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HOMOCLINIC SOLUTIONS FOR THE NONPERIODIC

FRACTIONAL HAMILTONIAN SYSTEMS

FATHI KHELIFI , ABDELKADER MOUMEN AND ALI REZAIGUIA

Abstract. A new result for existence of homoclinic solutions is obtained for

the nonperiodic fractional Hamiltonian systems

−tD
α
∞(−∞Dα

t x(t))− L(t)x(t) +∇ [W1(t, x(t))−W2(t, x(t))] = 0,

where α ∈ (1/2, 1], x ∈ Hα(R,RN ), W1, W2 ∈ C1(R × RN ,R) are not neces-

sary periodic in t. This result generalizes and improves some existing results
in the literatures.

1. Introduction

In this paper, we are concerned with the existence of homoclinic solutions for a
class of fractional Hamiltonian systems of the following form{

−tD
α
∞(−∞Dα

t u(t))− L(t)u(t) +∇W (t, u(t)) = 0,
u ∈ Hα(R,RN ),

(1)

where α ∈ ( 12 , 1), t ∈ R, u ∈ RN , ∇W (t, u) is the gradient of W at u, −∞Dα
t and

tD
α
∞ are left and right Liouville-Weyl fractional derivatives of order α on the whole

axis R respectively, L(t) ∈ C(R,RN2

) is symmetric and positive definite matrix for
all t ∈ R and W ∈ C1(R× RN ,R).

The study of fractional calculus (differentiation and integration) has emerged
as an important and popular field in research. It is mainly due to the extensive
application of fractional differential equations in many engineering and scientific
disciplines such as physics, mechanics, control theory, viscoelasticity, electro chem-
istry, bioengineering, economics and others [1, 5, 10, 11, 13, 16]. An important
characteristic of fractional-order differential operator that distinguishes it from the
integer-order differential operator is its non local behavior, that is, the future state
of a dynamical system or process involving fractional derivative depends on its cur-
rent state as well as its past states. In other words, differential equations of arbitrary
order describe memory and hereditary properties of various materials and process.
This is one of the futures that has contributed to the popularity of the subject
and has motivated the researchers to focus on fractional order models, which are
more realistic and practical than the classical integer-order models. Recently, also
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equations including both left and right fractional derivatives were investigated and
many results were obtained dealing with the existence and multiplicity of solutions
of nonlinear fractional differential equations by using techniques of Nonlinear Anal-
ysis, such as fixed point theory [3, 27], topological degree theory [8], comparison
methods [28], you can see also [14, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. In
2012, Jiao and Zhou [9] showed that critical point theory is an effective approach
to tackle the existence of solutions for the fractional boundary-value problem{

tD
α
T (0D

α
t u(t)) = ∇W (t, u(t)), a.e. t ∈ [0, T ],

u(0) = u(T ),
(2)

where α ∈ (1/2, 1), u ∈ RN , W ∈ C1([0, T ] × RN ,R),∇W (t, u) is the gradient of
W at u, and obtained the existence of at least one nontrivial solution. Inspired by
this paper, Torres [20] studied the fractional Hamiltonian system (1) and he showed
that (1) possesses at least one nontrivial solution via Mountain Pass Theorem, by
assuming that L and W satisfy the following hypotheses:

(L1) L(t) is symmetric and positive definite matrix for all t ∈ R and there exists
an l ∈ C(R, (0,∞)) such that l(t) → ∞ as |t| → ∞ and

(L(t)x, x) ≥ l(t) |x|2 , ∀t ∈ R, x ∈ RN .

(W1) |∇W (t, x)| = o(|x|) as |x| → 0 uniformly in t ∈ R;
(W2) there is W ∈ C(RN ,R) such that

|W (t, x)|+ |∇W (t, x)| ≤ |W (x)|, ∀(t, x) ∈ R× RN .

(W3) there exists a constant µ > 2 such that

0 < µW (t, x) ≤ (∇W (t, x), x), ∀t ∈ R, x ∈ RN\{0}.

When α = 1, (1) reduces to the standard second-order Hamiltonian systems

ü(t)− L(t)u(t) +∇W (t, u(t)) = 0. (3)

Assuming that L(t) and W (t, u) are independent of t or periodic in t, many authors
have studied the existence of homoclinic solutions for the Hamiltonian system (3)
(see [2, 4, 18] and the references therein), and some more general Hamiltonian
systems are considered in the recent papers [6, 7]. In this case, the existence of
homoclinic solutions can be obtained by going to the limit of periodic solutions of
approximating problems. If L(t) and W (t, u) are neither autonomous nor periodic
in t, the existence of homoclinic solutions of (3) is quite different from the periodic
systems, because of the lack of compactness of the Sobolev embedding (see for
instance [4, 15, 19] and the references therein).
Motivated by the above results, we will improve the result in[20] along another
direction. For the statement of our main result, the potential W (t, x) is supposed
to satisfay the following conditions:

(H1) W (t, x) = W1(t, x) −W2(t, x), W1, W2 ∈ C1(R × RN ,R), and there is an
R > 0 such that

1

l(t)
|∇W (t, x)| = o(|x|) as |x| → 0,

uniformly in t ∈ (−∞,−R] ∪ [R,+∞),
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(H2) there are two constants µ > 2 and ν ∈ [0, µ
2 − 1) such that

µν

µ− 2
(L(t)x, x) < µW1(t, x) ≤ (∇W1(t, x), x) + ν(L(t)x, x),

∀t ∈ R, x ∈ RN\{0},
(H3) W2(t, 0) = 0 and there is a constant σ ∈ [2, µ) such that

W2(t, x) ≥ 0, (∇W2(t, x), x) ≤ σW2(t, x), ∀t ∈ R, x ∈ RN\{0}.

In this paper, we will prove the following theorem.

Theorem 1.1. Suppose that (L1), (H1) − (H3) hold. Then (1) possesses at least
one nontrivial homoclinic solution.

Remark 1.1. If W2(t, x) = 0, then our Theorem 1.1 improves Theorem 1.1 in [20]
by relaxing conditions (W1) and (W2) (see (H1) and (H2) and removing condition
(W3)).

The rest of the paper is organized as follows: in section 2, subsection 2.1, we
describe the Liouville-Weyl fractional calculus; in subsection 2.2 we introduce the
fractional space that we use in our work and some lemmas are proven which will
aid in our analysis. In section 3, we will prove Theorem 1.1.

2. Preliminaries

2.1. Liouville-Weyl Fractional Calculus.

Definition 2.1. The left and right Liouville-Weyl fractional integrals of order
0 < α < 1 on the whole axis R are defined by

−∞Iαx u(x) =
1

Γ(α)

∫ x

−∞
(x− ξ)α−1u(ξ)dξ,

xI
α
∞u(x) =

1

Γ(α)

∫ ∞

x

(ξ − x)α−1u(ξ)dξ ,

respectively, where x ∈ R.

Definition 2.2. The left and right Liouville-Weyl fractional derivatives of order
0 < α < 1 on the whole axis R are defined by

−∞Dα
xu(x) =

d

dx
−∞I1−α

x u(x), (4)

xD
α
∞u(x) = − d

dx
xI

1−α
∞ u(x) , (5)

respectively, where x ∈ R.

Remark 2.1. Definitions (4) and (5) may be written in the alternative forms:

−∞Dα
xu(x) =

α

Γ(1− α)

∫ ∞

0

u(x)− u(x− ξ)

ξα+1
dξ,

xD
α
∞u(x) =

α

Γ(1− α)

∫ ∞

0

u(x)− u(x+ ξ)

ξα+1
dξ .
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Recall that the Fourier transform û(w) of u(x) is defined by

û(w) =

∫ ∞

−∞
e−ix.wu(x)dx.

We establish the Fourier transform properties of the fractional integral and frac-
tional operators as follows:

̂−∞Iαx u(x)(w) = (iw)−αû(w),

̂
xIα∞u(x)(w) = (−iw)−αû(w),

̂−∞Dα
xu(x)(w) = (iw)αû(w),

̂
xDα

∞u(x)(w) = (−iw)αû(w).

2.2. Fractional derivative spaces. Let us recall for any α > 0, the semi-norm

|u|Iα
−∞

= ∥−∞Dα
xu∥L2 ,

and the norm

∥u∥Iα
−∞

=
(
∥u∥2L2 + |u|2Iα

−∞

)1/2
.

Let the space Iα−∞(R) denote the completion of C∞
0 (R) with respect to the norm

∥ · ∥Iα
−∞

, i.e.,

Iα−∞(R) = C∞
0 (R)

∥·∥Iα−∞ .

Next, we define the fractional Sobolev space Hα(R) in terms of the Fourier trans-
form. For 0 < α < 1, define the semi-norm

|u|α = ∥|w|αû∥L2 ,

and the norm
∥u∥α = (∥u∥2L2 + |u|2α)1/2,

and let

Hα(R) = C∞
0 (R)

∥·∥α
.

We note that a function u ∈ L2(R) belongs to Iα−∞(R) if and only if

|w|αû ∈ L2(R).
In particular, |u|Iα

−∞
= ∥|w|αû∥L2(R). Therefore H

α(R) and Iα−∞(R) are equivalent,
with equivalent semi-norm and norm (see [20]). Analogous to Iα−∞(R), we introduce
Iα∞(R). Let us define the semi-norm

|u|Iα
∞

= ∥xDα
∞∥L2(R),

and norm
∥u∥Iα

∞
= (∥u∥2L2 + |u|2Iα

∞
)1/2,

and let

Iα−∞(R) = C∞
0 (R)

∥·∥Iα−∞ .

Moreover Iα∞(R) and Iα−∞(R) are equivalent, with equivalent semi-norm and norm.

Lemma 2.1 ([20]). If α > 1/2, then Hα(R) ⊂ C(R) and there is a constant
C = Cα such that

∥u∥L∞ = sup
u∈R

|u(x)| ≤ C∥u∥α (6)

where C(R) denote the space of continuous functions on R.
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Remark 2.2. If u ∈ Hα(R), then u ∈ Lq(R) for all q ∈ [2,∞], since∫
R
|u(x)|qdx ≤ ∥u∥q−2

L∞ ∥u∥2L2 .

In what follows, we introduce the fractional space in which we will construct the
variational framework of (1). Let

Xα =
{
u ∈ Hα(R,Rn) :

∫
R
|−∞Dα

t u(t)|2 + (L(t)u(t), u(t))dt < ∞
}
.

The space Xα is a reflexive and separable Hilbert space with the inner product

(u, v)Xα =

∫
R
(−∞Dα

t u(t).−∞Dα
t v(t)) + (L(t)u(t), v(t))dt,

and the corresponding norm is

∥u∥2 = (u, u)Xα .

Lemma 2.2. Suppose L satisfies (L1). Then, Xα is continuously embedded in
Hα(R,Rn).

Proof. Since l ∈ C(R, (0,∞)) and l is coercive, then l∗ = mint∈R l(t) exists, so we
have

(L(t)u(t), u(t)) ≥ l(t) |t|2 ≥ l∗ |t|2 ,∀t ∈ R.
Then

∥u∥2α =

∫
R
(|−∞Dα

t u(t)|2 + (L(t)u(t), u(t)))dt

≤
∫
R
|−∞Dα

t u(t)|2dt+
1

l∗

∫
R
(L(t)u(t), u(t))dt

So

∥u∥2α ≤ K∥u∥2 (7)

where K = max(1,
1

l∗
). �

Lemma 2.3. Suppose L satisfies (L1). Then the embedding of Xα in L2(R) is
compact.

Proof. We note first that by lemma 2.2 and Remark 2.2 we have

Xα ↪→ L2(R) is continuous.
Now, let (uk) ∈ Xα be a sequence such that uk ⇀ u in Xα. We will show that
uk → u in L2(R). The Banach Steinhauss theorem implies

A = sup
k∈N

∥uk − u∥ < ∞.

Let ϵ > 0, since lim
|t|→∞

l(t) = ∞, then there is T0 > 0 such that
1

l(t)
≤ ϵ,∀ |t| ≥ T0.

So ∫
|t|≥T0

|uk(t)− u(t)|2 dt ≤ ϵ

∫
|t|≥T0

l(t) |uk(t)− u(t)|2 dt

≤ ϵ ∥uk − u∥2

≤ ϵA2. (8)
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Besides, Sobolev’s Theorem (see [12] ) implies that uk → u uniformly on [−T0, T0],
so there is a k0 ∈ N such that∫

|t|≤T0

|uk(t)− u(t)|2 dt ≤ ϵ,∀k ≥ k0. (9)

Combining (8) and (9) we obtain uk → u in L2(R). �
Lemma 2.4. Assume that (H2) and (H3) Hold . Then for every t ∈ R we have

W1(t, x) ≤
[
W1

(
t,

x

|x|

)
− ν

µ− 2

(
L(t)

x

|x|
,
x

|x|

)]
|x|µ

+
ν

µ− 2
(L(t)x, x), if 0 < |x| < 1, (10)

W1(t, x) ≥
[
W1

(
t,

x

|x|

)
− ν

µ− 2

(
L(t)

x

|x|
,
x

|x|

)]
|x|µ

+
ν

µ− 2
(L(t)x, x), if |x| ≥ 1, (11)

and

W2(t, x) ≤ W2

(
t,

x

|x|

)
|x|σ , if |x| ≥ 1. (12)

Proof. Set ϕ(s) = s−µW1(t, sx). Then by (H2), we have

ϕ′ = −µs−µ−1W1(t, sx) + s−µ(∇W1(t, sx), x)

= s−µ−1 [−µW1(t, sx) + (∇W1(t, sx), sx)]

≥ −νs1−µ(L(t)x, x), s > 0. (13)

If s ≥ 1, then it follows that

ϕ(1) ≤ ϕ(s) +
ν

µ− 2
(1− s2−µ)(L(t)x, x),

which implies that (10) holds. If 0 < s ≤ 1, then it follows from (13) that

ϕ(1) ≥ ϕ(s) +
ν

µ− 2
(1− s2−µ)(L(t)x, x),

which implies that (11) holds. By a similar fashion, we can prove that (12) holds.
The proof is complete. �
Lemma 2.5. Under the conditions of Theorem 1.1 , φ′ is compact, i.e., φ′(uk) →
φ′(u) if uk ⇀ u in Xα, where φ : Xα → R is defined by

φ(u) =

∫
R
W (t, u)dt. (14)

Proof. Assume that uk ⇀ u in Xα. Then there exists a constant M > 0 such that

∥uk∥ ≤ M and ∥u∥ ≤ M

for k ∈ N. In addition, from (H1), for any ϵ > 0, we can choose R > 0 and δ > 0
such that

|∇W (t, u)| ≤ ϵl(t) |u| , ∀ |t| ≥ R,∀ |u| ≤ δ.

Since Xα ⊂ C0(R,RN ) the space of continuous functions u on R such that u(t) → 0
as |t| → ∞.Then, there exists R̄ > 0 such that

|uk(t)| ≤ δ, ∀ |t| ≥ R̄, k ∈ N. (15)
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Noting that uk ⇀ u in Xα, it is easy to verify that uk(t) converge to u(t) pointwise
for all t ∈ R. Hence, we have by (15)

|u(t)| ≤ δ, ∀ |t| ≥ T, k ∈ N, where T = max(R, R̄). (16)

It follows from (15), (16) and Hölder inequality that∫
|t|≥T

|∇W (t, uk(t))−∇W (t, u(t))| |v(t)| dt

≤
∫
|t|≥T

(|∇W (t, uk(t))|+ |∇W (t, u(t))|) (|v(t)|) dt

≤ ϵ

∫
|t|≥T

l(t) (|uk(t)|+ |u(t)|) (|v(t)|) dt

≤ ϵ

(∫
|t|≥T

l(t) |uk|2 dt

) 1
2
(∫

|t|≥T

l(t) |v(t)|2 dt

) 1
2

+ ϵ

(∫
|t|≥T

l(t) |u|2 dt

) 1
2
(∫

|t|≥T

l(t) |v(t)|2 dt

) 1
2

≤ ϵ (∥uk∥+ ∥u∥) ∥v∥
≤ 2ϵM ∥v∥ , k ∈ N. (17)

On the other hand, there is a k0 ∈ N such that∫
|t|≤T

|∇W (t, uk(t))−∇W (t, u(t))| |v(t)| dt < ϵ ∥v∥∞ , for k ≥ k0. (18)

Combining (17) and (18) we get

|φ′(uk)− φ′(u)| ≤ ϵ (C∞ + 2M) ∥v∥ , for k ≥ k0. (19)

Hence we get

∥φ′(uk)− φ′(u)∥ = sup
∥v∥=1

∣∣∣∣∫
R
(∇W (t, uk(t))−∇W (t, u(t)), v(t)) dt

∣∣∣∣
≤ ϵ (C∞ + 2M) , (20)

which yields φ′(uk) → φ′(u) as uk ⇀ u, that is, φ′ is compact. �

Let E be a real Banach space. Recall that I ∈ C1(E,R) is said to satisfy the
Palais-Smale condition (PS) if any sequence (un) ⊂ E, for which (I(un)) is bounded
and I ′(un) → 0 as n → ∞, possesses a convergent subsequence in E. We obtain
the existence of solutions to (1) by using the following well-known Mountain Pass
Theorem.

Lemma 2.6 ([17]). Let E be a real Banach space and I ∈ C1(E,R) satisfying the
Palais-Smale condition. If I satisfies the following conditions:

(i) I(0) = 0,
(ii) there exist constants ρ, β > 0 such that I/∂Bρ(0) ≥ β,

(iii) there exist e ∈ E\Bρ(0) such that I(e) ≤ 0.

Then I possesses a critical value c ≥ γ given by

c = inf
g∈Γ

max
s∈[0,1]

I(g(s)),
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where

Γ = {g ∈ C([0, 1], E) : g(0) = 0, g(1) = e}.

3. Proof of Theorem

Now we establish the corresponding variational framework to obtain the existence
of solutions for (1). Define the functional I : Xα → R by

I(u) =

∫
R

[1
2
|−∞Dα

t u(t)|2 +
1

2
(L(t)u(t), u(t))−W (t, u(t)

]
dt

=
1

2
∥u∥2 −

∫
R
W (t, u(t))dt. (21)

Under the conditions of Theorem 1.1, we see that I is a continuously Fréchet-
differentiable functional defined on Xα, i.e., I ∈ C1(Xα,R). Moreover, we have

I ′(u)v =

∫
R
[(−∞Dα

t u(t),−∞ Dα
t v(t)) + (L(t)u(t), v(t))− (∇W (t, u(t)), v(t))]dt,

(22)
for all u, v ∈ Xα, which yields

I ′(u)u = ∥u∥2 −
∫
R
(∇W (t, u(t)), u(t))dt. (23)

Lemma 3.1. Under the conditions of Theorem 1.1 , I satisfies the (PS) condition.

Proof. Assume that (uk)k∈N ∈ Xα is a sequence such that (I(uk)) is bounded and
I ′(uk) → 0 as k → ∞. Then there exists a constant C1 > 0 such that

|I(uk)| ≤ C1 and ∥I ′(uk)∥ ≤ C1 (24)

for every k ∈ N. We first prove that (uk) is bounded in Xα. By (21), (22), (24),
(H2) and(H3) , we obtain

C1 +
C1

µ
∥uk∥ ≥ I(uk)−

1

µ
∥I ′(uk)∥uk

= (
1

2
− 1

µ
) ∥uk∥2 +

∫
R

[
W2(t, uk(t))−

1

µ
(∇W2(t, uk(t)), uk(t))

]
dt

−
∫
R

[
W1(t, uk(t))−

1

µ
(∇W1(t, uk(t)), uk(t))

]
dt

≥ (
1

2
− 1

µ
) ∥uk∥2 , k ∈ N. (25)

Since µ > 2, the inequality (25) shows that (uk) is bounded in Xα. So passing to
a subsequence if necessary, it can be assumed that uk ⇀ u in Xα. Since

(I ′(uk)− I ′(u))(uk − u) = ∥uk − u∥2 −
∫
R
(∇W (t, uk(t))−∇W (t, u(t)), uk − u(t)) dt.

Then by lemma 2.5, we deduce that ∥uk − u∥2 → 0 as k → ∞. �

Now we are in the position to give the proof of Theorem 1.1. We divide the
proof into several steps.
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3.1. Proof of Theorem. Step 1. It is clear that I(0) = 0 and I ∈ C1(Xα,R)
satisfies the (PS) condition.
Step 2. Now we show that there exist constants ρ and β > 0 such that I satisfies
the assumption (ii) of lemma 2.6. Choose δ ∈ (0, 1] such that

µ− 2− 2ν

2(µ− 2)
δ −Mδµ−1 = max

x∈[0,1]

(
µ− 2− 2ν

2(µ− 2)
x−Mxµ−1

)
,

where M = sup

{
W1(t, x)

l(t)
/ t ∈ R, |x| = 1

}
.

Then

µ− 2− 2ν

2(µ− 2)
δ −Mδµ−1 =

µ−2−2ν
2(µ−2)

[
µ−2−2ν

2M(µ−1)(µ−2)

] 1
µ−2

, if M > µ−2−2ν
2(µ−1)(µ−2) ,

µ−2−2ν
2(µ−2) −M, if M ≤ µ−2−2ν

2(µ−1)(µ−2) .

(26)

By lemma 2.1 and (7), there is a constant Kα such that

∥u∥α ≤ Kα∥u∥. (27)

If ∥u∥ = δ
Kα

= ρ, then it follows from (27) that |u(t)| ≤ δ ≤ 1 for t ∈ R. By (10)
we have∫

R
W1(t, u(t))dt =

∫
{t∈R/u(t)̸=0}

W1(t, u(t))dt

≤
∫
{t∈R/u(t)̸=0}

[
W1(t,

u(t)

|u(t)|
) |u(t)|µ +

ν

µ− 2
(L(t)u(t), u(t))

]
dt

≤
∫
R

[
Ml(t) |u(t)|µ +

ν

µ− 2
(L(t)u(t), u(t))

]
dt

≤
∫
R

[
Mδµ−2l(t) |u(t)|2 + ν

µ− 2
(L(t)u(t), u(t))

]
dt

≤
(
Mδµ−2 +

ν

µ− 2

)∫
R
(L(t)u(t), u(t)) dt. (28)

Set

β =

[
µ− 2− 2ν

2(µ− 2)
δ −Mδµ−1

]
δ

K2
α

. (29)

It follows from (26) that β > 0. Hence from (26), (28) and (29) we have

I(u) =
1

2
∥u∥2 +

∫
R
[W2(t, u(t))−W1(t, u(t))] dt

≥ 1

2

∫
R
|−∞Dα

t u(t)|2dt+ (
1

2
− ν

µ− 2
−Mδµ−2)

∫
R
(L(t)u(t), u(t))dt

≥ (
1

2
− ν

µ− 2
−Mδµ−2)

∫
R

[
|−∞Dα

t u(t)|2 + (L(t)u(t), u(t))
]
dt

≥ (
1

2
− ν

µ− 2
−Mδµ−2) ∥u∥2 = β. (30)

Hence (30), shows that ∥u∥ = ρ implies that I(u) ≥ β.
Step 3. It remains to prove that there exists e ∈ Xα such that ∥e∥ > ρ and
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I(e) ≤ 0, where ρ is defined in Step 2. Set

a1 = max {W2(t, x)/t ∈ [−2, 2], x ∈ R, |x| = 1}

and

a1 = max {W2(t, x)/t ∈ [−2, 2], x ∈ R, |x| ≤ 1} .

Then by (H3) and (12), 0 ≤ a1 ≤ a2 < ∞ and

W2(t, x) ≤ a1 |x|σ + a2, for (t, x) ∈ [−2, 2]× RN . (31)

Take w ∈ Xα such that

|w(t)| =

{
1, if |t| ≤ 1,

0, if |t| ≥ 2,
(32)

and |ω(t)| ≤ 1 for |t| ∈ (1, 2]. For ξ > 1, by (11) and (32), we have∫ 1

−1

W (t, ξω(t))dt ≥ |ξ|µ
∫ 1

−1

[
W1(t, ω(t))−

ν

µ− 2
(L(t)ω(t), ω(t))

]
dt

≥ 2m |ξ|µ , (33)

where

m = min
−1≤t≤1,|x|=1

[
W1(t, x)−

ν

µ− 2
(L(t)x, x)

]
> 0,

see (H2). By (21), (31), (32), (33), (H2) and (H3), we have for ξ > 0,

I(ξω) =
1

2
∥ξω∥2 +

∫
R
[W2(t, ξω(t))−W1(t, ξω(t))] dt

≤ |ξ|2

2
∥ω∥2 +

∫ 2

−2

W2(t, ξω(t))dt−
∫ 1

−1

W1(t, ξω(t))dt

≤ 1

2
∥ξω∥2 + a1 |ξ|σ

∫ 2

−2

|ω(t)|σ dt+ 4a2 − 2m |ξ|µ . (34)

Since µ > σ and m > 0, (34) implies that there exists ξ > 1 such that ∥ξω∥ > ρ and
I(ξω) < 0. Set e(t) = ξω(t). Then e ∈ Xα, ∥e∥ = ∥ξω∥ > ρ and I(e) = I(ξω) < 0.
By Lemma 2.6, I possesses a critical value d ≥ β given by

d = inf
g∈Γ

max
s∈[0,1]

I(g(s)),

where

Γ = {g ∈ C([0, 1], E) : g(0) = 0, g(1) = e}.

Hence, there exists u∗ ∈ Xα such that

I(u∗) = d, and I ′(u∗) = 0.

Then function u∗ is a desired classical solution of (1). Since d > 0, u∗ is a nontrivial
homoclinic solution.
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