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EXPLICIT FORMULAS FOR THE SOLUTIONS OF

AUTONOMOUS LINEAR FRACTIONAL ORDER SYSTEMS

BICHITRA KUMAR LENKA

Abstract. We give explicit analytical formulas to the solutions of initial value

problems of autonomous linear fractional order system where its state equa-
tions involve arbitrary fractional orders. We obtain the formulas by applying
the Laplace transform to such fractional order system. The formulas are ex-

plicitly represented in terms of Mittag-Leffler functions and their higher integer
order derivatives.

1. Introduction

Fractional calculus [1, 2] is a growing branch of mathematics that deals with
fractional order derivative and/or integral of functions and studies the relationship
between them, where fractional order could be integer numbers, rational numbers,
irrational numbers etc. The concept of fractional calculus has been widely used to
model physical problems, engineering systems and their applications that signifi-
cantly leads to a set of linear or nonlinear fractional differential equations (fractional
order systems) [1, 2, 3, 4, 5].

As a result of this, research importance has been focused on solving such types of
fractional differential equations or systems. In general, most fractional differential
equations or systems do not have exact solutions. However, in the literature, great
efforts have been provided by researchers for solving linear or nonlinear fractional
differential equations (fractional order systems) by introducing different methods.
For example, effective methods such as Laplace transform [1, 6], Mellin transform
[1], Sumudu transform [7], Operational method [8] etc., have been used to find the
explicit solutions to scalar linear fractional differential equations. On the other
hand, various methods (for instance, see [9, 10, 11, 12], and the references therein)
have been applied to find the approximate analytical and numerical solutions of
nonlinear fractional order systems.
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In this paper, we consider the autonomous linear fractional order system
CDα1

0,tx1(t) = a11x1(t) + a12x2(t) + · · ·+ a1nxn(t)

CDα2
0,tx2(t) = a21x1(t) + a22x2(t) + · · ·+ a2nxn(t)

...

CDαn
0,txn(t) = an1x1(t) + an2x2(t) + · · ·+ annxn(t)

(1.1)

subject to the initial conditions

x
(k)
i (0) = xik, k = 0, 1, 2, · · · , ri − 1, i = 1, 2, · · · , n. (1.2)

The system (1.1) can be rewritten in the matrix form

CDα̂
0,tx(t) = Ax(t) (1.3)

where x(t) = (x1(t), · · · , xn(t))
T ∈ Rn, CDα̂

0,tx(t) =
(
CDα1

0,tx1(t), · · · ,CDαn
0,txn(t)

)T
,

CDαi
0,t is Caputo fractional derivative (see, section 2) of order αi with ri−1<αi≤ri,

ri ∈ Z+ for i = 1, 2, · · · , n, and A = (aij) ∈ Rn×n is a constant matrix.
We are mainly interested in the structure and the closed-form solutions of au-

tonomous linear fractional order system (1.1). In the literature, the linear fractional
order system (1.1) have been studied by many researchers but most of the authors
considered very specific type of problems depending on the restriction of range of
fractional orders to certain intervals (see [14, 15, 16, 17, 18, 19, 20, 21]). In these
references, we observe that the matrix Mittag-Leffler function plays a crucial role
in the analytic representation of the solutions of commensurate fractional order
system. It indicates that the computation of the matrix Mittag-Leffler function is
an important problem from a theoretical as well as computational point of interest
because, in order to find the components of the solution to such fractional order
system, it is often necessary to compute the value of such matrix function. In this
regard, there has been a great interest amongst the researchers for the evaluation
of matrix Mittag-Leffler functions [20, 22, 23, 24].

In the above-mentioned works, we observe that the analytical formulas, as well
as the structures for the components of the solution to the fractional order system
(1.1), are not known whenever the state variables are associated with the same
fractional order and different fractional orders.

Motivated by the above observation, in this work, we apply the Laplace transform
to the fractional order system (1.1)-(1.2) and aim to find the explicit analytical
formulas of its solutions. First, by using the concept of similarity transformation
to the coefficient matrix of the system (1.1), we provide several formulas for the
solution of the system (1.3) to the commensurate fractional order case. This is
based on the factorization of the matrix Mittag-Leffler function. Then, we discuss
the Laplace transform method for solving the linear fractional order system (1.1)-
(1.2) to the incommensurate fractional order case and provide the explicit formulas
to its solution.

2. Preliminary definitions and properties

In this section, we recall the definitions of fractional integral, fractional deriva-
tive, Laplace transform, Mittag-Leffler function and some of its important proper-
ties which will be used throughout the paper (for details, see [1, 2, 21, 18]). We
denote R the set of all real numbers, R+ the set of all positive real numbers, Z+
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the set of all positive integers, C the set of all complex numbers and arg(z) the
argument of a complex number z.

Definition 2.1. The Riemann-Liouville fractional integral with order α of function
x(t) is defined as

RLD−α
0,t x(t) =

1

Γ(α)

∫ t

0

(t− τ)
α−1

x(τ)dτ, t > 0, (2.1)

where 0 < α ∈ R+ and Γ(α) =
∫∞
0

e−ttα−1dt is the Gamma function with α > 0.

Definition 2.2. The Caputo fractional derivative with order α of function x(t) is
defined as

CDα
0,tx(t) =

{
RLD

−(n−α)
0,t

(
dn

dtnx(t)
)
, α ∈ (n− 1, n)

dn

dtnx(t), α = n
(2.2)

where n ∈ Z+ and Γ(·) is the Gamma function.

Definition 2.3. The Laplace transform of a function x(t) is defined as

L{x(t)} =

∫ ∞

0

e−stx(t)dt (2.3)

where t and s denote the variables in Laplace time and frequency domain respec-
tively.

Property 2.1. The Laplace transform of Caputo fractional derivative is given by

L{CDα
0,tx(t)} = sαX(s)−

n−1∑
k=0

sα−k−1x(k)(0), (2.4)

where n− 1 < α ≤ n and L{x(t)} = X(s).

Definition 2.4. The one parameter Mittag-Leffler function is defined as

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
, α > 0, z ∈ C. (2.5)

Definition 2.5. The two parameter Mittag-Leffler function is defined as

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, α > 0, β > 0, z ∈ C. (2.6)

It may be noted that when β = 1, Eα,1(z) = Eα(z). Further, if α = β = 1, then
E1,1(z) = E1(z) = ez.

Definition 2.6. The two parameter matrix Mittag-Leffler function is defined as

Eα,β(A) =
∞∑
k=0

Ak

Γ(αk + β)
, α > 0, β > 0, A ∈ Cn×n. (2.7)

Property 2.2. The kth derivative of the one parameter Mittag-Leffler function is
given by

E(k)
α (z) =

∞∑
j=0

(j + k)!zj

j!Γ(αj + αk + 1)
, k = 0, 1, 2, · · · (2.8)

where E
(k)
α (z) = dk

dzkEα(z).
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Property 2.3. The kth derivative of the two parameter Mittag-Leffler function is
given by

E
(k)
α,β(z) =

∞∑
j=0

(j + k)!zj

j!Γ(αj + αk + β)
, k = 0, 1, 2, · · · (2.9)

where E
(k)
α,β(z) =

dk

dzkEα,β(z).

Property 2.4. The Laplace transforms of the Mittag-Leffler functions are given
by

L{tαk+β−1E
(k)
α,β(±λtα)} =

k!sα−β

(sα ∓ λ)k+1
, R(s) > |λ|1/α. (2.10)

where E
(k)
α,β(z) =

dk

dzkEα,β(z).

Property 2.5. The Laplace transform of the matrix Mittag-Leffler function is
given by

L{tβ−1Eα,β(At
α)} = sα−β (sαI −A)

−1
, R(s) > ∥A∥1/α. (2.11)

where R(s) represents the real part of the complex number s.

3. Main theoretical discussion

In this section, we discuss the theoretical approach for solving the system (1.1)
corresponding to the initial conditions (1.2). We recall some of the interesting
linear algebra results from the book [13]. Based on these results, we provide the
structure as well as the formulas of solutions to the system (1.1). We present our
discussion to the equal order case (commensurate order case) and different order
case (incommensurate order case) separately.

3.1. Commensurate fractional order case: Note that in this case all the frac-
tional orders αi’s involved in the system (1.1) or (1.3) satisfy r − 1 < α1 = α2 =
· · · = αn = α < r, where r1 = r2 = · · · = rn = r ∈ Z+. Here, we write the initial
conditions (1.2) in the vector form

x(k)(0) = xk, (3.1)

where k = 0, 1, 2, · · · , r − 1.
Applying the Laplace transform on the system (1.3) and using the initial condi-

tions (3.1), we get

sαX(s)−
r−1∑
k=0

sα−k−1x(k)(0) = AX(s) (3.2)

Then, we have

X(s) = (sαI −A)−1 ·
r−1∑
k=0

sα−k−1x(k)(0) (3.3)

Taking the inverse Laplace transform on (3.3) and using the property 2.5, we obtain
the exact solution

x(t) =
r−1∑
k=0

tkEα,k+1(Atα)x(k)(0). (3.4)
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It is quite interesting to see that the representation of solution (3.4) looks theoreti-
cally nice but in practice one needs to calculate the matrix Mittag-Leffler functions
in order to carry out the components of the solution. To simplify the representa-
tion of solution (3.4), next we discuss several interesting results where the matrix
Mittag-Leffler functions Eα,k+1(At

α) are evaluated when the matrix A is similar to
a diagonal matrix or matrix in Jordan canonical form.

3.1.1. Simplification of solution based on the computation of Eα,k+1(Atα):

Lemma 3.1. [13] If the eigenvalues λ1, λ2, · · · , λn of an n × n real matrix A are
real and distinct, then there exists an invertible matrix P such that P−1AP = D,
where D = diag (λ1, λ2, · · · , λn).

Under the hypothesis of Lemma 3.1, we can write the solution (3.4) as

x(t) =
r−1∑
k=0

tkEα,k+1

(
(PDP−1)tα

)
x(k)(0)

=
r−1∑
k=0

tkPEα,k+1 (Dtα)P−1x(k)(0), (3.5)

where

Eα,k+1 (Dtα) =


Eα,k+1(λ1t

α)
Eα,k+1(λ2t

α)
. . .

Eα,k+1(λnt
α)

 . (3.6)

Lemma 3.2. [13] Let A be a real n× n matrix with real eigenvalues λj and corre-
sponding multiplicities nj, j = 1, 2, · · · , w, then there exist an invertible matrix P

such that P−1AP = J = diag (J1, · · · , Jw), where Ji =


λi 1

λi
. . .

. . . 1
λi


ni×ni

for i = 1, 2, · · · , w, and
w∑
i=1

ni = n.

Based on Lemma 3.2, the solution (3.4) becomes

x(t) =

r−1∑
k=0

tkEα,k+1

(
(PJP−1)tα

)
x(k)(0)

=
r−1∑
k=0

tkPEα,k+1 (Jt
α)P−1x(k)(0) (3.7)

where

Eα,k+1 (Jt
α) =


Eα,k+1(J1t

α)
Eα,k+1(J2t

α)
. . .

Eα,k+1(Jwt
α)

 . (3.8)
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To further simplify the structure of above matrix Mittag-Leffler function, we need
to compute the matrix Mittag-Leffler functions involved in the diagonal Jordan
blocks (3.8). Note that

Eα,k+1(Jit
α) =

∞∑
m=0

(Jit
α)m

Γ(αm+ k + 1)

=
∞∑

m=0

tαm

Γ(αm+ k + 1)
Jm
i (3.9)

for i = 1, 2, · · · , w. Here, we decompose the Jordan matrix Ji as a sum of identity
matrix Ii and nilpotent matrix Ni of order ni, and compute

Jm
i = (λiIi +Ni)

m
=

m∑
u=0

(
m

u

)
λm−u
i Ii

m−uNu
i

=

min{m,ni−1}∑
u=0

(
m

u

)
λm−u
i Ii

m−uNu
i

=


λm
i

(
m
1

)
λm−1
i · · ·

(
m

ni−1

)
λm−ni+1
i

λm
i

. . .
...

. . .
(
m
1

)
λm−1
i

λm
i

 (3.10)

for i = 1, 2, · · · , w.
By substituting (3.10) into (3.9), we obtain

Eα,k+1(Jit
α) =


Eα,k+1(λit

α) tα

1! E
(1)
α,k+1(λit

α) · · · tα(ni−1)

(ni−1)! E
(ni−1)
α,k+1 (λit

α)

Eα,k+1(λit
α)

. . .
...

. . . tα

1!E
(1)
α,k+1(λit

α)

Eα,k+1(λit
α)


(3.11)

for i = 1, 2, · · · , w.
Thus, the representation of solution (3.4) is simplified to (3.7), where the diagonal

Jordan block matrices involved in (3.8) has the representation (3.11).

Remark 3.1. Note that if we allow complex eigenvalues of the real matrix A in
Lemma 3.1 and Lemma 3.2, then one can observe that the structure of solution
(3.5) or (3.7) appears to be complex valued. Since the representation of solution
(3.4) is real valued, thus one expect to write the solution in terms of real valued
functions.

Remark 3.2. Generally the following property:

Eα,β ((a+ b)tα) = Eα,β (at
α)Eα,β (bt

α)

does not hold for α > 0 and β > 0 (for instance, see [25, 26, 27]).

Note that when α = β = 1, we have Eα,β(a ± ib) = e(a±ib)t and the following
properties are well known:

e(a±ib)t = eat (cos(bt)± i sin(bt)) . (3.12)
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and

e(a+ib)t + e(a−ib)t

2
= eat cos(bt), (3.13)

e(a+ib)t − e(a−ib)t

2i
= eat sin(bt). (3.14)

In view of Remark 3.2, we observe the formulas like (3.12)-(3.14) does not hold for
the Mittag-Leffler function Eα,β ((a± ib)tα).

Next, we present an important result which possibly could overcome the complex
valued representation of solution to the system (1.1) when some eigenvalues of the
coefficient matrix A are complex numbers.

Lemma 3.3. Let D ∈ R2×2 be a square matrix in the following form

D =

(
a b
−b a

)
, (3.15)

then we have

Eα,β (Dtα) =


∞∑
k=0

tαk

Γ(αk+β) |λ|
k cos (kθ)

∞∑
k=0

tαk

Γ(αk+β) |λ|
k sin (kθ)

−
∞∑
k=0

tαk

Γ(αk+β) |λ|
k sin (kθ)

∞∑
k=0

tαk

Γ(αk+β) |λ|
k cos (kθ)

 (3.16)

where |λ| =
√
a2 + b2 and θ = arg(a+ ib).

Proof. Let us decompose the matrix D = aI + bJ , where I =

(
1 0
0 1

)
and

J =

(
0 1
−1 0

)
. By definition of Mittag-Leffler function, we have

Eα,β (Dtα) =
∞∑
k=0

tαk

Γ(αk + β)
(aI + bJ)

k
. (3.17)

Since J2 = −I, J3 = −J , J4+k = Jk for k = 1, 2, · · · , and IJ = JI. Here, we
compute

(aI + bJ)
k
=

k∑
j=0

(
k
j

)
ak−jbjJ4+j

=
k∑

j=0, k≥2j

(
k
2j

)
ak−2jb2jJ4+2j

+
k∑

j=0, k≥2j+1

(
k

2j + 1

)
ak−2j−1b2j+1J4+2j+1. (3.18)

Then, by substituting (3.18) into (3.17), we get

Eα,β (Dtα) =
∞∑
k=0

tαk

Γ(αk + β)

k∑
j=0, k≥2j

(−1)j
(

k
2j

)
ak−2jb2jI

+
∞∑
k=0

tαk

Γ(αk + β)

k∑
j=0, k≥2j+1

(−1)j
(

k
2j + 1

)
ak−2j−1b2j+1J (3.19)
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Note that a± ib are the eigenvalues of the matrix D. It is not difficult to observe
that

(a+ ib)k =
k∑

j=0

(
k

j

)
ak−j(ib)j = R(a+ ib)k + iI(a+ ib)k (3.20)

where

R(a+ ib)k =
k∑

j=0, k≥2j

(−1)j
(
k

2j

)
ak−2jb2j , (3.21)

I(a+ ib)k =
k∑

j=0, k≥2j+1

(−1)j
(

k

2j + 1

)
ak−2j−1b2j+1. (3.22)

Let us write λ = a+ ib. Then, we have

λk = |λ|k (cos(kθ) + isin(kθ)) (3.23)

where |λ| =
√
a2 + b2 and θ = arg(a+ ib). Comparing the real and imaginary parts

of (3.20) and (3.23), and then using in (3.19) we obtain (3.16). �

Corollary 3.1. Let b ∈ R and D =

(
0 b
−b 0

)
, then we have

Eα,β (Dtα) =


∞∑
j=0

(−1)j (btα)2j

Γ(2jα+β)

∞∑
j=0

(−1)j (btα)2j+1

Γ((2j+1)α+β)

−
∞∑
j=0

(−1)j (btα)2j+1

Γ((2j+1)α+β)

∞∑
j=0

(−1)j (btα)2j

Γ(2jα+β)

 . (3.24)

Lemma 3.4. Let D ∈ R2×2 be a square matrix in the following form

D =

(
a b
−b a

)
, (3.25)

then we have

E
(j)
α,β (Dtα) =


∞∑
k=0

(k+j)!tαk

k!Γ(αk+αj+β) |λ|
k cos (kθ)

∞∑
k=0

(k+j)!tαk

k!Γ(αk+αj+β) |λ|
k sin (kθ)

−
∞∑
k=0

(k+j)!tαk

k!Γ(αk+αj+β) |λ|
k sin (kθ)

∞∑
k=0

(k+j)!tαk

k!Γ(αk+αj+β) |λ|
k cos (kθ)


(3.26)

where |λ| =
√
a2 + b2 and θ = arg(a+ ib) and j = 0, 1, 2, · · · .

Remark 3.3. In Lemma 3.3 and Lemma 3.4, if we take B = DT , then we have

Eα,β (Btα) = Eα,β (Dtα)
T
and E

(j)
α,β (Btα) = E

(j)
α,β (Dtα)

T
.

Remark 3.4. It is evident from Lemma 3.3 and Lemma 3.4 that

E
(j)
α,β (Dtα) =

(
RE

(j)
α,β ((a+ ib)tα) IE

(j)
α,β ((a+ ib)tα)

−IE
(j)
α,β ((a+ ib)tα) RE

(j)
α,β ((a+ ib)tα)

)
(3.27)

where

RE
(j)
α,β ((a+ ib)tα) =

1

2

[
E

(j)
α,β ((a+ ib)tα) + E

(j)
α,β ((a− ib)tα)

]
and

IE
(j)
α,β ((a+ ib)tα) =

1

2i

[
E

(j)
α,β ((a+ ib)tα)− E

(j)
α,β ((a− ib)tα)

]
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are real valued functions, and denotes the real and imaginary parts of the complex

valued Mittag-Leffler function E
(j)
α,β ((a+ ib)tα) for j = 0, 1, 2, · · · .

Lemma 3.5. [13] If the 2n× 2n real matrix A has 2n distinct complex eigenvalues
λj = aj+ibj and λ̄ = aj−ibj, j = 1, 2, · · · , n, then there exists an invertible matrix

P such that P−1AP = diag

(
aj bj
−bj aj

)
, a real 2n× 2n matrix with 2× 2 blocks

along the diagonal.

Let us assume the hypothesis of Lemma 3.5 for the system (1.1). Then, by using
Lemma 3.3 in the solution (3.4), we get

x(t) =
r−1∑
k=0

tkPEα,k+1 (Dtα)P−1x(k)(0) (3.28)

where D = diag (D1, D2, · · · , Dn), Dj =

(
aj bj
−bj aj

)
,

Eα,k+1 (Dtα) = diag (Eα,k+1(D1t
α), Eα,k+1(D2t

α), · · · , Eα,k+1(Dnt
α)) ,

Eα,k+1 (Djt
α)

=


∞∑

m=0

tαm

Γ(αm+k+1) |λj |m cos (mθj)
∞∑

m=0

tαm

Γ(αm+k+1) |λj |m sin (mθj)

−
∞∑

m=0

tαm

Γ(αm+k+1) |λj |m sin (mθj)
∞∑

m=0

tαm

Γ(αm+k+1) |λj |m cos (mθj)

 ,

and |λj | =
√
a2j + b2j and θj = arg(aj + ibj), j = 1, 2, · · · , n.

Lemma 3.6. [13] If the real matrix A has distinct real eigenvalues λj, j = 1, 2, · · · ,m,
and distinct complex eigenvalues λj = aj+ibj, λ̄j = aj−ibj, j = m+1,m+2, · · · , n,
then there exists an invertible matrix P such that

P−1AP = diag (λ1, · · · , λm, Bm+1, · · · , Bn) ,

where the 2× 2 blocks matrix Bj =

(
aj bj
−bj aj

)
for j = m+ 1, · · · , n.

In view of Lemma 3.6 and Lemma 3.3, the representation of solution (3.4) reduces
to

x(t) =
r−1∑
k=0

tkPEα,k+1 (Dtα)P−1x(k)(0) (3.29)

where

Eα,k+1 (Dtα)

=



Eα,k+1 (λ1t
α)

. . .

Eα,k+1 (λmtα)
Eα,k+1 (Bm+1t

α)
. . .

Eα,k+1 (Bnt
α)


,

(3.30)
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Eα,k+1 (Bjt
α) =


∞∑
l=0

tαl

Γ(αl+k+1) |λj |l cos (lθj)
∞∑
l=0

tαl

Γ(αl+k+1) |λj |l sin (lθj)

−
∞∑
l=0

tαl

Γ(αl+k+1) |λj |l sin (lθj)
∞∑
l=0

tαl

Γ(αl+k+1) |λj |l cos (lθj)

 ,

(3.31)

and |λj | =
√
a2j + b2j and θj = arg(aj + ibj), j = m+ 1,m+ 2, · · · , n.

Lemma 3.7. [13] Let A be a real matrix with real eigenvalues λj, j = 1, 2, · · · ,m
and complex eigenvalues λj = aj + ibj λ̄j = aj − ibj, j = m + 1,m + 2, · · · , n,
then there exists an invertible matrix P such that P−1AP = diag (B1, B2, · · · , Br),
where the elementary Jordan blocks B = Bj, j = 1, 2, · · · , r are either of the form

B =


λ 1

λ
. . .

. . . 1
λ

 (3.32)

for λ one of the real eigenvalues of A or of the form

B =


D I

D
. . .

. . . I
D

 (3.33)

with D =

(
a b
−b a

)
, I =

(
1 0
0 1

)
for λ = a+ ib one of the eigenvalues of A.

Here, based on the Lemma 3.7 and Lemma 3.4, the solution (3.4) reduces to

x(t) =
r−1∑
k=0

tkPEα,k+1 (Qtα)P−1x(k)(0) (3.34)

where Q = diag (B1, B2, · · · , Br) and

Eα,k+1 (Qtα) = (Eα,k+1 (B1t
α) , Eα,k+1 (B2t

α) , · · · , Eα,k+1 (Brt
α)) . (3.35)

In (3.35), if Bj = B is a p× p matrix of the form (3.32) and λ is a real eigenvalue
of A then B = λI +N and

Eα,k+1(Btα) =


Eα,k+1(λt

α) tα

1! E
(1)
α,k+1(λt

α) · · · tα(p−1)

(p−1)! E
(p−1)
α,k+1(λt

α)

Eα,k+1(λt
α)

. . .
...

. . . tα

1! E
(1)
α,k+1(λt

α)

Eα,k+1(λt
α)


(3.36)

where I is p× p identity matrix and N is the p× p nilpotent matrix of order p.
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Similarly, in (3.35) if Bj = B is a 2p×2p matrix of the form (3.33) and λ = a+ib
is a complex eigenvalue of A, then we have

Eα,k+1(Btα) =


Eα,k+1(Dtα) tα

1! E
(1)
α,k+1(Dtα) · · · tα(p−1)

(p−1)! E
(p−1)
α,k+1(Dtα)

Eα,k+1(Dtα)
. . .

...
. . . tα

1! E
(1)
α,k+1(Dtα)

Eα,k+1(Dtα)


(3.37)

where the matrix Mittag-Leffler functions involved in (3.37) can have the forms
given in Lemma 3.3 and Lemma 3.4.

In the next, we give an alternative way to obtain the analytic solution of the
linear fractional system (1.1) corresponding to specified initial conditions (1.2) using
the Laplace transform technique. In this approach, actually one does not need the
formula for the solution (3.4) and the above mentioned Lemmas to solve any specific
problems which are of the form (1.1) or (1.3).

3.1.2. Computation of L−1 (sαI −A)
−1

and explicit formula for solution: Observe
that by applying the Laplace transform to the system (1.3), we arrive at the ex-

pression (3.3). Then, we proceed to compute the matrix (sαI −A)
−1

in (3.3) as
follows:

We know that

(sαI −A)
−1

=
adj (sαI −A)

det (sαI −A)
. (3.38)

Let us denote P (sα) = det (sαI −A). Then, under the transformation λ = sα, we
have

(λI −A)
−1

=
adj (λI −A)

det (λI −A)
. (3.39)

Now one can observe that P (λ) = det (λI −A) is a polynomial in λ of degree n and
each entry of adj (λI −A) is a polynomial in λ of degree at most n− 1. Suppose

P (λ) = det (λI −A) =
m∏
i=1

(λ− λi)
pi , (3.40)

where λi’s are the distinct eigenvalues of the matrix A, with corresponding multi-
plicities p1, p2, · · · , pm. Let us decompose the matrix (λI −A)

−1
in terms of partial

fractions

(λI −A)
−1

=
m∑
i=1

pi∑
j=1

1

(λ− λi)j
Kij , (3.41)

where each Kij is a matrix of the partial fraction expansion coefficients. Note that
the coefficients Kij can be evaluated by the following formula

Kij =
1

(pi − j)!

dpi−j

dλpi−j

{
(λ− λi)

pi
adj (λI −A)

det (λI −A)

}∣∣∣
λ=λi

, (3.42)

Then, in view of (3.41), we write

(sαI −A)
−1

=

m∑
i=1

pi∑
j=1

1

(sα − λi)j
Kij , (3.43)
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By substituting (3.43) in (3.3), we get

X(s) =
r−1∑
k=0

m∑
i=1

pi∑
j=1

sα−k−1

(sα − λi)j
Kijx

(k)(0). (3.44)

Taking the inverse transform on (3.44) and using the Property 2.4, we can easily
obtain the solution

x(t) =
r−1∑
k=0

m∑
i=1

pi∑
j=1

tα(j−1)+k

(j − 1)!
E

(j−1)
α,k+1 (λit

α)Kijx
(k)(0). (3.45)

3.2. Incommensurate fractional order case: Applying the Laplace transform
on the system (1.1) and using the initial conditions (1.2), we obtain the following
system

sα1X1(s)−
r1−1∑
k=0

sα1−k−1x
(k)
1 (0) =

n∑
k=1

a1kXk(s)

sα2X2(s)−
r2−1∑
k=0

sα2−k−1x
(k)
2 (0) =

n∑
k=1

a2kXk(s)

...

sαnXn(s)−
rn−1∑
k=0

sαn−k−1x(k)
n (0) =

n∑
k=1

ankXk(s)



(3.46)

where Xi(s) = L{xi(t)} for i = 1, 2, · · · , n.
The system (3.46) can be rewritten in the matrix form

∆(s) ·X(s) = b(s) (3.47)

where

∆(s) =


sα1 − a11 −a12 · · · −a1n
−a21 sα2 − a22 · · · −a2n
...

...
. . .

...
−an1 −an2 · · · sαn − ann

 (3.48)

X(s) =


X1(s)
X2(s)

...
Xn(s)

 , b(s) =


b1(s)
b2(s)
...

bn(s)

 , (3.49)

and bi(s) =
∑ri−1

k=0 sαi−k−1x
(k)
i (0) for i = 1, 2, · · · , n.

Then, it follows from (3.47) that

Xi(s) =
det(∆i(s))

det(∆(s))
(3.50)

for i = 1, 2, · · · , n, where ∆i(s) is the matrix formed by replacing the ith column
of ∆(s) by the column vector b(s).

Here, we assume fractional orders αi = ui

vi
, where gcd(ui, vi) = 1 for i =

1, 2, · · · , n. Let us denote M = l.c.m(v1, v2, · · · , vn), and set γ = 1
M .
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Observe that det(∆(s1/γ)) is a polynomial in s of degree N = M(
∑n

i=1 αi). Let
us write this polynomial as

det(∆(s1/γ)) = (s− λ1)
p1(s− λ2)

p2 · · · (s− λm)pm , (3.51)

where
∑m

i=1 pi = N . Then, by using (3.51) in (3.50), we get

Xi(s) =
det(∆i(s))

(sγ − λ1)p1(sγ − λ2)p2 · · · (sγ − λm)pm
, (3.52)

for i = 1, 2, · · · , n.
Let us expand det(∆i(s)) and write in the form

det(∆i(s)) =

r1−1∑
k=0

sα1−k−1x
(k)
1 (0) · qi1(s) + · · ·+

rn−1∑
k=0

sαn−k−1x(k)
n (0) · qin(s)

=

n∑
l=1

rl−1∑
k=0

sαl−k−1x
(k)
l (0) · qil(s) (3.53)

for i = 1, 2, · · · , n, where qil(s
1/γ)) is a polynomial in s of degree dil < N .

Then, it follows from (3.52) and (3.53) that

Xi(s) =

∑n
l=1

∑rl−1
k=0 sαl−k−1x

(k)
l (0) · qil(s)

(sγ − λ1)p1(sγ − λ2)p2 · · · (sγ − λm)pm
(3.54)

for i = 1, 2, · · · , n.
Now by using the following partial fraction decomposition of the jth term in

(3.54),

qij(s)

(sγ − λ1)p1(sγ − λ2)p2 · · · (sγ − λm)pm
=

p1∑
v=1

cvij1
(sγ − λ1)v

+

p2∑
v=1

cvij2
(sγ − λ2)v

+ · · ·+
pm∑
v=1

cvijm
(sγ − λm)v

=

m∑
u=1

pu∑
v=1

cviju
(sγ − λu)v

(3.55)

where

cviju =
1

(pu − v)!

dpu−v

dspu−v

[
(s− λu)

pu

{
qij(s

1/γ)∏m
l=1(s− λl)pl

}] ∣∣∣∣∣
s=λu

(3.56)

for v = 1, 2, · · · , pu, u = 1, 2, · · · ,m and i = 1, 2, · · · , n,
we get

Xi(s) =
n∑

l=1

rl−1∑
k=0

m∑
u=1

pu∑
v=1

cvilu
(sγ − λu)v

·sαl−k−1x
(k)
l (0). (3.57)

Taking the inverse Laplace transform on (3.57) and using Property (2.4), we obtain
the solution

xi(t) =
n∑

l=1

rl−1∑
k=0

m∑
u=1

pu∑
v=1

cvilu
(v − 1)!

tγv−αl+kE
(v−1)
γ,γ−αl+k+1 (λut

γ) ·x(k)
l (0), (3.58)

for i = 1, 2, · · · , n.



58 BICHITRA KUMAR LENKA JFCA-2022/13(2)

4. Illustrative examples

Example 4.1. Consider the commensurate fractional order system

CDα
0,t x1(t) = x1(t) + 4x2(t)

CDα
0,t x2(t) = −x1(t)− 3x2(t)

(4.1)

with initial conditions

x
(k)
i (0) = xik, k = 0, 1, 2, · · · , r − 1, i = 1, 2. (4.2)

where fractional order r − 1 < α ≤ r and r ∈ Z+.
Here, by applying the Laplace transform to the system (4.1), we obtain the solu-

tion in vector form (for instance, see subsection 3.1)

x(t) =
r−1∑
k=0

tkEα,k+1(Atα)x(k)(0). (4.3)

where x(t) =

(
x1(t)
x2(t)

)
and the coefficient matrix A =

(
1 4
−1 −3

)
. Since

λ = −1 is the only eigenvalue of the matrix A with multiplicity 2, we find the

generalized eigenvectors v1 =

(
−2
1

)
and v2 =

(
−1
0

)
. Therefore, we have P =(

−2 −1
1 0

)
, P−1 =

(
0 1
−1 −2

)
and P−1AP = J with J =

(
−1 1
0 −1

)
.

Then, in view of Lemma 3.2, it follows from (4.3) that

x(t) =
r−1∑
k=0

tkPEα,k+1(Jt
α)P−1x(k)(0). (4.4)

Simplification of (4.4) gives the following solution components

x1(t) =

r−1∑
k=0

tk
{
Eα,k+1(−tα) + 2tαE

(1)
α,k+1(−tα)

}
x
(k)
1 (0)

+
{
4tαE

(1)
α,k+1(−tα)

}
x
(k)
2 (0), (4.5)

and

x2(t) =

r−1∑
k=0

tk
{
− tαE

(1)
α,k+1(−tα)

}
x
(k)
1 (0)

+
{
Eα,k+1(−tα)− 2tαE

(1)
α,k+1(−tα)

}
x
(k)
2 (0). (4.6)

Example 4.2. Consider the fractional order system

CDα
0,t x1(t) = x1(t) + 4x2(t)

CDα
0,t x2(t) = −x1(t)− 3x2(t)

(4.7)

Here, we consider the following cases:

(a) Let α = 1: In this case, we assume the initial conditions for the system
(4.7) of the form

x
(0)
1 (0) = x10, x

(0)
2 (0) = x20. (4.8)
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Application of Laplace transform to the system (4.7) gives

X(s) = (sI −A)−1 · x(0)(0) (4.9)

where X(s) =

(
X1(s)
X2(s)

)
, A =

(
1 4
−1 −3

)
and x(0)(0) =

(
x
(0)
1 (0)

x
(0)
2 (0)

)
.

Using the formula (3.38) in (4.9), we obtain

X(s) =
1

(s+ 1)2

(
s+ 3 4
−1 s− 1

)
x(0)(0). (4.10)

Let us decompose the following matrix in terms of partial fraction expansion

1

(s+ 1)2

(
s+ 3 4
−1 s− 1

)
=

1

s+ 1
K11 +

1

(s+ 1)2
K12, (4.11)

where

K11 =
d

ds

{(
s+ 3 4
−1 s− 1

)} ∣∣∣∣∣
s=−1

=

(
1 0
0 1

)
, (4.12)

K12 =

{(
s+ 3 4
−1 s− 1

)} ∣∣∣∣∣
s=−1

=

(
2 4
−1 −2

)
. (4.13)

By substituting (4.11) in (4.10) and then taking the inverse Laplace trans-
form, we get(

x1(t)
x2(t)

)
= e−t

(
1 0
0 1

)(
x
(0)
1 (0)

x
(0)
2 (0)

)
+ te−t

(
2 4
−1 −2

)(
x
(0)
1 (0)

x
(0)
2 (0)

)

=

(
e−t(1 + 2t)x10 + 4te−tx20

−te−tx10 + e−t(1− 2t)x20

)
. (4.14)

(b) Suppose α ∈ (1, 2): Here, we take initial conditions for the system (4.7) in
the following form

x
(0)
1 (0) = x10, x

(1)
1 (0) = x11, x

(0)
2 (0) = x20, x

(1)
2 (0) = x21. (4.15)

By applying the Laplace transform to the system (4.7) and using the initial
conditions (4.15), we obtain

X(s) = (sαI −A)−1
[
sα−1x(0)(0) + sα−2x(1)(0)

]
(4.16)

where X(s) =

(
X1(s)
X2(s)

)
, A =

(
1 4
−1 −3

)
, x(0)(0) =

(
x
(0)
1 (0)

x
(0)
2 (0)

)

and x(1)(0) =

(
x
(1)
1 (0)

x
(1)
2 (0)

)
.

Then, by using the formula (3.38) in (4.16), we get

X(s) =
1

(sα + 1)2

(
sα + 3 4
−1 sα − 1

)[
sα−1x(0)(0) + sα−2x(1)(0)

]
. (4.17)

Using the partial fraction decomposition, we write

1

(sα + 1)2

(
sα + 3 4
−1 sα − 1

)
=

1

sα + 1
K11 +

1

(sα + 1)2
K12, (4.18)
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where

K11 =

(
1 0
0 1

)
, K12 =

(
2 4
−1 −2

)
.

By substituting (4.18) in (4.17), we get

X(s) =

[
sα−1

sα + 1

(
1 0
0 1

)
+

sα−1

(sα + 1)2

(
2 4
−1 −2

)]
x(0)(0)

+

[
sα−2

sα + 1

(
1 0
0 1

)
+

sα−2

(sα + 1)2

(
2 4
−1 −2

)]
x(1)(0). (4.19)

Taking the inverse Laplace transform on both sides of (4.19), we obtain(
x1(t)
x2(t)

)
=

[
Eα,1(−tα)

(
1 0
0 1

)
+ tαE

(1)
α,1(−tα)

(
2 4
−1 −2

)](
x
(0)
1 (0)

x
(0)
2 (0)

)

+

[
tEα,2(−tα)

(
1 0
0 1

)
+ tα+1E

(1)
α,2(−tα)

(
2 4
−1 −2

)](
x
(1)
1 (0)

x
(1)
2 (0)

)
.

(4.20)

Then, the solution components are

x1(t) =
{
Eα,1(−tα) + 2tαE

(1)
α,1(−tα)

}
x
(0)
1 (0)

+
{
tEα,2(−tα) + 2tα+1E

(1)
α,2(−tα)

}
x
(1)
1 (0)

+
{
4tαE

(1)
α,1(−tα)

}
x
(0)
2 (0) +

{
4tα+1E

(1)
α,2(−tα)

}
x
(1)
2 (0), (4.21)

and

x2(t) =
{
−tαE

(1)
α,1(−tα)

}
x
(0)
1 (0) +

{
−tα+1E

(1)
α,2(−tα)

}
x
(1)
1 (0)

+
{
Eα,1(−tα)− 2tαE

(1)
α,1(−tα)

}
x
(0)
2 (0)

+
{
tEα,2(−tα)− 2tα+1E

(1)
α,2(−tα)

}
x
(1)
2 (0). (4.22)

(c) Suppose α ∈ (0, 1):
For the system (4.7), we consider the following initial conditions

x
(0)
1 (0) = x10, x

(0)
2 (0) = x20. (4.23)

Similar to the case (b), here one can easily obtain the solution components

x1(t) =
{
Eα,1(−tα) + 2tαE

(1)
α,1(−tα)

}
x
(0)
1 (0) +

{
4tαE

(1)
α,1(−tα)

}
x
(0)
2 (0), (4.24)

and

x2(t) =
{
−tαE

(1)
α,1(−tα)

}
x
(0)
1 (0) +

{
Eα,1(−tα)− 2tαE

(1)
α,1(−tα)

}
x
(0)
2 (0). (4.25)

Example 4.3. Consider the fractional order system CDα1
0,t x1(t)

CDα2
0,t x2(t)

CDα3
0,t x3(t)

 =

 −1 4 −1
0 −4 1
0 0 −3

 x1(t)
x2(t)
x3(t)

 (4.26)

with initial conditions

x
(0)
1 (0) = x10, x

(1)
1 (0) = x11, x

(0)
2 (0) = x20, x

(0)
3 (0) = x30, (4.27)
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where fractional orders α1 = u1

v1
= 3

2 , α2 = u2

v2
= 1 and α3 = u3

v3
= 1

2 . Here, by

applying the Laplace transform on both the sides of system (4.26) and using the
initial conditions (4.27), we get (for details see subsection 3.2)

X1(s) =
(sα1−1x

(0)
1 (0) + sα1−2x

(1)
1 (0)) · q11(s)

det(∆(s))
+

(sα2−1x
(0)
2 (0)) · q12(s)

det(∆(s))

+
(sα3−1x

(0)
3 (0)) · q13(s)

det(∆(s))
, (4.28)

X2(s) =
(sα1−1x

(0)
1 (0) + sα1−2x

(1)
1 (0)) · q21(s)

det(∆(s))
+

(sα2−1x
(0)
2 (0)) · q22(s)

det(∆(s))

+
(sα3−1x

(0)
3 (0)) · q23(s)

det(∆(s))
, (4.29)

and

X3(s) =
(sα1−1x

(0)
1 (0) + sα1−2x

(1)
1 (0)) · q31(s)

det(∆(s))
+

(sα2−1x
(0)
2 (0)) · q32(s)

det(∆(s))

+
(sα3−1x

(0)
3 (0)) · q33(s)

det(∆(s))
, (4.30)

where

q11(s) = (sα2 + 4)(sα3 + 3), q12(s) = 4(sα3 + 3), q13(s) = −sα2 ,

q21(s) = 0, q22(s) = (sα1 + 1)(sα3 + 3), q23(s) = sα1 + 1,

q31(s) = 0, q32(s) = 0, q33(s) = (sα1 + 1)(sα2 + 4).

Note that the characteristic matrix for the system (4.26) is

∆(s) =

 sα1 + 1 −4 1
0 sα2 + 4 −1
0 0 sα3 + 3

 . (4.31)

Let γ = 1
M = 1

2 . Then, we have

det
(
∆(s

1
γ )
)
= det

 sMα1 + 1 −4 1
0 sMα2 + 4 −1
0 0 sMα3 + 3


= (s3 + 1)(s2 + 4)(s+ 3), (4.32)

and

det (∆(s)) =
6∏

i=1

(s1/2 − λi), (4.33)

where

λ1 = −1, λ2 = 1/2−
√
3/2i, λ3 = 1/2 +

√
3/2i, λ4 = 2i, λ5 = −2i, λ6 = −3.

(4.34)

By using the formula (3.56), we can write

q11(s)

det(∆(s))
=

1/3

s1/2 + 1
+

(−1−
√
3i)/6

s1/2 − (1/2 +
√
3/2i)

+
(−1 +

√
3i)/6

s1/2 − (1/2−
√
3/2i)

, (4.35)
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q12(s)

det(∆(s))
=

4/15

s1/2 + 1
+

(−10− 6
√
3i)/39

s1/2 − (1/2 +
√
3/2i)

+
(−10 + 6

√
3i)/39

s1/2 − (1/2−
√
3/2i)

+
(8− i)/65

s1/2 − 2i
+

(8 + i)/65

s1/2 + 2i
, (4.36)

q13(s)

det(∆(s))
=

−1/30

s1/2 + 1
+

(−23 + 7
√
3i)/1014

s1/2 − (1/2 +
√
3/2i)

+
(−23− 7

√
3i)/1014

s1/2 − (1/2−
√
3/2i)

+
(22− 19i)/845

s1/2 − 2i
+

(22 + 19i)/845

s1/2 + 2i
+

9/338

s1/2 + 3
, (4.37)

q22(s)

det(∆(s))
=

−i/4

s1/2 − 2i
+

i/4

s1/2 + 2i
, (4.38)

q23(s)

det(∆(s))
=

(−2 + 3i)/52

s1/2 − 2i
+

(−2− 3i)/52

s1/2 + 2i
+

1/13

s1/2 + 3
, (4.39)

q33(s)

det(∆(s))
=

1

s1/2 + 3
. (4.40)

Substituting these expressions in (4.28), (4.29) and (4.30), and then by taking the
inverse Laplace transform, we obtain the following solution components

x1(t) =
{
− 1

3
t−1/2E1/2,1/2

(
−t1/2

)
+

(1−
√
3i)

6
t−1/2E1/2,1/2

(
((1 +

√
3i)/2)t1/2

)
+

(1 +
√
3i)

6
t−1/2E1/2,1/2

(
((1−

√
3i)/2)t1/2

)}
x
(0)
1 (0)

+
{1
3
E1/2,1

(
−t1/2

)
+

(−1−
√
3i)

6
E1/2,1

(
((1 +

√
3i)/2)t1/2

)
+

(−1 +
√
3i)

6
E1/2,1

(
((1−

√
3i)/2)t1/2

)}
x
(1)
1 (0)

+ t−1/2
{ 4

15
E1/2,1/2

(
−t1/2

)
+

(−10− 6
√
3i)

39
E1/2,1/2

(
((1 +

√
3i)/2)t1/2

)
+

(−10 + 6
√
3i)

39
E1/2,1/2

(
((1−

√
3i)/2)t1/2

)
+

(8− i)

65
E1/2,1/2

(
(2i)t1/2

)
+

(8 + i)

65
E1/2,1/2

(
(−2i)t1/2

)}
x
(0)
2 (0)

+
{−1

30
E1/2,1

(
−t1/2

)
+

(−23 + 7
√
3i)

1014
E1/2,1

(
((1 +

√
3i)/2)t1/2

)
+

(−23− 7
√
3i)

1014
E1/2,1

(
((1−

√
3i)/2)t1/2

)
+

(22− 19i)

845
E1/2,1

(
(2i)t1/2

)
+

(22 + 19i)

845
E1/2,1

(
(−2i)t1/2

)
+

9

338
E1/2,1

(
−3t1/2

)}
x
(0)
3 (0), (4.41)

x2(t) = t−1/2

{
− i

4
E1/2,1/2

(
(2i)t1/2

)
+

i

4
E1/2,1/2

(
(−2i)t1/2

)}
x
(0)
2 (0)

+
{ (−2 + 3i)

52
E1/2,1

(
(2i)t1/2

)
+

(−2− 3i)

52
E1/2,1

(
(−2i)t1/2

)
+

1

13
E1/2,1

(
−3t1/2

)}
x
(0)
3 (0), (4.42)
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and

x3(t) = E1/2,1

(
−3t1/2

)
x
(0)
3 (0). (4.43)

Note that the solution components x1(t) and x2(t) in (4.41) and (4.42) are rep-
resented in terms of complex valued functions. Here, by using the Remark 3.4 and
Lemma 3.4, we represent the solution components in terms of real valued functions

x1(t) =
{
− 1

3
t−1/2E1/2,1/2

(
−t1/2

)
+

1

3
t−1/2

∞∑
k=0

tk/2

Γ(k+1
2 )

cos(
kπ

3
)

+
1√
3
t−1/2

∞∑
k=0

tk/2

Γ(k+1
2 )

sin(
kπ

3
)
}
x
(0)
1 (0)

+
{1
3
E1/2,1

(
−t1/2

)
− 1

3

∞∑
k=0

tk/2

Γ(k2 + 1)
cos (

kπ

3
)

+
1√
3

∞∑
k=0

tk/2

Γ(k2 + 1)
sin (

kπ

3
)
}
x
(1)
1 (0)

+ t−1/2
{ 4

15
E1/2,1/2

(
−t1/2

)
− 20

39

∞∑
k=0

tk/2

Γ(k+1
2 )

cos (
kπ

3
)

+
12
√
3

39

∞∑
k=0

tk/2

Γ(k+1
2 )

sin (
kπ

3
) +

16

65

∞∑
k=0

2ktk/2

Γ(k+1
2 )

cos (
kπ

2
)

+
2

65

∞∑
k=0

2ktk/2

Γ(k+1
2 )

sin (
kπ

2
)
}
x
(0)
2 (0)

+
{
− 1

30
E1/2,1

(
−t1/2

)
− 46

1014

∞∑
k=0

tk/2

Γ(k2 + 1)
cos (

kπ

3
)

− 14
√
3

1014

∞∑
k=0

tk/2

Γ(k2 + 1)
sin (

kπ

3
) +

44

845

∞∑
k=0

2ktk/2

Γ(k2 + 1)
cos (

kπ

2
)

+
38

845

∞∑
k=0

2ktk/2

Γ(k2 + 1)
sin (

kπ

2
) +

9

338
E1/2,1

(
−3t1/2

)}
x
(0)
3 (0), (4.44)

x2(t) =t−1/2

{
1

2

∞∑
k=0

2ktk/2

Γ(k+1
2 )

sin (
kπ

2
)

}
x
(0)
2 (0) +

{
− 2

26

∞∑
k=0

2ktk/2

Γ(k2 + 1)
cos (

kπ

2
)

− 3

26

∞∑
k=0

2ktk/2

Γ(k2 + 1)
sin (

kπ

2
) +

1

13
E1/2,1

(
−3t1/2

)}
x
(0)
3 (0), (4.45)

and

x3(t) = E1/2,1

(
−3t1/2

)
x
(0)
3 (0). (4.46)

5. Conclusions

In this paper, we have studied the initial value problem of arbitrary order au-
tonomous linear fractional order system. By applying the Laplace transform to
such a system, we have discussed the analytic solutions of such a system to the
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cases when all the fractional orders are equal (commensurate case) and are dif-
ferent (incommensurate case). For the commensurate fractional order case, the
analytic solution to such a system is expressed in terms of matrix Mittag-Leffler
functions. Whenever the coefficient matrix of such a system is similar to a diagonal
matrix or a Jordan canonical form, then the matrix Mittag-Leffler functions are
computed and based on this, we have presented several interesting results. Fur-
ther, we have presented an alternative way for solving such a system, which is
based on the partial fraction decomposition of its characteristic matrix, and inter-
estingly, in this case, one does not really need to compute the matrix Mittag-Leffler
function. For the incommensurate fractional order case, we have presented the ex-
plicit analytical formulas for the solution components to such a system whenever
all the fractional orders are rational numbers. Finally, we have demonstrated the
theoretical approach by presenting illustrative examples.
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