2(5)|)ds
< aly—wlle, /t(t - /S(s PR
I'(q)C(p1 — 1) Jo o
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— t
+62||y1 y2||cq1 / (t _ s)m*(h*ls*thfreRr"spl_ql_Tds
Lpr—a)  Jo

cillyr — yQHqu ra-—a) /t(t — S)plﬂhfls‘h 5*‘11*T6R25p1_qrrd8
o L'(p1 —q1) 0

— t
+62||y1 y2||cq1 / (t _ s)Pl*Ql*ls*q1*T6R2sp1_q1_Tds
L(p1 —¢1) 0

t
< (Cququ + Cz)Mp,q”yl - y2||cq1 / (t — S)p17q1*187q177'eR2SP1*Q1*rds
0

< (c1My + co)(T +1)M, 4

t
|y1 - y2||cq1 / (t — S)Pl—ih—ls—th—reRZsm*tnfrds'
0

Next, using a similar method as in [25], by (A1) and (34), we estimate the integral
above.

t
g — g — 2.p1—q1—T
/(tfs)p1 n-lgma—T RS ds
0

R—-1 it
= Y [ sl BT g
(i—1)t
i=1 R

t
— _ _ _ 2.p1—q1—"
—|—/ (t—s)Pr—n-lg—a relts ds

(R—1)t
R
R—1 it
" 1=pi1t+q1 NP1—ai—Lypr—gi—1 g —qi—r RZsP1TN T
< g R (R —1) t s e ds
(i—1)t
=1 R
—q1— t
R_ 1 a=r _ _ 2.p1—q1—"T _ _
+< ettt (t —s)Pr— 7 1gs
R (R—1)t
I3
R—-1 it
g _ _ _ _ _ 2.pP1—q1—"7"
< E / Rl-pitaigpi—aqi—1g—qu—r R*s"1 797 g
(i—1)t
=1 ZR
2¢p1—a1—" t
Rq1+reR t o
ta+r t_s)pl “ 1d3
(R—1)t
(R—1)t
_ R —_ — g —r 2,P1—91— "
= Rl-pita Ppr1——lg—q—r R’s ds
0
Rr—p1+2q1tp1—2q1—rethprqu
P1—q1
(R—1)t
— — R —_ — 7 — 2.,p1—q91—"
< Rl—pitaiy (J1/ P leRb 1-91 ds
0
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Rr—P1t2q14—qip1—qi—r

ethPI*ql*'r'
pP1—q—rT
< TR pempueease | RTPTRTHT L) preicace
T Rpi-a-r) PE—
< Mp’qur—Pl-i—Q(ht—lh €R2tp1*<n—r i Mp,q,rRT_p1+2qlt_ql (T + 1)6R2t1117q1—r
2 —q1—7r
< 2(T + 1)Mp7q77-t_q1RT_mP,qeR tP1— 11 .

By (35), we have
e BTN Py (1) — Fyo (1)

IN

2(cy My + o) (T +1)2M,, (M, o, R™™ 4|y — valle,,

1
< §Hy1 —yallcy, s
which implies that

1
[ Fy1 — Fyalle,, < 5llve —v2lle,, -

Hence, F' has one unique fixed point y1 € Cy, [0,T1]. Thus, by the arguments
above, we obtain x,(t) = I} yi(t) € C[0,T1] is one unique solution of the initial
value problem (18).

In the next analysis, without loss of generality, we assume x1(¢) is not identically
vanishing in ¢ € [0,71]). Thus, by previous arguments, Definitions 2.6 and 2.8, we
consider the initial value problem equation (22)

{ Dg“ier(t) = f(t7x,D’%21+x + Py (t)) - wzl(t)le S t é T27
z(Ty) = 1 (T1),

where z1 = I y1 € C[0,T1] is the unique solution of the initial value problem (18),

y1 € Cg,[0,T1] is the unique solution of the integral equation (36),
n(Ty) o (t = 5) "o ()]ds () (t = T1) "

Pz, (t) =

T(1—g2) [ a1 (s)|ds F(l—gq)
x1(Th) OTl(t—S)_m‘xl(S”dS wy (Ty)(t —Ty) P2
xl t P T - .
Yo () L1 —p2) [y |z1(s)|ds (1 —po)

Let .
_ z1(Th) J, Yt — s)7P2 |z (s)|ds

ha, () =
' I'(1—p2) fOTl |x1(s)|ds
by calculating, we get

Iy () = 17 By (8) — 20 (Th), (37)
Similar to the previous arguments, we can obtain the following result.
Claim 2. If y € Cy,[T1, T3] is a solution of the following integral equation
l‘l(Tl)(t — Tl)_q2
(1 -gq)

y(t) = I F (6 I Ly (6, y(8) + pay (1) — I % hasy (1) + , (38)
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= If;  y € O[T, T>] must be a solution of the initial value problem (22).

In fact, if y € Cy,[T1,T5] is a solution of the integral (38), then, applying oper-

q2
ator IT1

4 on both sides of (38), from property of the Riemann-Liouville fractional

calculus, it holds

I y(®) = I f (6 T3 y(0), y(8) + @ (8) = 17 By (8) + 20(Th),

let

thus, x

I y(t) = 2(t), Ty <t < T,
€ C[T —1,Ty] and DF  x =y € Cy, [T, T3], as a result, we have

x(t) = 17 f(t2(t), DGEa(t) + pu,) — I8 hey () + 21 (Th), Ty <t < T,

according to assumptions of function f and continuity of function z1(t), we get
x(Ty) = x1(T1), and by (37), it holds

that is,

Dippa(t) = f(t,, 2(t), Dy 2(t) + @a, (1) = P, (1), Ty < < T,

x € C[T1, T3] is a solution of the initial value problem (22).

Define operator F' : Cy, [T, T>] — Cy, [T, T2] by

Fy(t) = I f(6 15 y(8), y(t) + pay (8) — Iy 1% ha,y (£) +

LL’l(Tl)(t — Tl)—qz
F(l —QQ) '

By the assumptions of function f and 1 € C[0,T1], we know that F' : Cy,[T1, To] —
Cy,[Th, 1) is well defined. Next, we will verify that F is a contraction operator.

For y1,y2 € Cg,[Th,T2], by (A1), (A2), (34), (35), using ways similar to the ways
used previously, we get

|Fy1(t) — Fya(t)|

C1”3/1 - ngCq2 /t ‘o S)Pz—qQ—ls—T /e (s _ T>q2—1632(T—T1)Pz*qg—rdTdS
I'(g2)T(p2 — q2) Jry o (1 —Ty)e

_ t
+C2HylyQ|Cq2/ (t _ S)pz—Qz—ls—r(S _ Tl)—qzeRz(s—Tﬂ”*“Z*"'ds

F(p2 - QQ) s

< cllyr — y2||cq2 ' = g) /t (t— 8)P2—Q2—15q2s‘Qz—TeRz(s—ﬂ)miqzﬂvds
- L(p2 — q2) T
_i_M /t (t _ S)pz—fh—l(s _ Tl)—Q2—r6R2(s—T1)p27q27"'d8
['(p2 — q2) T
t (t . 3)172*‘D*leRQ(S*Tl)m_{n_r
< (cr M T® + co) My gllyr — v2llc,, /T o TET ds
1
t (t _ S)p27q271632(S,Tl)szqur
< (aMy+ ) (T + )My gllv — v2lle, /T o TyE ds,
1
and

t
/ (t— S)pz_qQ_l(s — Tl)—fh—T'eRz(s_Tl)PzﬂmfrdS

T
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R—1 i(t;T1)+T1

= Z (t — 5)?2*%*1(5 _ Tl)*q2*T€RQ(S*T1)p2_q2_Td5

— Ju-une-T

1=

t
+[ (t _ 8)P2—Q2—1(8 _ Tl)—Q2—7"eR2(S—T1)p274271 ds

R71)1(;7T1)+T1

IN

2(T + 1) My g, (t — T1) "2 RTMra e (=T
and

(t— Tl)q26_R2(t—T1)p27q27T

Fyi(t) — Fya(t)]

_ 1
< 2AaMy+ o) (T +1)2My oMy R4 |ly1 — w2l ey, < 5llvn — 2l

272
which implies that

1
[ Fyr — Fyalle,, < 5llve —v2lle, -
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Hence, F' has one unique fixed point yo € Cy,[T1,T2]. Thus, by previous arguments,
we obtain xo = I{,’i Y2 € C[T1, T3] is one unique solution of the initial value problem

(22).

By the similar way, we obtain that the initial value problem (26) has one solution
x3 € C[T3, T3], and the initial value problem (27) has one unique solution z; =
I%,,l LYi € C[T;—1, T3], where y; € Cy,[T;—1, T;] is one unique solution of the integral

equation defined in the interval [T;_1,T;], i =4, -+ ,n*, Tp» =T.

In the next analysis, without loss of generality, we assume x;(t) is not identically
vanishing in t € [T;-1,T3], ¢ = 1,2,--- ,n*, Ty = 0,T,,- = T. By the previous
arguments and Definitions 2.6 and 2.8, now we consider the initial value problem

(30)
{ DR a(t) = [(t 2, DR + pay () + -+ P (D) = W (1) = -+ = . (1),
2(T) =z (T),
where
o) 2 (1) Jg) (t =)y (lds (1) (2 — ;)2
D(L=pa) fry., loi(s)lds L1 =)
and
1) Sl (=) ay(s)lds g1yt — ;)
L= p1) 7], lwils)lds (1 p1)
where j =1,2,--- ,n* (Ty =0,T,- =T).
Let

- (D) 7 (t— )77 2 (5)]ds
P(1=p1) [z |vne(s)|ds

Ty *

by calculating, we get
Iy s, (8) = 17! ha, . () = 2= (T).

By a similar way, we can obtain the following result.
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Claim 3. If y € E is a fixed point of the operator F' : E — FE defined as
following
Fy(t) =17 f (6, 120y (1), y (1) + o, () + -+ + o, (1)
—IP P (g + -+ Yy, )(1)
X (T)(t = T) P2
I'(1—p2)
Then, x = I} y € C[T, +00) must be a solution of the initial value problem (30).

Now, we verify that F' : E — FE is well defined. First, by the standard arguments,
we know that Fa € C(T, +0), (t—T)*2Fx € C[T, +oo) for x € E. Second, we will

_ —R2(t—T)P1— P27 T
(t-T)"e P2l « 400 for o € E.

— 17 P hy,. () + T <1t < +o0.

verify that sup,~,
In fact, for y € E, it holds

2 T B )
|Sog;(t)‘ S ijHC[ijth] f;"]il(t_s) P2(g ijHC[ijl,Tj](t_,l—?j) P2

] L(L=p2) [ |2i(s)lds (11— ps)
H%HC Ty 1,T, ij L (t —T)~P2ds @il e, ) (t —T) =P

I'(1 = po fT |zj(s )|d5 (1 - p2)

TlailEm, . m) 5l ey _..1) (¢ — )
I(1—po fT |2;(s)|ds (1= p2)
= Lj (t — T) P2

Using the same analysis, we get

T”'rJ”C T;_1,T; 1zl .,z ) _
e, (t)] < [F(1 . ij_l |xj(l i + 1= 1) J(t —T)~Pr = K;(t —T) .
From (Ajz), there exists positive M such that
OO -
Thus, by (Asg), it holds

[F( 17y (0, y(8) + @ar () + -+ o, (1))

t*T
< prplalyOl+ely®l + e O+ + e, (D] +1(2,0,0)]
at™" [t (t—s)! cot ™" (Jy()| + [0y (W) + - - + |pa,. (£)]
< d n
= r(pz)/ Trox We)lds 1+
+|£(t,0,0)|
§ w /t(t B S)p2_1(s _ T)—p2eR2(s—T)P1*P2wwdS
- L(p2)  Jr

+eallyllgt ™" (t — T)7p2eR2(t’T)m_m_r
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elt-1)™

1+t>‘ (|90I1(t)|+"'+“pzn*(t”)"_‘f(tvovo)‘

IN

2 - -
cr(t— T)—THy”EeR (t—T)P1 02 P — )
+C2||Z/||E(t — T)*pzfreRQ(t,T)pl_pQ_r
Lico(t —T)" " P2 Lpeca(t —T) T r2

1+t> e 1+t0
Next, we estimate these terms above,

+ [£(t,0,0)|.

R O ol [ ) I

1+ >

(t— T)p2€7R2(t7T)"1*P277‘ /t (t — 5)p17p271(5 . T)*TeRQ(sz)Plflwa ]
B S

Lt T L(p1 = p2)
r(l1-r)
T+ 0T p2—r 4 1)
r'a-r)
L(1—p2—7r+p1)

IN

(t— Ty

IN

< 00,

and
(t - T)p267R2(t7T)p17027T17p"1+_p2 |(t — T)7P2*TeRQ(t7T)P1*f12*T

1+t

I'(1—p2—1)
T T=2p—r+p)

< 00,

and

(t — T)P26*R2(t7T)p1_"2—TI§1+7;72 |%|

1+t

ds

(t — T)Pze—R@=T)1 72" pt ppa1 (s =T) 7Pz
(1 +tMT(p1 — p2) /T (t=s) 1 1+ s?
(t — T)pz ' _g)Pr—P2—l(g _ T\TT=P2 g
(R vl KU A R et
(t—T)P2""T (1L —r — ps)
1+ @E—T)M01 —7 —2p2+ p1)

(1 —7—p9)
F<1_T_2P2+P1)

IA

IN

< +o00,

and
(t— T)P2e*R2(t7T)P1—Pz—TI;B:PQ|f(t’ 0,0)]
1+t
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M(t —T)r !
< i+ tf‘)F(pl)— ) /T (t —s)Pr=P2= s (1 + sM)ds
M(t —T)r !
< it t’S)F(m)— o) L (t—s)Pr=P2= (s —T)""(1 4 s")ds
< MA+tTA—r)t—-T)""
- 1+tMT(14+p1—p2—7)
< M4+t —r)trr—r
T A+t A+ pr—p2—)
B MT(1 —r)tr—r n MT(1 — r)tPr—r+e < 1o
I+t (L4 pr—p2—7)  (L+HNT(L+p1—p2—7) '
Similarly,
(t _ T)pze—Rz(t—T)”*"Tr[gl_k—pz ij (t)|
1+
Ki(t— T)Pe- R (=T)1 =02 gt
< i )7 ¢ S — / (t—s)Pr=r2= (s —T) Pds
I+ -1 (p1 —p2) Jr

KT(-p)  _KT(1-p)
I+ @ =71 =p2) = I(1—p2)
All these estimations imply that
t — TPz —Rz(t—T)plprH" F
o (=T [Fa(t)
t>T 1+t
Hence, F : E — FE is well defined.
Now, for y1,y> € E, by a similar way, we get
[Fyi(t) — Fya(t)]
t
<C1F(1 —p2)llya — v2lle / (t — S)pl_p2_1S_TeR2(S_T)m—nrrds

<

< +00.

< +400.

L(p1 — p2) T
C2||y1 B y2||E /t —po—1 — _ R2( 7T)pl_p2_r
+ t—s)Pr P2 g (s = T) P2e 8 ds
F(Pl - p2) T ( ) ( )
t
Clr(l - p2)||y1 - y2HE / (t . S)’Dl_p2_1<s o T)_T6R2(S_T)p1*f’2—r,~ds
I(p1 — p2) T

+ M /t(t _ S)plfpzfl(s _ T)ir(s B T)7p2eR2(57T)ﬂ1—02_7‘d5
L(pr = p2) Jr
<(eaMy(t =T)7 + c2)Mpq

1 —y2lle

t
: / (t— S)pl_p2_1(3 — T)—P2—T6R2(S—T)01*pzfrdS.
T

By the similar arguments, we get the estimation

t
/ (t— 3)01—/12—1(8 _ T)—pz—reRz(s_T)Pl792—7-ds
T
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IN

IA

IN

R—1 #Jﬁf )
— — — — — — P1L—P2—T
§ Ri=pitrz(p —ypi=r2=l(g _ ) =p2T el (s=T) ds
(i=1)(t—T)
G-I 41
R

2(¢_T)\P1—P2—T t
Rp2tr R (t—T)
t— S)I’l*ﬂz*lds
(

— + _ _
(t T)ﬁ2 r R 13%@ T p

(R—1)(¢=T)
71T

RI=rtea (¢ — )70 (5 — T)Prre 1R =D g
0
+Rr7p1+2p2 (t — T)*/J2 (t — T)p17p2ir 6R2(t7T)Pl_02—r
P1 — P2
Rl—pitpz (t — T)—Pz 6R2(t_T)p1—p277‘
R2(p1 —p2— 1)
N Rr—p1+2p2 (t _ T)—pz (t _ T)l)l—/?z—T eRz(t—T)”lfpzf"v
pP1L—p2—T

((t=T) P2~ £ 1)(t — T) P2 M, 4 R mwaeh (=) 70277

As a result, we have

IN

IN

IN

IN

(t— T)yoe Ry 0
1+t

[Fy1(t) = Fya (1))

(t — Typre =Ty 702"
14+ (t—T)>

[Fyi(t) — Fya(t)]

My My qr(ctMy(t —T)P? +co)((t =T) 727" 4+ 1)
1+ (t—T)>

R™"|ly; — yallp

1My g Mpgr My((t =T) 7" + (t = T))
1+ (t—T)>

R |ly; — ol B

_|_C2Mp7qu,qm((t —T)rn=r7r 4 1)

1+ ({t—1T) Rty —yo e

2Mp o Mp,gr(c1 My + c) R" "7 ly1 — ya||p

T—m 1
2(T + 1)2Mp,qu7q7r(Cqu + 02)R p'qHyl - y2||E < *”yl - y2||E

Hence, F' has one unique fixed point y,++1 € E. Thus, by the previous arguments,
we obtain x,«y1 = I;’j’ryn*ﬂ is one unique solution of the initial value problem

(30).
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Thus, according to the Definition 2.8, we obtain that the initial value problem
(1) has one unique approximate solution = € C[0,+0c0) as following

x1(t),0 <t <1,
xQ(t)aTl S t g T27

z(t) = x3(t), To <t < T3,

L+ (t),Tn*,l S t S 117

Tpr41(t), T <t < +00.

Thus we complete this proof. ([

Example 3.2. Now, we consider the following initial value problem for linear
equation

14 t
D02+ 700000(1+t2) x(t) = t%,x(O) =0,0<t< +oc0. (40)

By the definition of the Riemann-Liouville variable order fractional derivative,
we don’t have a way to obtain its exact solution, we don’t even have method to
study the existence result of solution. Next, according to the Definition 2.8, we
seek its continuous approximate solution.

For given arbitrary small e = —1— there exists T = 18 = 1800, so that

1000° e
1 t 1 1 €
e o= <= >,
‘p( ) 2’ 700000l +2) ~t =T 18 "'
Now, we consider the function p(t) restricted on the interval [0,7] = [0, 1800].

By the right continuity of function p(t) at point 0, for ¢ = 1555, taking d = 600,
when 0 < t < §y = 600, we have

t
700000(1 + £2)

t do 1
~— 700000 — 700000 ~ 1000

1p(t) = p(0)] = ] 5

We get t1 = §p = 600. By the right continuity of function p(t) at point t;, for
€= Wloo’ taking d; = 600, when 0 < t — t; < 071, by the differential mean value
theorem, we have

Ip(t) — p(t2)] = L
PR PRUT= 1700000(1 + £2) 7000001 + £2)
1- g2
< - ||t —t
= ’700000(1+£2)2 It =l
14 &2
< TSy
= 700000(1+52)2| 2
< 1 [t — 1]
= 700000 '
5 1
< - <5 =6

700000 1000
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where t; < £ < t. We let to = t; + 6; = 1200. By the right continuity of function
p(t) at point to, for e = 101%, taking do = 600, when 0 < ¢t — t5 < Jo, by the same
reasons above, we have

t ta 02 1
— < < —
700000(1 + ¢2)  700000(1 + £2)| ~ 700000 ~ 1000

Ip(t) — p(t2)| = €,

we see that t3 = t3 + d = 1800 = T, hence, we get intervals [0,600], (600, 1200],
(1200, 1800], (1800, +00) and piecewise constant function «(t) defined by

p1=p(0) =1, te[0,600],

p2 = p(600) = & + o=o-der, £ € (600, 1200],
at) =

ps =p(1200) = 1 + = 2eoor. ¢ € (1200, 1800],

p=3, t € (1800, +00).

Thus, according analysis above, first, we consider the initial value problem
DFa(t) = t7,0 < t < 600,
{ #(0) =0, )

by the fact of the Riemann-Liouville fractional calculus, we get solution of the initial

value problem (41) is 1 (f) = T34, 0 < t < 600, obvious, z1 € C[0,600].
4

Second, we seek the solution of the initial value problem

(42)

N[

{ DF2 . x(t) = t1 — 1y, (1),600 < t < 1200,

#(600) = 1 %600%,

NS

where z1(t) = ;g;t% is the unique solution of the initial value problem (41),
oo (1) = D100 [t = )P (s)ds 1 (600)(¢ — 600)
L(L=p2) fy™ le(s)|ds (1l —p2)
. 21 (600)(t — 600) 72
= hg, (t) — =2 — .
F(l pg)

Obvious, h,, € C[600,1200], thus, the solution of the initial value problem (42) is

= t 7@_8)1)2_1 st — s))ds + x
mg(t)—/600 T (5% By (9))ds + 4 (600),

Obvious, =5 € C[600, 1200].
Third, we seek the solution of the initial value problem

DYoo w(t) = 1 — by, (t) — ¥, (1), 1200 < ¢ < 1800,
£(1200) = 25(1200),
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where x1 € C[0,600] is the unique solution of the initial value problem (41), zo €
C'[600, 1200] is the unique solution of the initial value problem (42),

_ 21(600) [5%(t—s)"P3|z1(s)|ds  z,(600)(t—600) "3

wm1 (t) - F(l—pg)fémo |m1(s)|ds - F(l—pg) )
e, (t) = 2 (1200) [ (t—s5) " P3|wa(s)|ds  @(1200)(t—1200) "3
T2V C(1—p3) [god® [z2(s)|ds T(1—p3)
. 22 (1200)(t—1200) "P3
= h:rz (t) - = T(1—p3) ;

thus, the solution of the initial value problem (43) is

_ [ wsi— 5) — s))ds +x
r3(t) = / (5% =, (5) = ey (s))ds + 22(1200),

Obvious, z3 € C[1200, 1800].
Finally, we seek the solution of the initial value problem

{ DfSOO-&-x(t) = t% - ww1 (t) - ’(/Jévz (t) - ’L/):ES (t)7 1800 <t < +007 (44)
2(1800) = 3(1800),

where 1 € C[0,600] z2 € C[600,1200] and z3 € C[1200, 1800] are unique solutions
of the initial value problems (41)-(43),

_ 21(600) [E°°(t—s)"P|z1(s)|ds a1 (600)(t—600)""
w11 (t) - 1“(17(:)) (?00\11(5)|ds I'(1-p) ’

W, (1) = 220200 Jogg (1) "laa(s)lds _ 22(1200)(1—1200) 2
T2\Y) T(1—p) [4299 |25 (s)|ds I'(1-p) ’

Doy (1) = x3(1800) [390(t—s)"P|zs(s)|ds  w5(1800)(t—1800) "
xr3 -

D(1—p) {300 z3(s)|ds I(1-p)

N h’iD3 (t) o z3(18019)((1t:p1)800)_ ,

thus, the solution of the initial value problem (44) is

= t M S% - S)— S)— S S X
£E4(t) - /1800 F(p) ( 1/}I1< ) %1( ) hz3( ))d + 3(1800)7

obvious, x4 € C[1800, +00).
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Hence, by the Definition 2.8, we obtain that the initial value problem (40) exists
the unique continuous approximate solution x : [0, +00) — R defined by

21(t) = %t%,o <t <600,

= Jioo CEE— (5% — hu, (5))ds + 21 (600)], 600 < ¢ < 1200,

= [fa00 SEEn— (5% — thr, (5) — hay (5))ds

+25(1200), 1200 < ¢ < 1800,

flSOO p 34 = Yy (8) = Y, (8) — hay (5))ds

+25(1800), 1800 < ¢ < +o0.

Example 3.3. Now, we consider the initial value problem as following

T
1 t 5 2 3
D§+7700000(1+t2)x(t) B F(%)QLA n F(%)(DO+ 1400000(1+t2 +¢ )I)2
0+ T 12(14t2)A(1+2Y)

12(1-s-t2)2(1-&-(D0%++m%)2)7
z(0) =0,
(45)
where 0 < t < +00. We let
t 1 t
700000(1 + ¢2)° alt) = 5 + 1400000(1 + 2 4 t3)’

p(t)=%+

)zt Tz
Fitsat)y(t) = —— 2D <6>zzé<>

RO+ 1+ 0) T 20+ 220 +20)
where 0 < t < +oo,x(t),y(t) € R. Obviously, we get p(t) > 2¢(t),0 < t < 400,
limy 4 o0 p(t) = % > 2limy 400 q(t) = £, thus, p satisfies (A;) with n; = %, My = 1

) =
And that, for all 0 < ¢ < 400, z(t), y(t) e R, from the differentiation mean theorem
we get

1F(t L+ )z, 1+ )yn) — f(E (L+82)zo, (1+£7)ya)]|

- F(%)‘ xt B x5 |
12 14 (L)t 14 (1 +2)4a)
F(%)| i) v3 )|
12 "1+ (1+2)2y? 1+ (1+12)2y3
L(3) (8

I
< —2%|wy — o] + -,
=73 \Il Iz\ 3 \yl y1|

which implies that f satisfies (A2) with r = 0,\ = 2,¢; = o) Ccy = F(%).
In addition, f(¢,0,0) = 0 satisfies lim; oo LLA00)| 0, which implies that f

I+tr
satisfies (As) with » = 0,4 = 0. By the same arguments done in section 2, we

get intervals [0, 600], (600, 1200], (1200, 1800], (1800, +oc0) and piecewise constant
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functions a(t), 8(t) defined by
b1 = p(O), te [Oa 600]a

p2 = p(600), t € (600,1200],
ps = p(1200), t € (1200,1800],

P =3, t € (1800, +o0),

¢1 =q(0), t€][0,600],
g2 = ¢(600), ¢ € (600,1200],

g3 = q(1200), t € (1200, 1800],

p2 =1, t € (1800, +00).

By Theorem 3.1, the initial value problem (45) has one continuous unique approx-
imate solution z(t),0 <t < +o0.

4. CONCLUSION

Based on some known results, the Riemann-Liouville variable order fractional
integral doesn’t have semigroup property. Hence the transform between the vari-
able order fractional integral and derivative is not clear, which brings us extreme
difficulties in considering the solutions of variable order differential equations. It is
interesting and meaningful for we to overcome the difficulties and obtain the solu-
tions of variable order differential equation. To the best of the authors’ knowledge,
this is the first paper dealing with variable order fractional differential equations
on half-axis. This paper enriches and extends the existing literatures. Finally, we
give an example to illustrate our results.
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