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SOME NEW NOTES ON THE BICOMPLEX SEQUENCE SPACES

lp (BC)

N. DEĞIRMEN, B. SAĞIR

Abstract. In this study, relationships among different bicomplex sequence

spaces lp (BC) are examined. Also, using the property of completeness, it is
obtained that the spaces lp (BC) are Banach BC−module for 1 ≤ p ≤ ∞ and

the spaces lp (BC) are p−Banach BC−module for 0 < p < 1. Moreover, some

topological properties of bicomplex sequence spaces such as solidity, seperabil-
ity etc. are properly investigated. Our proofs and results obtained are well

involved and significant.

1. Introduction

In 1892 Segre [1] had introduced the concept of bicomplex numbers. The main
contribution in bicomplex analysis was the pioneering works of Price [2] and Alpay
et al. [3]. Price [2] introduced the multicomplex spaces and functions. Functional
analysis in BC, a substantially new subject, is not only relevant from a mathematical
point of view, but also has significant applications in physics and engineering. Alpay
et al. [3] developed a general theory of functional analysis with bicomplex scalars.

Sequence spaces play a central role in many areas of mathematics. The most
popular sequence spaces are the spaces lp which consist of absolutely p−summable
complex sequences having a lot of useful applications. Since they also have rich
topological and geometric properties, researchers are motivated to use them to
obtain new results in different sequence spaces. Recent works noted in [4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15, 16] are some examples on topological properties of some
sequence spaces.

Sager and Sağır [17] introduced bicomplex sequence spaces with Euclidean norm
in the set of bicomplex numbers and in [18] established the quasi-Banach algebra
BC (N) by defining non-Newtonian bicomplex numbers as a generalization of both
bicomplex numbers and non-Newtonian complex numbers. Also they examined
the validity of non-Newtonian bicomplex version of the well-known Hölder’s and
Minkowski’s inequalities for sums.
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Following the same line, our aim in this study is to extend inclusion relations
and topological properties in the spaces lp to bicomplex sequence spaces lp (BC).
Since lp ⊂ lp (BC) our results are more general.

2. Preliminaries

This section deals with some necessary definitions and results which are used in
this research.

Definition 1. [2] Let i and j be independent imaginary units such that i2 = j2 =
−1, ij = ji and C (i) be the set of complex numbers with the imaginary unit i. The
set of bicomplex numbers BC is defined by BC = {z = z1 + jz2 : z1, z2 ∈ C (i)}.

Theorem 1. [2] The set BC forms a Banach space and a ring with respect to the
addition, scalar multiplication and norm for all z = z1 + jz2, w = w1 + jw2 ∈ BC
and for all λ ∈ R defined by

z + w = (z1 + jz2) + (w1 + jw2) = (z1 + w1) + j (z2 + w2) ,

z × w = zw = (z1 + jz2) (w1 + jw2) = (z1w1 − z2w2) + j (z1w2 + z2w1) ,

λ.z = λz = λ. (z1 + jz2) = λz1 + jλz2,

‖.‖ : BC→ R, z → ‖z‖ =

√
|z1|2 + |z2|2.

Remark 1. [2] The numbers e1 = 1+ij
2 and e2 = 1−ij

2 form idempotent basis of
bicomplex numbers and hence any bicomplex number z = z1+jz2 is uniquely written
as z = β1e1 + β2e2 where β1 = z1 − iz2, β2 = z1 + iz2 ∈ C (i) . This formula is
called the idempotent representation of z.

Definition 2. [19] Let X be a linear space over the field F = R or F = C,
0 < p ≤ 1 and ‖|.|‖ : X → R be a mapping such that the following properties
hold:

(i) ‖|x|‖ ≥ 0 for all x ∈ X.
(ii) If ‖|x|‖ = 0, then x = 0.
(iii) ‖|µx|‖ = |µ|p . ‖|x|‖ for all x ∈ X and for all µ ∈ F.
(iv) ‖|x+ y|‖ ≤ ‖|x|‖+ ‖|y|‖ for all x, y ∈ X.
Then, we say that ‖|.|‖ is a p−norm on X and X is a p−normed space with the

p−norm ‖|.|‖ .

If a p−normed space is complete, then it is said to be a p−Banach space [13].

Definition 3. [21] Let X be a topological space. Then we say that X is seperable
if and only if there is a countable subset of X which is dense in X.

Definition 4. [17]

l∞ (BC) : =

{
s = (sk) ∈ w (BC) : sup

k∈N
‖sk‖BC <∞

}
,

lp (BC) : =

{
s = (sk) ∈ w (BC) :

∞∑
k=1

‖sk‖pBC <∞

}
for 0 < p <∞,

where w (BC) denotes the spaces of all bicomplex sequences.
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Theorem 2. [17] l∞ (BC) is a Banach space with the norm ‖.‖l∞(BC) characterized

by

‖s‖l∞(BC) = sup
k∈N
‖sk‖BC

for all s = (sk) ∈ l∞ (BC) .

Theorem 3. [17] The space lp (BC) is a Banach space for 1 ≤ p < ∞ with the
norm ‖.‖lp(BC) defined by

‖s‖lp(BC) =

( ∞∑
k=1

‖sk‖pBC

) 1
p

for all s = (sk) ∈ lp (BC) , and the space lp (BC) is a p−Banach space for 0 < p < 1
with the p−norm ‖|.|‖lp(BC) defined by

‖|s|‖lp(BC) =

∞∑
k=1

‖sk‖pBC

for all s = (sk) ∈ lp (BC) .

3. Main Results

This section deals with the inclusion relations of the spaces l∞ (BC) and lp (BC)
for 0 < p <∞. Also it is shown that lp (BC) are Banach BC−module with its norm
and certain topological properties are examined here.

Theorem 4. For 0 < p < q < ∞, we have the inclusion lp (BC) ⊂ lq (BC). Also,
this inclusion strictly holds, where 1 ≤ p < q <∞.

Proof. It is obvious that for 0 < p < q < ∞ the inclusion lp (BC) ⊂ lq (BC)
holds. Let ζ = (ζn) ∈ lp (BC) . This implies that there exists a n0 (ε) ∈ N such that

‖ζn‖BC < 1 for all n ≥ n0. Then we can write ‖ζn‖q−pBC < 1 for all n ≥ n0. Therefore,

if we take M = max
{
‖ζ1‖q−pBC , ‖ζ2‖q−pBC , ..., ‖ζn0

‖q−pBC , 1
}
, we obtain that

∞∑
n=1

‖ζn‖qBC =
∞∑
n=1

‖ζn‖pBC ‖ζn‖
q−p
BC < M

∞∑
n=1

‖ζn‖pBC <∞

and hence
∞∑
n=1
‖ζn‖qBC <∞ which means that ζ = (ζn) ∈ lq (BC) .

We now want to indicate that the inclusion is strict for 1 ≤ p < q <∞. Set the
sequence ζ = (ζn) characterized by ζn = j 1

n
1
p

for all n ∈ N where j is a bicomplex

number. Then, since

∞∑
n=1

‖ζn‖qBC =

∞∑
n=1

(√
1

n
2
p

)q
=

∞∑
n=1

1

n
q
p

and q
p > 1, the series

∞∑
n=1
‖ζn‖qBC converges. This implies that ζ = (ζn) ∈ lq (BC) .

Besides, since
∞∑
n=1

‖ζn‖pBC =

∞∑
n=1

(√
1

n
2
p

)p
=

∞∑
n=1

1

n
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and
∞∑
n=1

1
n is divergent, the series

∞∑
n=1
‖ζn‖pBC doesn’t converge, and so ζ = (ζn) /∈

lp (BC). Thus, the sequence ζ = (ζn) is in lq (BC) , but not in lp (BC). So, we
conclude that lp (BC) ⊂ lq (BC) is a strict inclusion for 1 ≤ p < q <∞. �

Theorem 5. For 0 < p <∞, we have the inclusion lp (BC) ⊂ l∞ (BC). Also, this
inclusion strictly holds, where 1 ≤ p <∞.

Proof. Let ζ = (ζn) ∈ lp (BC). Then, we have
∞∑
n=1
‖ζn‖pBC <∞ and so, this implies

that there exists a n0 (ε) ∈ N such that ‖ζn‖BC < 1 for all n ≥ n0. If we take
M = max {‖ζ1‖BC , ‖ζ2‖BC , ..., ‖ζn0

‖BC , 1}, we obtain that sup {‖ζn‖BC : n ∈ N} ≤
M <∞ which means that ζ = (ζn) ∈ l∞ (BC) .

Now we have to verify the strictness of the inclusion for 1 ≤ p < ∞. Set the
sequence ζ = (ζn) characterized by ζn = j 1

n
1
p

for all n ∈ N. Then, since

sup {‖ζn‖BC : n ∈ N} = sup

{∥∥∥∥j 1

n
1
p

∥∥∥∥
BC

: n ∈ N
}

= sup

{
1

n
1
p

: n ∈ N
}
≤ 1

we have ζ = (ζn) ∈ l∞ (BC). Furthermore, since
∞∑
n=1
‖ζn‖pBC =

∞∑
n=1

1
n and

∞∑
n=1

1
n

is divergent,
∞∑
n=1
‖ζn‖pBC doesn’t converge, and so ζ = (ζn) /∈ lp (BC). From this,

ζ ∈ l∞ (BC) \lp (BC) for 1 ≤ p <∞. This completes the proof.
Firstly, we state that the set w (BC) defined by {ζ = (ζn) : ∀n ∈ N, ζn ∈ BC} is

a BC−module. �

Theorem 6. The set w (BC) forms a BC−module with the operations addition and
bicomplex scalar multiplication as follows:

+ : w (BC)× w (BC)→ w (BC) , (s, t)→ s+ t = (sn + tn)

· : BC× w (BC)→ w (BC) , (λ, s)→ λ · s = λs = (λsn)

for all s = (sn) , t = (tn) ∈ w (BC) and for all λ ∈ BC.

Proof. The proof of this theorem is direct applications of definitions. �

Definition 5. Let A be a normed algebra over F, and let M be a p−normed space
over F. M is called a p−normed left (right) A−module if M is a left (right)
A−module and there is a positive contant K such that ‖|am|‖ ≤ K ‖a‖p ‖|m|‖
(‖|ma|‖ ≤ K ‖|m|‖ ‖a‖p) for all a ∈ A and for all m ∈M. A p−normed A−module
is both a p−normed left A−module and a p−normed right A−module. A p−normed
left (right) A−module is called a p−Banach left (right) A−module if it is complete
as a p−normed space. A p−Banach A−module is both a p−Banach left A−module
and a p−Banach right A−module.

Now, we obtain that l∞ (BC) is a Banach BC−module with the norm ‖.‖l∞(BC),

lp (BC) is a p−Banach BC−module by defining as above with the p−norm ‖|.|‖lp(BC)

for 0 < p < 1 and lp (BC) is Banach BC−module with the norm ‖.‖lp(BC) for
1 ≤ p <∞.

Theorem 7. l∞ (BC) is a BC−submodule of w (BC).
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Proof. It has been showed that l∞ (BC) is a subspace of w (BC) in [17]. Also, we
get

sup {‖λsn‖BC : n ∈ N} ≤ sup
{√

2 ‖λ‖BC ‖sn‖BC : n ∈ N
}

(3.1)

=
√

2 ‖λ‖BC sup {‖sn‖BC : n ∈ N}
< ∞

for all λ ∈ BC and for all s ∈ l∞ (BC) and so, λs ∈ l∞ (BC). That is to say that
l∞ (BC) is a BC−submodule of w (BC). �

Theorem 8. l∞ (BC) is a Banach BC−module with the norm ‖.‖l∞(BC) .

Proof. From inequality (3.1) we write ‖λs‖l∞(BC) ≤
√

2 ‖λ‖BC ‖s‖l∞(BC) for all λ ∈
BC and for all s ∈ l∞ (BC). Thus, l∞ (BC) is a normed BC−module. Also, we
know that l∞ (BC) is a Banach space with the norm ‖.‖l∞(BC). Therefore, l∞ (BC)

is a Banach BC−module with the norm ‖.‖l∞(BC). �

Theorem 9. For 0 < p <∞, lp (BC) is a BC−submodule of w (BC).

Proof. It has been showed that lp (BC) is a subspace of w (BC) for 0 < p < ∞ in
[17]. Also, we obtain that for all s, t ∈ lp (BC) and for all λ ∈ BC− {0}

∞∑
k=1

‖λsk‖pBC ≤
∞∑
k=1

(√
2
)p
‖λ‖pBC ‖sk‖

p
BC (3.2)

=
(√

2
)p
‖λ‖pBC

∞∑
k=1

‖sk‖pBC <∞

holds for 0 < p < 1 and( ∞∑
k=1

‖λsk‖pBC

) 1
p

≤

( ∞∑
k=1

(√
2
)p
‖λ‖pBC ‖sk‖

p
BC

) 1
p

(3.3)

=
√

2 ‖λ‖BC

( ∞∑
k=1

‖sk‖pBC

) 1
p

<∞

holds for 1 ≤ p < ∞. That means λs ∈ lp (BC). That is to say that lp (BC) for
0 < p <∞ is a BC−submodule of w (BC). �

Theorem 10. For 0 < p < 1, lp (BC) is a p−Banach BC−module with the p−norm
‖|.|‖lp(BC).

Proof. From inequality (3.2) we write ‖|λs|‖lp(BC) ≤
(√

2
)p ‖λ‖pBC ‖|s|‖lp(BC) for all

λ ∈ BC and for all s ∈ lp (BC). Thus, lp (BC) is a p−normed BC−module. Also,
we know that lp (BC) is a p−Banach space with the p−norm ‖|.|‖lp(BC). Therefore,

lp (BC) is a p−Banach BC−module with the p−norm ‖|.|‖lp(BC). �

Theorem 11. For 1 ≤ p < ∞, lp (BC) is a Banach BC−module with the norm
‖.‖lp(BC) .
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Proof. From inequality (3.3) we write ‖λs‖lp(BC) ≤
√

2 ‖λ‖BC ‖s‖lp(BC) for all λ ∈
BC and for all s ∈ lp (BC). Thus, lp (BC) is a normed BC−module. Also, we know
that lp (BC) is a Banach space with the norm ‖.‖lp(BC). Therefore, lp (BC) is a

Banach BC−module with the norm ‖.‖lp(BC). �

The following results are devoted to topological properties of bicomplex sequence
spaces lp (BC) for 0 < p ≤ ∞.

Definition 6. Let X be a bicomplex sequence space and

∼
X := {(un) ∈ w (BC) : ∃ (xn) ∈ X such that ‖un‖BC ≤ ‖xn‖BC for all n ∈ N} .

Then, X is said to be bicomplex solid (normal) if and only if
∼
X ⊂ X.

Definition 7. Let X be a bicomplex sequence space,

A := {x = (xn) ∈ w (BC) : ∀n ∈ N, xn ∈ {0, 1}}

and M0 := spA. Then, X is called bicomplex monotone if and only if M0X ⊂ X.

Definition 8. If X is a Banach bicomplex sequence space and ζ
(n)
l → ζl (n→∞)

for all l ∈ N whenever ζ(n) → ζ (n→∞) , X is called a bicomplex BK−space.

Definition 9. Let X be a bicomplex sequence space and π denote the set of all
permutations of N, that is, injective and surjective maps of N. Then, X is called
bicomplex symmetric if xσ = (xσk

) ∈ X whenever x ∈ X and σ ∈ π.

Theorem 12. l∞ (BC) is a bicomplex solid space.

Proof. Let

(sn) ∈
∼

l∞ (BC) := {(un) ∈ w (BC) : ∃ (xn) ∈ l∞ (BC) , ‖un‖BC ≤ ‖xn‖BC , ∀n ∈ N} .

Then, there is a sequence (tn) ∈ l∞ (BC) such that ‖sn‖BC ≤ ‖tn‖BC for all n ∈ N.
Therefore, sup {‖tn‖BC : n ∈ N} < ∞ and so, sup {‖sn‖BC : n ∈ N} < ∞. This

implies that (sn) ∈ l∞ (BC). Then, we have the inclusion
∼

l∞ (BC) ⊂ l∞ (BC)
which means that l∞ (BC) is bicomplex solid. �

Theorem 13. l∞ (BC) is a bicomplex monotone space.

Proof. Let (ζn) ∈ M0l∞ (BC). Then, there exist (sn) ∈ M0 and (tn) ∈ l∞ (BC)
such that (ζn) = (sntn). Therefore, {sn : n ∈ N} is finite and so, we have

sup {‖sn‖BC : n ∈ N} <∞.

Then, since

sup {‖sntn‖BC : n ∈ N} ≤ sup
{√

2 ‖sn‖BC ‖tn‖BC : n ∈ N
}

=
√

2 sup {‖sn‖BC : n ∈ N} sup {‖tn‖BC : n ∈ N} ,

we write sup {‖sntn‖BC : n ∈ N} <∞. This shows that (ζn) ∈ l∞ (BC). The proof
is completed. �

Theorem 14. l∞ (BC) is a bicomplex BK−space.
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Proof. Let
(
ζ(n)

)
∈ l∞ (BC) such that ζ(n) → ζ as n → ∞. Then, for every ε > 0

there is a n0 (ε) ∈ N such that
∥∥ζ(n) − ζ

∥∥
l∞(BC)

< ε for all n ≥ n0 (ε). Therefore,

we have sup
{∥∥∥ζ(n)

l − ζl
∥∥∥
BC

: l ∈ N
}
< ε for all n ≥ n0 (ε). So, for any fixed l ∈ N

and for all n ≥ n0 (ε) we can write
∥∥∥ζ(n)
l − ζl

∥∥∥
BC

< ε. This implies that
(
ζ

(n)
l

)
converges to the bicomplex number ζl. Thus, the coordinates are continuous on
l∞ (BC). This completes the proof. �

Theorem 15. l∞ (BC) is a bicomplex symmetric space.

Proof. Let (sn) ∈ l∞ (BC) and σ ∈ π. Then, since σ : N → N is an injec-
tive and surjective function, we have

{∥∥sσ(n)

∥∥
BC : n ∈ N

}
= {‖sn‖BC : n ∈ N}.

Then, the equality sup
{∥∥sσ(n)

∥∥
BC : n ∈ N

}
= sup {‖sn‖BC : n ∈ N} holds. Since

sup {‖sn‖BC : n ∈ N} <∞, we get sup
{∥∥sσ(n)

∥∥
BC : n ∈ N

}
<∞. This means that(

sσ(n)

)
∈ l∞ (BC). The proof is completed. �

Theorem 16. l∞ (BC) is not a seperable space.

Proof. Let E = {s = (sn) ∈ w (BC) : sn ∈ {0, j} , ∀n ∈ N} . It is not to hard show
that E is not countable. So, we omit the details.

Let s = (sn) , t = (tn) ∈ E and s 6= t. Then,

dl∞(BC) (s, t) = sup {‖sn − tn‖BC : n ∈ N} = 1.

Consider the open balls B
(
s, 1

2

)
for s ∈ E. Since

B

(
s,

1

2

)
=

{
t ∈ l∞ (BC) : dl∞(BC) (s, t) <

1

2

}
=

{
t ∈ l∞ (BC) : dl∞(BC) (s, t) = 0

}
= {s} ,

we have ∪
x∈E

B
(
s, 1

2

)
= E and B

(
s, 1

2

)
∩ B

(
t, 1

2

)
= ∅. Hence, E can be written

uncountably infinite union of distinct open balls.
Now, let Y be any dense subset of l∞ (BC), that is, Y = l∞ (BC). Then, for all

s ∈ E, we can write B
(
s, 1

2

)
∩ Y 6= ∅. Since B

(
s, 1

2

)
= {s}, we have s ∈ Y and

hence, E ⊂ Y . Since E is not countable, Y is not countable. Thus, no dense set
of the space l∞ (BC) can be countable. This proves that l∞ (BC) is not seperable.
The proof is completed. �

Theorem 17. lp (BC) is a bicomplex solid space for 0 < p <∞.

Proof. Let (sn) ∈
∼

lp (BC)Then, there exists a sequence (tn) ∈ lp (BC) such that
‖sn‖BC ≤ ‖tn‖BC for all n ∈ N. So, we can write ‖sn‖pBC ≤ ‖tn‖

p
BC for all n ∈ N.

Therefore, since the series
∞∑
n=1
‖tn‖pBC is convergent, the comparison test implies

that the series
∞∑
n=1
‖sn‖pBC is comvergent. Then, we obtain that (sn) ∈ lp (BC).

Therefore, we have the inclusion
∼

lp (BC) ⊂ lp (BC) which means that lp (BC) is
bicomplex solid. �

Theorem 18. lp (BC) is a bicomplex monotone space for 0 < p <∞.
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Proof. Let (ζn) ∈M0lp (BC). Then, there exist (sn) ∈M0 and (tn) ∈ lp (BC) such
that (ζn) = (sntn). Therefore, {sn : n ∈ N} is finite and so, sup {‖sn‖BC : n ∈ N} <
∞ and sup {‖sn‖pBC : n ∈ N} <∞. Then, since

‖sntn‖pBC ≤
(√

2
)p
‖sn‖pBC ‖tn‖

p
BC ≤

(√
2
)p

sup {‖sn‖pBC : n ∈ N} ‖tn‖pBC ,

it is said that the series
∞∑
n=1
‖sntn‖pBC is convergent. Thus, we conclude that (ζn) ∈

lp (BC). The proof is completed. �

Theorem 19. lp (BC) is a bicomplex BK−space for 1 ≤ p <∞.

Proof. Let
(
ζ(n)

)
∈ lp (BC) such that ζ(n) → ζ as n → ∞. Then, for every ε > 0

there is a n0 (ε) ∈ N such that
∥∥ζ(n) − ζ

∥∥
lp(BC)

< ε for all n ≥ n0 (ε). Therefore,

we have

(∞∑
l=1

∥∥∥ζ(n)
l − ζl

∥∥∥p
BC

) 1
p

< ε for all n ≥ n0 (ε). Thus, for any fixed l ∈ N

and for all n ≥ n0 (ε) we can write
∥∥∥ζ(n)
l − ζl

∥∥∥p
BC
< εp and

∥∥∥ζ(n)
l − ζl

∥∥∥
BC
< ε. This

implies that
(
ζ

(n)
l

)
converges to the bicomplex number ζl. Thus, the coordinates

are continuous on lp (BC) for 1 ≤ p <∞. This completes the proof. �

Theorem 20. lp (BC) is a bicomplex symmetric space for 0 < p <∞.

Proof. Let (sn) ∈ lp (BC) and σ ∈ π. Then, since σ : N → N is a injective
and surjective function, we have

{∥∥sσ(n)

∥∥
BC : n ∈ N

}
= {‖sn‖BC : n ∈ N} and so{∥∥sσ(n)

∥∥p
BC : n ∈ N

}
= {‖sn‖pBC : n ∈ N} hold. So, we can write

∞∑
n=1

∥∥sσ(n)

∥∥p
BC =

∞∑
n=1
‖sn‖pBC. Since

∞∑
n=1
‖sn‖pBC converges, we conclude that

∞∑
n=1

∥∥sσ(n)

∥∥p
BC converges.

That means
(
sσ(n)

)
∈ lp (BC). The proof is completed. �

Theorem 21. lp (BC) is a seperable space for 2 ≤ p <∞.

Proof. Let S = {z ∈ C : z = a+ ib, a, b ∈ Q} and

Y = {ζ ∈ lp (BC) : ζ = (ζn) = (ζ1, ζ2, ..., ζn, 0, 0, ...) , ζl = ale1 + ble2, al, bl ∈ S} .

where We claim that Y = lp (BC) for 2 ≤ p <∞.
Define the mapping

f : S2 × S2 × ...× S2 → Y,

(a1, b1, a2, b2, ..., an, bn)

→ f (a1, b1, a2, b2, ..., an, bn) = (a1e1 + b1e2, a2e1 + b2e2, ..., ane1 + bne2, 0, 0, ...) .

It is clear that the mapping f is bijective. Then, the sets S2 × S2 × ...× S2 and Y
are equivalent. Also, since S is countable, we have that S2n = S2 × S2 × ...× S2 is
countable. This shows that Y is a countable set.

Now, let ζ = (ζn) ∈ lp (BC). Then,
∞∑
n=1
‖ζn‖pBC converges and so, Rn → 0 as

n → ∞ where Rn =
∞∑

l=n+1

‖ζl‖pBC. Thus, for every ε > 0 there exists a n0 (ε) ∈ N
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such that

‖Rn − 0‖BC =

∞∑
l=n+1

‖ζl‖pBC =

∞∑
l=n+1

‖ale1 + ble2‖pBC <
εp

2

for all n ≥ n0 (ε).
Furthermore, since al, bl ∈ C = S for each l ∈ {1, 2, ..., n}, we can write for

every ε > 0, B (al, ε) ∩ S 6= ∅ and B (bl, ε) ∩ S 6= ∅. This implies that there exist
cl, dl ∈ S such that cl ∈ B (al, ε) and dl ∈ B (bl, ε) for every ε > 0. Therefore,
|al − cl| < ε

p
√

2n0
and |bl − dl| < ε

p
√

2n0
for every ε > 0. Thus, we get

n0∑
l=1

|al − cl|p <
n0∑
l=1

(
ε

p
√

2n0

)p
=

n0∑
l=1

εp

2n0
=
εp

2

and
n0∑
l=1

|bl − dl|p <
εp

2
.

Also, for ψ = (c1e1 + d1e2, c2e1 + d2e2, ..., cn0e1 + dn0e2, 0, 0, ...) ∈ Y , we have

‖ζ − ψ‖plp(BC) =

∞∑
n=1

‖ζn − ψn‖pBC

=

n0∑
n=1

‖ζn − ψn‖pBC +

∞∑
n=n0+1

‖ζn − ψn‖pBC

=

n0∑
n=1

‖ζn − ψn‖pBC +

∞∑
n=n0+1

‖ζn‖pBC

=

n0∑
n=1

‖ζn − ψn‖pBC +Rn0

=

n0∑
n=1

‖(ane1 + bne2)− (cne1 + dne2)‖pBC +Rn0

=

n0∑
n=1

‖(an − cn) e1 + (bn − dn) e2‖pBC +Rn0

=

n0∑
n=1

(
1√
2

√
|an − cn|2 + |bn − dn|2

)p
+Rn0

≤
n0∑
n=1

1(√
2
)p 2

p−2
2 (|an − cn|p + |bn − dn|p) +Rn0

=
1

2

n0∑
n=1

(|an − cn|p + |bn − dn|p) +Rn0

=
1

2

n0∑
n=1

|an − cn|p +
1

2

n0∑
n=1

|bn − dn|p +Rn0

<
1

2

εp

2
+

1

2

εp

2
+
εp

2
= εp
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and so, ‖ζ − ψ‖lp(BC) < ε . Then, Y is dense countable subset of lp (BC). Thus,

lp (BC) is seperable for 2 ≤ p <∞. The proof is completed. �

4. Conclusion

Bicomplex sequence spaces lp (BC) are the generalization of real and complex
sequence spaces lp were studied by many authors. Then, it has been investigated
whether inclusion relations and some topological properties in the spaces lp are
provided in the spaces lp (BC). Also, based on the completeness property of the
spaces lp (BC) proved in [17], it has been examined whether the spaces lp (BC)
satisfy the conditions for being a Banach BC−module. Results are explained by
using some illustrative examples. Some crucial properties of the spaces considered
in this work may attract further study on other aspects of such spaces.
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[17] N. Sager and B. Sağır, On completeness of some bicomplex sequence spaces, Palestine Journal

of Mathematics, Vol. 9, No. 2, pp. 891-902, 2020.
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