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NONLOCAL REACTION-DIFFUSION MODEL WITH

SUBDIFFUSIVE KINETICS

BAMBANG HENDRIYA GUSWANTO

Abstract. We derive nonlocal reaction-diffusion system with subdiffusive ki-
netics from random walks using a probability measure on a n-multidimensional

unit ball Sn−1. The system describes two particles moving with subdiffusive
kinetics and then undergoing a chemical reaction which occurs if and only if a
pair of the particles are in a distance less than R. We also study the existence
and uniqueness of a mild solution to a fractional nonlinear Cauchy problem

associated with the system by applying Banach’s Fixed Point Theorem. The
result shows that the mild solution to the problem exists uniquely under some
Lipschitz continuity on the nonlinear part of the problem. Consequently, the
system also has a unique mild solution since the reaction term of the system

satisfies the Lipschitz continuity.

1. Introduction

Suzuki and Kavallaris in [4] studied the system

∂qA
∂t

= DA∆qA − kA

∫
B(·,R)∩Ω

qBdy · qA, in Ω× (0, T ),

∂qB
∂t

= DB∆qB − kB

∫
B(·,R)∩Ω

qAdy · qB , in Ω× (0, T ),

∂qA
∂n

=
∂qB
∂n

= 0, on ∂Ω× (0, T ),

qA(·, 0) = qA0, qB(·, 0) = qB0, in Ω

(1)

with Ω ⊂ Rn is a bounded domain with C2 boundary. They derived the reaction-
diffusion system arising as a mean field limit of a master equation using reaction
radius in deterministic case. The system describes the chemical reaction

A+B → C

that occurs if and only if a pair of A−B molecules are in a distance less than R. A
molecule of A reacts with a molecule of B to produce a molecule of C. They also
studied the solution to the system.
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Here, we derive the similar system in stochastic case from a random walks pro-
cess with a help of a probability measure on a n-multidimensional unit ball Sn−1.
Differently from the system (1) as in [4], in this case, before the chemical reactions
occurs, both molecules of A and B move with subdiffusive kinetics. We obtain the
similar system involving α-order time derivative in Caputo sense with 0 < α < 1 as
a fractional integro-differential equation system. We also study the existence and
uniqueness of a mild solution to a fractional nonlinear Cauchy problem associated
with the system by employing some properties of solution operators associated with
the problem and applying Banach’s Fixed Point Theorem. The result shows that
the mild solution to the problem exists uniquely under some Lipschitz continuity on
the nonlinear part of the problem. Consequently, the system also has a unique mild
solution since the reaction term of the system satisfies the Lipschitz continuity.

This paper consists of five sections. In section 2, we provide briefly the frac-
tional integration and derivation in Caputo sense and shows results concerning
solution operators to a fractional Cauchy problem. In section 3, we derive a nonlo-
cal reaction-diffusion system with subdiffusive kinetics from a random walks process
using a probability measure on a n-multidimensional unit ball Sn−1. In section 4,
we study the existence and uniqueness of a mild solution to a fractional nonlinear
abstract Cauchy problem with some Lipschitz condition on the nonlinear part as-
sociated with the system obtained in section 3. In the last section, we discuss the
existence and uniqueness of a mild solution to the system obtained in Section 3.

2. Preliminaries

2.1. Fractional Time Derivative. Let 0 < α < 1. The fractional integral of
order α is defined by

Jα
t f(t) =

∫ t

0

(t− s)α−1

Γ(α)
f(s)ds, f ∈ L1(I), t > 0 (2)

with I = (0,∞). We set J0
t f(t) = f(t). The fractional integral operator (2) obeys

the semigroup property

Jα
t J

β
t = Jα+β

t . (3)

The Caputo fractional derivative dα/dtα of order α is defined by

dα

dtα
f(t) =

∫ t

0

(t− s)−α

Γ(1− α)

d

ds
f(s)ds, t > 0. (4)

The operator dα/dtα is a left inverse of Jα
t , that is

dα

dtα
Jα
t f(t) = f(t), t > 0, (5)

but it is not a right inverse, that is

Jα
t

dα

dtα
f(t) = f(t)− f(0), t > 0. (6)

We refer to Kilbas et al. [5] or Podlubny [10] for more details concerning the
fractional integrals and derivatives.
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2.2. Analytic Solution Operators. In this section, we provide briefly some re-
sults concerning solution operators for the fractional Cauchy problem

dα

dtα
u(t) = Au(t) + f(t), t > 0, 0 < α < 1,

u(0) = u0.
(7)

For more details concerning them, we refer to [2]. One can also refer to [1, 6, 7, 8, 11]
regarding abstract fractional integro-differential equations.

Henceforth, we assume that the linear operator A : D(A) ⊆ X → X satisfies the
properties that there is a constant θ ∈ (π/2, π) such that

ρ(A) ⊃ Sθ = {λ ∈ C : λ ̸= 0, | arg(λ)| < θ}, (8)

∥R(λ;A)∥ ≤ M

|λ|
, λ ∈ Sθ, (9)

with R(λ;A) = (λ − A)−1 and ρ(A) are the resolvent operator and resolvent set
of A, respectively. We call A a sectorial operator. Observe that every sectorial
operator is closed.

Definition 1. For r > 0 and π/2 < ω < θ,

Γr,ω = {λ ∈ C : | arg(λ)| = ω, |λ| ≥ r} ∪ {λ ∈ C : | arg(λ)| ≤ ω, |λ| = r}.

The linear operator A generates solution operators for the problem (7), those
are

Sα(t) =
1

2πi

∫
Γr,ω

eλtλα−1R(λα;A)dλ, t > 0, (10)

Pα(t) =
1

2πi

∫
Γr,ω

eλtR(λα;A)dλ, t > 0, (11)

with Γr,ω is oriented counterclockwise. By Cauchy’s theorem, the integral form
(10) and (11) are independent of r > 0 and ω ∈ (π/2, θ).

Let B(X) be the set of all bounded linear operators on X. The properties of the
families {Sα(t)}t>0 and {Pα(t)}t>0 are given in the following theorems.

Theorem 1. Let A be a sectorial operator and Sα(t) be the operator defined by
(10). Then the following statements hold.

(i) Sα(t) ∈ B(X) and there exists a constant C1 = C1(α) > 0 such that

∥Sα(t)∥ ≤ C1, t > 0,

(ii) Sα(t) ∈ B(X;D(A)) for t > 0, and if x ∈ D(A) then ASα(t)x = Sα(t)Ax.
Moreover, there exists a constant C2 = C2(α) > 0 such that

∥ASα(t)∥ ≤ C2t
−α, t > 0,

(iii) The function t 7→ Sα(t) belongs to C∞((0,∞);B(X)) and it holds that

S(n)
α (t) =

1

2πi

∫
Γr,ω

etλλα+n−1R(λα;A)dλ, n = 1, 2, . . .

and there exist constants Mn = Mn(α) > 0, n = 1, 2, . . . such that

∥S(n)
α (t)∥ ≤ Mnt

−n, t > 0,



JFCA-2022/13(1) NONLOCAL REACTION-DIFFUSION MODEL 201

Moreover, it has an analytic continuation Sα(z) to the sector Sθ−π/2 and,
for z ∈ Sθ−π/2, η ∈ (π/2, θ), it holds that

Sα(z) =
1

2πi

∫
Γr,η

eλzλα−1R(λα;A)dλ.

Theorem 2. Let A be a sectorial operator and Pα(t) be the operator defined by
(11). Then the following statements hold.

(i) Pα(t) ∈ B(X) and there exists a constant L1 = L1(α) > 0 such that

∥Pα(t)∥ ≤ L1t
α−1, t > 0,

(ii) Pα(t) ∈ B(X;D(A)) for all t > 0, and if x ∈ D(A) then APα(t)x =
Pα(t)Ax. Moreover, there exists a constant L2 = L2(α) > 0 such that

∥APα(t)∥ ≤ L2t
−1, t > 0,

(iii) The function t 7→ Pα(t) belongs to C∞((0,∞);B(X)) and it holds that

P (n)
α (t) =

1

2πi

∫
Γr,ω

etλλnR(λα;A)dλ, n = 1, 2, . . .

and there exist constants Kn = Kn(α) > 0, n = 1, 2, . . . such that

∥P (n)
α (t)∥ ≤ Knt

α−n−1, t > 0,

Moreover, it has an analytic continuation Pα(z) to the sector Sθ−π/2 and,
for z ∈ Sθ−π/2, η ∈ (π/2, θ), it holds that

Pα(z) =
1

2πi

∫
Γr,η

eλzR(λα;A)dλ.

The following theorem states some identities concerning the operators Sα(t) and
Pα(t) including the semigroup-like property.

Theorem 3. Let A be a sectorial operator, Sα(t) and Pα(t) be the operators defined
by (10) and (11), respectively. Then the following statements hold.

(i) For x ∈ X and t > 0,

Sα(t)x = J1−α
t Pα(t)x, DtSα(t)x = APα(t)x,

(ii) For x ∈ D(A) and s, t > 0,

Dα
t Sα(t)x = ASα(t)x,

Sα(t+ s)x = Sα(t)Sα(s)x−A

∫ t

0

∫ s

0

(t+ s− τ − r)−α

Γ(1− α)
Pα(τ)Pα(r)xdrdτ.

Next theorem shows us the behavior of the operator Sα(t) at t close to 0+.

Theorem 4. Let A be a sectorial operator and Sα(t) be the operator defined by
(10). Then the following statements hold.

(i) If x ∈ D(A) then limt→0+ Sα(t)x = x,
(ii) For every x ∈ D(A) and t > 0,∫ t

0

(t− τ)α−1

Γ(α)
Sα(τ)xdτ ∈ D(A),∫ t

0

(t− τ)α−1

Γ(α)
ASα(τ)xdτ = Sα(t)x− x,
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(iii) If x ∈ D(A) and Ax ∈ D(A) then

lim
t7→0+

Sα(t)x− x

tα
=

1

Γ(α+ 1)
Ax.

The representation of the solution to (7) in term of Sα(t) and Pα(t) is given in
the following theorem.

Theorem 5. Let u ∈ C1((0,∞);X) ∩ L1((0,∞);X), u(t) ∈ D(A) for t ∈ [0,∞),
Au ∈ L1((0,∞);X), f ∈ L1((0,∞);D(A)), and Af ∈ L1((0,∞);X). If u is a
solution to the problem (7) then

u(t) = Sα(t)u0 +

∫ t

0

Pα(t− s)f(s)ds, t > 0. (12)

3. Main Results

3.1. Mathematical Modeling. We consider a particle undergoing a sequence of
jumps on Rn in a random walk process. Let ϕ(t), t > 0 be the probability of the
particle to jump after waiting a time t and T (x;ω) be the probability of the particle
to jump from position x ∈ Rn in a direction ω ∈ Sn−1 satisfying∫ ∞

0

ϕ(t)dt = 1;

∫
Sn−1

T (x;ω)dω = 1,

respectively, where

Sn−1 = {ω ∈ Rn : |ω| = 1}.
We assume that the particle jumps with a constant jump lenght ∆x and suppose
that Qk(x, t) is the conditional probability of the particle to arrive at a posistion x
and at a time t after k steps. Following [9], we have that

Qk(x, t) =

∫ t

0

∫
Sn−1

ϕ(t− τ)T (x− ω∆x;ω)Qk−1(x− ω∆x, τ)dωdτ, x > 0, t > 0.

Let Q(x, t) be the probability density function of the particle to arrive at the posi-
tion x and the time t. Therefore, we have

Q(x, t) =
∞∑
k=0

Qk(x, t)

= Q0(x, t) +

∫ t

0

∫
Sn−1

ϕ(t− τ)T (x− ω∆x;ω)Q(x− ω∆x, τ)dωdτ

= δ(x)δ(t) +

∫ t

0

∫
Sn−1

ϕ(t− τ)T (x− ω∆x;ω)Q(x− ω∆x, τ)dωdτ.

with Q0(x, t) = δ(x)δ(t).
We next suppose that q(x, t) is the probability of the particle to be at the posis-

tion x and at the time t from the initial position x = 0 and the initial time t = 0.
Then, we have

q(x, t) =

∫ t

0

Φ(t, τ ;x)Q(x, τ)dτ

= Φ(t)δ(x) +

∫ t

0

∫
Sn−1

ϕ(t− τ)T (x− ω∆x;ω)q(x− ω∆x, τ)dωdτ

(13)
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with Φ(t, τ ;x) = Φ(t− τ) is the probability of the particle to arrive at the position
x and at the time τ < t and not to jump during time interval t− τ where

Φ(t) =

∫ ∞

t

ϕ(s)ds = 1−
∫ t

0

ϕ(s)ds.

We now consider two molecules of A and B moving with subdiffusive kinetics
and then undergoing a chemical reaction

A+B → C

to produce a molecule of C which occurs if and only if the pair of A−B molecules
are in a distance less than R. Then, from (13), we have

qA(x, t) = Φ(t)δ(x) +

∫ t

0

∫
Sn−1

ϕ(t− τ)T (x− ω∆x;ω)qA(x− ω∆x, τ)dωdτ

−
∫ t

0

Φ(t− τ)

[
kA→B

v

∫
B(x,R)∩Ω

qB(y, τ)dy · qA(x, τ)
]
dτ

(14)

with kA→B denotes the rate by which A molecule hits B molecule to cause the
chemical reaction per unit time and v is the volume of a n-dimensional ball B(x,R)
with radius R and center x. The equation (14) means that the existence of A
molecule at the position x and the time t depends on the existences of A molecule
at the position x and the time t = 0 which have not yet jumped until the time t
(the first term on the right hand side), A molecule at a position x − ω∆x and a
time τ < t that then jumps at the time t after waiting a time interval t− τ in the
direction −ω with the jump length ∆x (the second term on the right hand side),
and A molecule which undergoes the chemical reaction at the position x and the
time τ < t (with B molecule at the position y ∈ B(x,R) and the time τ < t) that
then jumps at the time t after waiting the time interval t − τ (the third term on
the right hand side). By using Laplace transform

h̃(s) =

∫ ∞

0

e−sth(t)dt

applied to (14), we get

q̃A(x, s) =
1− ϕ̃(s)

s
δ(x) + ϕ̃(s)

∫
Sn−1

T (x− ω∆x;ω)q̃A(x− ω∆x, s)dω

− 1− ϕ̃(s)

s
F̃A→B(x, s)

with

FA→B(x, t) =
kA→B

v

∫
B(x,R)∩Ω

qB(y, t)dy · qA(x, t).

It follows that

q̃A(x, s)−
1

s
δ(x)

= H̃(s)

[
−q̃A(x, s) +

∫
Sn−1

T (x− ω∆x;ω)q̃A(x− ω∆x, s)dω

]
− 1

s
F̃A→B(x, s)

(15)
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with

H̃(s) =
ϕ̃(s)

1− ϕ̃(s)
.

Consequently, using the inverse of Laplace transform applied to (15), we obtain

qA(x, t)− qA(x, 0)

=

∫ t

0

H(t− τ)

[
−qA(x, τ) +

∫
Sn−1

T (x− ω∆x;ω)qA(x− ω∆x, t)dω

]
dτ

− kA→B

v

∫ t

0

∫
B(x,R)∩Ω

qB(y, τ)dy · qA(x, τ)dτ.

(16)

If the waiting time is Poissonian,

ϕ(t) =
1

λ
e−

t
λ , t > 0, λ > 0, (17)

then H(t) = 1/λ. Then, the equation (16) is reduced to

qA(x, t)− qA(x, 0)

=
1

λ

∫ t

0

[
−qA(x, τ) +

∫
Sn−1

T (x− ω∆x;ω)qA(x− ω∆x, τ)dω

]
dτ

− kA→B

v

∫ t

0

∫
B(x,R)∩Ω

qB(y, τ)dy · qA(x, τ)dτ.

(18)

If the waiting time is nonpoissonian,

ϕα(t) =
tα−1

λα
Eα,α

(
−
(
t

λ

))
, 0 < α < 1, t > 0, λ > 0 (19)

with

Eα,β(t) =

∞∑
i=0

tn

Γ(αn+ β)
, α, β > 0,

then

H(t) =
1

λ
· t

α−1

Γ(α)
.

Thus, the equation (16) is reduced to

qA(x, t)− qA(x, 0)

=
1

λα

∫ t

0

(t− τ)α−1

Γ(α)

[
−qA(x, τ) +

∫
Sn−1

T (x− ω∆x;ω)qA(x− ω∆x, τ)dω

]
dτ

− kB→A

v

∫ t

0

∫
B(x,R)∩Ω

qB(y, τ)dy · qA(x, τ)dτ.

(20)

Note that for α = 1 we have the Equation (18). Observe that the equation (18)
is similar to the master equation (1.6) for the particle movement in deterministic
case as studied in [4].
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We now assume that T (x;ω) is a constant or does not depend on the position
x and the direction ω. It means that the particle in the process moves in a homo-
geneous medium or the particle movement is not influenced by any external force
field. Then, we have Tω(x) = 1/|Sn−1|, where

|Sn−1| =
∫
Sn−1

dω =
2n/2

Γ(n/2)
.

We next consider the following fact [3].

Lemma 1. If dω is isotropic, that is∫
Sn−1

ωidω = 0,∫
Sn−1

ωiωjdω =
δij
n
|Sn−1|, i, j = 1, 2..., n,

then, for f = f(x) ∈ C2(Rn),∫
Sn−1

f(x+ ω∆x)− f(x)dω =
1

2n
|Sn−1|(∆x)2∆f(x) + o

(
(∆x)2

)
with δij is the kronecker delta function.

By Lemma 1, the Equations (18) and (20) are reduced to

qA(x, t)− qA(x, 0) =
(∆x)2

2nλ

∫ t

0

∆qA(x, τ)dτ

− kA→B

v

∫ t

0

∫
B(x,R)∩Ω

qB(y, τ)dy · qA(x, τ)dτ + o
(
(∆x)2

) (21)

and

qA(x, t)− qA(x, 0) =
(∆x)2

2nλα

∫ t

0

(t− τ)α−1

Γ(α)
∆qA(x, τ)dτ

− kA→B

v

∫ t

0

∫
B(x,R)∩Ω

qB(y, τ)dy · qA(x, τ)dτ + o
(
(∆x)2

)
,

(22)

respectively. Thus, taking ∆x → 0, λ → 0 such that (∆x)2/λ is still finite and then
differentiating both sides of (21), we obtain

∂

∂t
qA(x, t) = DA∆qA(x, t)− kA

∫
B(x,R)∩Ω

qB(y, t)dy · qA(x, t) (23)

with

DA =
(∆x)2

2nλ
, kA =

kA→B

v
.

Similarly, taking ∆x → 0, λ → 0 such that (∆x)2/λα is still finite and then differ-
entiating both sides of (22) in fractional α-order, we obtain

∂α

∂tα
qA(x, t) = DA∆qA(x, t)− kA

∫ t

0

(t− τ)−α

Γ(1− α)

∫
B(x,R)∩Ω

qB(y, τ)dy · qA(x, τ)dτ

(24)
with

DA =
(∆x)2

2nλα
, kA =

kA→B

v
.

Note that, for α = 1, the Equation (24) is reduced to the Equation (23).
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If B molecule hits A molecule, by the similar way as before, for Poissonian
waiting time (17) and nonpoissonian waiting time (19), we have

∂

∂t
qB(x, t) = DB∆qB(x, t)− kB

∫
B(x,R)∩Ω

qA(y, t)dy · qB(x, t) (25)

with

DB =
(∆x)2

2nλ
, kB =

kB→A

v
and

∂α

∂tα
qB(x, t) = DB∆qB(x, t)− kB

∫ t

0

(t− τ)−α

Γ(1− α)

∫
B(x,R)∩Ω

qA(y, τ)dy · qB(x, τ)dτ

(26)
with

DB =
(∆x)2

2nλα
, kB =

kB→A

v
,

respectively. Thus we obtain the system

∂αqA
∂tα

= DA∆qA − kAJ
1−α
t

∫
B(·,R)∩Ω

qBdy · qA, in Ω× (0, T ),

∂αqB
∂tα

= DB∆qB − kBJ
1−α
t

∫
B(·,R)∩Ω

qAdy · qB , in Ω× (0, T ),

qA(·, 0) = qA0, qB(·, 0) = qB0, in Ω

(27)

with 0 < α < 1 describing two molecules of A and B moving with subdiffusive
kinetics and then undergoing the chemical reaction

A+B → C

to produce the molecule C which occurs if and only if a pair of A − B molecules
are in a distance less than R. Observe that, for α = 1, the system (27) is reduced
to the system (1) as discussed in [4].

3.2. Fractional Nonlinear Cauchy Problem. Consider the problem

dαu

dtα
= Au+ f(t, u), 0 < t ≤ T, 0 < α < 1,

u(0) = u0,
(28)

with X is a Banach space, A : D(A) → X is a sectorial linear operator, u0 ∈ X,
and f : (0, T ]×X → X.

Using the solution operator families {Sα(t)}t > 0 and {Pα(t)}t > 0 as discussed
in [2], a mild solution to the problem (28) is defined as follows.

Definition 2. A continuous function u : [0, T ] → X is a mild solution to the
problem (28) if it satisfies

u(t) = Sα(t)u0 +

∫ t

0

Pα(t− s)f(s, u(s))ds, 0 < t ≤ T.

We next suppose that BC((0, T ];X) is the space of bounded continuous func-
tions on (0, T ] with values in X. The following theorem shows us the existence and
uniqueness of the mild solution to (28) assuming the Lipschitz continuity on f .
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Theorem 6. Let f : (0, T ] × X → X and there exist K(t), L(t) ∈ L1((0, T ];X)
such that

∥f(t, u)− f(t, v)∥ ≤ K(t)∥u− v∥Y , 0 < t ≤ T, u, v ∈ X, (29)

∥f(t, u)∥ ≤ L(t)∥u∥Y , 0 < t ≤ T, u ∈ X, (30)

with ∥u∥ ≤ c and ∥v∥ ≤ c where Y = BC((0, T ];X). If u0 ∈ D(A) then there exists
T0 > 0 such that the problem (28) has a unique mild solution u ∈ C([0, T0];X).

Proof. Given ε > 0. Since u0 ∈ D(A), we have ∥Sα(t)u0 − u0∥ → 0 as t → 0+ by
Theorem 4(i). It means that there exists 0 < τ ≤ T such that

∥Sα(t)u0 − u0∥ ≤ ε/2, 0 < t ≤ τ.

We next suppose Z = BC((0, T0];X) and its subset W = {u ∈ Z : ∥u− u0∥Z ≤ ε}
with

T0 = inf

{
τ,

(
αε

2L1c∥L∥L1((0,T ];X)

)1/α

,

(
α

2L1∥K∥L1((0,T ];X)

)1/α
}
. (31)

We now define a mapping F on W by

F (u0) := u0; Fu(t) := Sα(t)u0 +

∫ t

0

Pα(t− s)f(s, u(s))ds, 0 < t ≤ T0.

We first prove that F : W → W . Note that, by Theorem 2(i) and (30), for
0 < t ≤ T0,

∥Fu(t)− u0∥ ≤ ∥Fu(t)− Sαu0∥+ ∥Sα(t)u0 − u0∥

≤
∫ t

0

∥Pα(t− s)∥∥f(s, u(s))∥ds+ ∥Sα(t)u0 − u0∥

≤ ∥u∥Y
∫ t

0

∥Pα(t− s)∥L(s)∥ds+ ε/2

≤ L1

α
∥u∥Y Tα

0 ∥L∥L1((0,T ];X) + ε/2

≤ ε

2
+

ε

2
= ε

implying

∥Fu− u0∥Z ≤ ε.
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We now prove the continuity of Fu in t ∈ [0, T0]. Observe that, By Theorem 2(i)
and (29), for 0 < t ≤ T0,

∥Fu(t+ h)− Fu(t)∥

≤ ∥S(t+ h)u0 − S(t)u0∥+ ∥
∫ t+h

0

P (t+ h− s)f(s, u(s))ds

−
∫ t

0

P (t− s)f(s, u(s))ds∥

≤ ∥S(t+ h)u0 − S(t)u0∥+
∫ t

0

∥P (t+ h− s)− P (t− s)∥∥f(s, u(s))∥ds

+

∫ t+h

t

∥P (t+ h− s)∥∥f(s, u(s))∥ds

≤ ∥S(t+ h)u0 − S(t)u0∥+ ∥u∥Y
∫ t

0

∥P (t+ h− s)− P (t− s)∥L(s)ds

+ ∥u∥Y
∫ t+h

t

∥P (t+ h− s)∥L(s)ds

≤ ∥S(t+ h)u0 − S(t)u0∥+ ∥u∥Y
∫ t

0

∥P (t+ h− s)− P (t− s)∥L(s)ds

+ ∥u∥Y ∥L∥L1((0,T ];X)h
α

Next, note that, by Theorem 2(i),

∥P (t+ h)− P (t)∥ ≤ L1t
α−1 ∈ L1((0, T ];X)

and, by Theorem 2(iii), P (t) is continuous at t ∈ (0,+∞). It implies, by the
Dominated Convergence Theorem,∫ t

0

∥P (t+ h− s)− P (t− s)∥L(s)ds → 0, as h → 0.

Therefore, ∥Fu(t + h) − Fu(t)∥ → 0 as h → 0 for 0 < t ≤ T0. For t = 0, consider
that

∥Fu(h)− Fu0∥ ≤ ∥S(h)− u0∥+
∫ h

0

∥P (h− s)f(s, u(s))∥ds

≤ ∥S(h)− u0∥+
L1

α
∥L∥L1((0,T ];X)∥u∥Y hα

Then, ∥Fu(h) − Fu0∥ → 0 as h → 0. Therefore Fu ∈ Z. Thus, we can conclude
that F : W → W .

We next prove that F : W → W is a contraction. Observe that, again by
Theorem 2(i) and (29), for u, v ∈ W ,

∥Fu(t)− Fv(t)∥ ≤
∫ t

0

∥Pα(t− s)∥∥f(s, u(s))− f(s, v(s))∥ds

≤ ∥u− v∥Z
∫ t

0

∥Pα(t− s)∥K(s)ds

≤ L1

α
∥K∥L1((0,T ];X)T

α
0 ∥u− v∥Z .
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Consequently,

∥Fu− Fv∥Z ≤ L1

α
∥K∥L1((0,T ];X)T

α
0 ∥u− v∥Z .

Next, observe that

0 <
L1

α
∥K∥L1((0,T ];X)T

α
0 ≤ 1

2
.

Therefore F : W → W is a contraction, and, by the Contractive Mapping Theorem,
F has a unique fixed point u ∈ W . Here, we have

u(t) = Sα(t)u0 +

∫ t

0

Pα(t− s)f(s, u(s))ds, 0 < t ≤ T0.

Note that, since u0 ∈ D(A), then by Theorem 2(i), Theorem 4(i), and (30), we get
∥u(t)− u0∥ → 0 as t → 0+. It follows that u ∈ C([0, T0];X). �

3.3. Existence and Uniqueness of the Solution to the System. In this sec-
tion, we study the existence and uniqueness of the mild solution to the system (27)
with Neumann boundary condition

∂αqA
∂tα

= DA∆qA − kAJ
1−α
t

∫
B(·,R)∩Ω

qBdy · qA, in Ω× (0, T ),

∂αqB
∂tα

= DB∆qB − kBJ
1−α
t

∫
B(·,R)∩Ω

qAdy · qB , in Ω× (0, T ),

∂qA
∂n

=
∂qB
∂n

= 0, on ∂Ω× (0, T ),

qA(·, 0) = qA0, qB(·, 0) = qB0, in Ω

with 0 < α < 1 and Ω ⊂ Rn is a bounded domain with C2 boundary. The abstract
formulation of the problem (27) is

dαU

dtα
= AU + F (t, U), 0 < t ≤ T,

U(0) = U0

in {(
u
v

)
: u, v ∈ L2(Ω)

}
with

A =

(
∆ 0
0 ∆

)
, F (t, U) =

(
J1−α
t uv

J1−α
t vu

)
, U =

(
u
v

)
, U0 =

(
u0

v0

)
,

v =

∫
B(·,R)∩Ω

χ(·, y)v(y)dy,

and χ(x, y) = χB(x,R)∩Ω(y) denotes the caractheristic function of B(x,R)∩Ω. Here,

0 ≤ u ≤ ∥u0∥∞, 0 ≤ v ≤ ∥v0∥∞ in Ω× (0, T ] (32)

since the reaction terms in (27) are negative. We next set

D(A) =

{(
u
v

)
: u, v ∈ H2

N{Ω}
}

with

H2
N (Ω) =

{
u ∈ H2(Ω) :

∂u

∂n
= 0 on ∂Ω

}
.
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The operator ∆ is dissipative and self adjoint implying that ∆ is sectorial in X.
Moreover, for any λ ∈ Sθ with θ ∈ (π/2, π), we get

(λ−A)−1 =

(
(λ−∆)−1 0

0 (λ−∆)−1

)
.

Thus, there exists M > 0 such that ∥(λ−A)−1∥ ≤ M/|λ| for all λ ∈ Sθ.
Observe that

∥u∥2 ≤ |Ω|∥u∥2.
Therefore, if

U =

(
u1

v1

)
∈ Y, V =

(
u2

v2

)
∈ Y, where Y = BC((0, T ];D(A)),

then

∥F (t, U)− F (t, V )∥22

=

∥∥∥∥(J1−α
t [u1v1]− J1−α

t [u2v2]
J1−α
t [v1u1]− J1−α

t [v2u2]

)∥∥∥∥2
2

= ∥J1−α
t [u1v1 − u2v2]∥22 + ∥J1−α

t [v1u1 − v2u2]∥22
≤ (J1−α

t [∥(u1 − u2)v1 + u2(v1 − v2)∥2])2

+ (J1−α
t [∥(v1 − v2)u1 + v2(u1 − u2)∥2])2

≤ (J1−α
t [∥u1 − u2∥2∥v1∥2 + ∥u2∥2∥v1 − v2∥2])2

+ (J1−α
t [∥v1 − v2∥2∥u1∥2 + ∥v2∥2∥u1 − u2∥2])2

≤ |Ω|2(J1−α
t [∥u1 − u2∥2∥v1∥2 + ∥u2∥2∥v1 − v2∥2])2

+ |Ω|4(J1−α
t [∥v1 − v2∥2∥u1∥2 + ∥v2∥2∥u1 − u2∥2])2

≤ |Ω|2
(

t1−α

Γ(2− α)
[∥u1 − u2∥Y ∥v1∥Y + ∥u2∥Y ∥v1 − v2∥Y ]

)2

+ |Ω|2
(

t1−α

Γ(2− α)
[∥v1 − v2∥Y ∥u1∥Y + ∥v2∥Y ∥u1 − u2∥Y ]

)2

≤ |Ω|2

Γ2(2− α)
t2(1−α)[∥u1 − u2∥Y + ∥v1 − v2∥Y ]2

× [(∥v1∥Y + ∥u2∥Y )2 + (∥u1∥Y + ∥v2∥Y )2]

≤ 4|Ω|2

Γ2(2− α)
t2(1−α)(∥u1 − u2∥2Y + ∥v1 − v2∥2Y )

× (∥u1∥2Y + ∥u2∥2Y + ∥v1∥2Y + ∥v2∥2Y )

=
4|Ω|2

Γ2(2− α)
t2(1−α)∥U − V ∥2Y (∥U∥2Y + ∥V ∥2Y ).

(33)

Consequently, by (32), we have

∥F (t, U)− F (t, V )∥ ≤ K(t)∥U − V ∥Y (34)

with
K(t) = CKt1−α.

for some constant CK > 0. By the similar way, we also obtain

∥F (t, U)∥ ≤ L(t)∥U∥Y (35)
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with
L(t) = CLt

1−α.

for some constant CL > 0. Then, note that K(t), L(t) ∈ L1((0, T ];X). Thus,

by Theorem 6, if U0 ∈ D(A), the System (27) has a unique mild solution u ∈
C([0, T0];D(A)) for some T0 > 0.
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