UNIQUENESS OF MEROMORPHIC FUNCTIONS WITH FINITE LOGARITHMIC ORDER REGARDING THEIR q-SHIFT DIFFERENCE AND DIFFERENTIAL POLYNOMIAL

HARINA P. WAGHAMORE AND PREETHAM N. RAJ

Abstract

In this paper, we investigate the uniqueness and value distribution of transcendental meromorphic functions with zero order by considering their q-shift difference and differential polynomial and obtain some results which improve and generalise the previous theorems given by Zheng and Xu [15].

1. Introduction and main results

We assume that the reader is accustomed with the Nevanlinna value distribution theory and knows the standard notations and definitions used in it such as $T(r, f)$, $m(r, f), N(r, f), \bar{N}(r, f)$, etc. (see Hayman [7], Yang [14], Yi and Yang [13]).
Let f and g be two transcendental meromorphic functions in the open complex plane. For $a \in \mathbb{C} \cup\{\infty\}$ and $k \in \mathbb{Z}^{+} \cup\{\infty\}$ the set, $E(a, f)=\{z: f(z)-a=0\}$, denotes all those a-points of f, where each a-point of f with multiplicity k is counted k times in the set and the set, $\bar{E}(a, f)=\{z: f(z)-a=0\}$, denotes all those a-points of f, where the multiplicities are ignored. If $f(z)-a$ and $g(z)-a$ assumes the same zeros with the same multiplicities, then we say that $f(z)$ and $g(z)$ share the value a CM (counting multiplicity) and we have $E(a, f)=E(a, g)$; Suppose, if $f(z)-a$ and $g(z)-a$ assumes the same zeros ignoring the multiplicities, then we say that $f(z)$ and $g(z)$ share the value a IM (ignoring multiplicity) and we will have $\bar{E}(a, f)=\bar{E}(a, g)$.
A meromorphic function $a(z)$ is called a small function with respect to $f(z)$, if $T(r, a)=S(r, f)$, where $S(r, f)$ denotes any quantity which satisfies $S(r, f)=$ $o(T(r, f))$ as $r \rightarrow+\infty$ possibly outside a set I with finite linear measure $\lim _{r \rightarrow \infty} \int_{(1, r] \cap I} \frac{d t}{t}$ $<\infty$. We also denote by $S_{1}(r, f)$ any quantity which satisfies $S_{1}(r, f)=o(T(r, f))$ for all r on a set F of logarithmic density 1.
We need the following standard definitions of Nevanlinna Theory.

[^0]Definition 1.1. [3] The logarithmic density of a set F is defined by,

$$
\lim _{r \rightarrow \infty} \frac{1}{\log r} \int_{(1, r] \cap F} \frac{1}{t} d t
$$

Definition 1.2. [3] The order $\rho(f)$ of a meromorphic function $f(z)$ is defined as,

$$
\rho(f)=\varlimsup_{r \rightarrow \infty} \frac{\log T(r, f)}{\log r}
$$

Definition 1.3. [3] The logarithmic order of a meromorphic function $f(z)$ is defined by,

$$
\rho_{l o g}(f)=\varlimsup_{r \rightarrow \infty} \frac{\log T(r, f)}{\log \log r}
$$

If $\rho_{l o g}(f)<\infty$, then $f(z)$ is said to be of finite logarithmic order. It is clear that, if a meromorphic function $f(z)$ has finite logarithmic order, then $f(z)$ has order zero. From the definition of logarithmic order, we can easily say that a constant function will have the logarithmic order zero and for a non-constant rational function it will be 1. A transcendental meromorphic function $f(z)$ will have the logarithmic order atleast 1 . If $f(z)$ is a meromorphic function having finite positive logarithmic order $\rho_{l o g}(f)$, then $T(r, f)$ will have proximate logarithmic order $\rho_{l o g}(r)$. The logarithmictype function of $T(r, f)$ is defined as $U(r, f)=(\log r)^{\rho_{\log }(r)}$. We will have $T(r, f) \leq$ $U(r, f)$ for sufficiently larger r. The logarithmic exponent of convergence of a-points of $f(z)$ will be equal to the logarithmic order of $n(r, f=a)$, which is defined as,

$$
\lambda_{\log }(a)=\limsup _{r \rightarrow \infty} \frac{\log n\left(r, \frac{1}{f-a}\right)}{\log \log r}
$$

It is known that for any meromorphic function $f(z)$ having finite positive order and for any $a \in \mathbb{C}$, the counting function $N(r, f=a)$ and $n(r, f=a)$, both have same order, the situation is different for functions having finite logarithmic order, that is logarithmic order of $N(r, f=a)$ is $\lambda_{l o g}(a)+1$, where $\lambda_{l o g}(a)$ is logarithmic order of $n(r, f=a)$, see [3].

Definition 1.4. [8] Let $n_{0 j}, n_{1 j}, \ldots, n_{k j}$ be non-negative integers. The expression,

$$
M_{j}[f]=(f)^{n_{0 j}}\left(f^{(1)}\right)^{n_{1 j}} \ldots\left(f^{(k)}\right)^{n_{k j}}
$$

is called a differential monomial generated by f of degree $\gamma_{M_{j}}=\sum_{i=0}^{k} n_{i j}$ and weight $\Gamma_{M_{j}}=\sum_{i=0}^{k}(i+1) n_{i j}$. The sum,

$$
H[f]=\sum_{i=1}^{l} b_{j} M_{j}[f],
$$

is called a differential polynomial generated by f of degree $\gamma_{p}=\max \left\{\gamma_{M_{j}}: 1 \leq\right.$ $j \leq l\}$ and weight $\Gamma_{p}=\max \left\{\Gamma_{M_{j}}: 1 \leq j \leq l\right\}$, where $T\left(r, b_{j}\right)=S(r, f)$ for the co-efficients $b_{j}(j=1,2, \ldots, l)$. The numbers, $\underline{\gamma}_{p}=\min \left\{\gamma_{M_{j}}: 1 \leq j \leq l\right\}$ and k (the highest order of the derivarive of f in $H[f]$) are called, respectively, the lower degree and order of $H[f]$. We denote by $\sigma=\max \left\{\Gamma_{M_{j}}-\gamma_{M_{j}}: 1 \leq j \leq l\right\}=$ $\max \left\{n_{1 j}+2 n_{2 j}+\ldots+k n_{k j}: 1 \leq j \leq l\right\}$.
$H[f]$ is said to be homogeneous if $\gamma_{p}=\underline{\gamma}_{p}$. Also $H[f]$ is called a quasi differential polynomial generated by f, if instead of assuming $T\left(r, b_{j}\right)=S(r, f)$, we just assume that $m\left(r, b_{j}\right)=S(r, f)$ for the co-efficients $b_{j}(j=1,2, \ldots, l)$.

In 1959, Hayman [6] discussed the Picard's value of meromorphic functions and their derivatives and he obtained the following well-known result.
Theorem A. [6] Let $f(z)$ be a transcendental entire function. Then
(a) for $n \geq 2$, $f^{\prime}(z) f(z)^{n}$ assumes all finite values except possibly zero infinitely often;
(b) for $n \geq 3$ and $a \neq 0, f^{\prime}(z)-a f(z)^{n}$ assumes all finite values infinitely often.

Later in 1995, Chen and Fang [2] obtained the following result for transcendental meromorphic function.

Theorem B. [2] Let $f(z)$ be a transcendental meromorphic function. If $n \geq 1$, is a positive integer, then $f^{\prime}(z) f(z)^{n}-1$ has infinitely many zeros.

Around 2006, Halburd and Korhonen established the difference analogies of the Nevanlinna Theory (see [4], [5]). Since then the study of difference analogies became a subject of great interest for many mathematicians. In 2012, Xu and Zhang [11] studied the zeros of q-shift difference polynomials of meromorphic functions of finite logarithmic order and gave the following result.

Theorem C. [11] If $f(z)$ is a transcendental meromorphic function of finite logarithmic order $\rho_{\text {log }}(f)$ with the logarithmic exponent of convergence of poles less than $\rho_{l o g}(f)-1$ and q, c are non-zero complex constants, then for $n \geq 2, f(z)^{n} f(q z+c)$ assumes every value $b \in \mathbb{C}$ infinitely often.

In 2014, Zheng and Xu [15] investigated the zeros of differential- q-shift-difference polynomials about $f(z), f^{\prime}(z)$, and $f(q z+c)$, where $f(z)$ is of finite positive logarithmic order and obtained the following results.

Theorem D. [15] Let $f(z)$ be a transcendental meromorphic function of finite logarithmic order $\rho_{\text {log }}(f)$, with the logarithmic exponent of convergence of poles less than $\rho_{l o g}(f)-1$. Set $F_{1}(z)=f(q z+c)^{n} f^{\prime}(z)$. If $n \geq 3$, then $F_{1}(z)-a(z)$ has infinitely many zeros.
Theorem E. [15] Let $f(z)$ be a transcendental meromorphic function of finite logarithmic order $\rho_{\text {log }}(f)$, with the logarithmic exponent of convergence of poles less than $\rho_{l o g}(f)-1$. Set $F_{3}(z)=f(z)^{m} f(q z+c)^{n} f^{\prime}(z)$. If m, n satisfy $m \geq n+2$ or $n \geq$ $m+2$, then $F_{3}(z)-a(z)$ has infinitely many zeros.

Let $P_{n}(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}$, be a non-zero polynomial, where $a_{0}, a_{1}, \ldots, a_{n}(\neq 0)$ are complex constants and t_{n} be the number of the distinct zeros of $P_{n}(z)$. Then

Theorem F. [15] Let $f(z)$ be a transcendental meromorphic function of finite logarithmic order $\rho_{\text {log }}(f)$, with the logarithmic exponent of convergence of poles less than $\rho_{l o g}(f)-1$. Set $F_{4}(z)=f(z)^{m} P_{n}(f(q z+c)) \prod_{j=1}^{k} f^{(j)}(z)$. If $m \geq n+k+1$, then $F_{4}(z)-a(z)$ has infinitely many zeros.
Theorem G. [15] Let $f(z)$ be a transcendental meromorphic function of finite logarithmic order $\rho_{\text {log }}(f)$, with the logarithmic exponent of convergence of poles less
than $\rho_{\text {log }}(f)-1$. Set $F_{5}(z)=P_{m}(f(z)) f(q z+c)^{n} \prod_{j=1}^{k} f^{(j)}(z)$. If $m \geq n+k+1$, then $F_{5}(z)-a(z)$ has infinitely many zeros.

Zheng and Xu [15], further studied the uniqueness of differential q-shift difference polynomials of entire functions of order zero and gave the following results.
Theorem H. [15] Let $f(z)$ and $g(z)$ be transcendental entire functions of order zero and $n \geq 5$. If $f(q z+c)^{n} f^{\prime}(z)$ and $g(q z+c)^{n} g^{\prime}(z)$ share a non-zero polynomial $p(z) C M$, then $f(q z+c)^{n} f^{\prime}(z)=g(q z+c)^{n} g^{\prime}(z)$.
Theorem I. [15] Let $f(z)$ and $g(z)$ be transcendental entire functions of order zero and $m \geq n+2 t_{n}+5$. If $f(z)^{m} P_{n}(f(q z+c)) f^{\prime}(z)$ and $g(z)^{m} P_{n}(g(q z+c)) g^{\prime}(z)$ share a non-zero polynomial $p(z) C M$, then $f(z)^{m} P_{n}(f(q z+c)) f^{\prime}(z)=g(z)^{m} P_{n}(g(q z+$ c)) $g^{\prime}(z)$.

Theorem J. [15] Let $f(z)$ and $g(z)$ be transcendental entire functions of order zero and $n \geq m+2 t_{m}+5$. If $P_{m}(f(z)) f(q z+c)^{n} f^{\prime}(z)$ and $P_{m}(g(z)) g(q z+c)^{n} g^{\prime}(z)$ share a non-zero polynomial $p(z) C M$, then $P_{m}(f(z)) f(q z+c)^{n} f^{\prime}(z)=P_{m}(g(z)) g(q z+$ $c)^{n} g^{\prime}(z)$.

The motivation to this paper is [10], where Thin, states that the inequality $\bar{N}(r, P(f)) \leq m T(r, f)+S(r, f)$ (where $P(z)$ is a polynomial with m distinct zeros and $f(z)$ is a transcendental meromorphic function), is very weak and indeed we have the equality $\bar{N}(r, P(f))=\bar{N}(r, f)$. Thus, we can easily get, $\bar{N}(r, H[f])=$ $\bar{N}(r, f)$, where $H[f]$ is a differential polynomial generated by a transcendental meromorphic function f.

In this paper, we extend the above theorems H-J from entire functions to meromorphic functions and also extend the differential monomials $f^{\prime}(z)$ and $g^{\prime}(z)$ in theorems D-J to differential polynomials $H[f]$ and $H[g]$ respectively and we obtain the following generalised results.

Theorem 1.1. Let $f(z)$ be a transcendental meromorphic function of finite logarithmic order $\rho_{l o g}(f)$, with the logarithmic exponent of convergence of poles less than $\rho_{l o g}(f)-1$ and $a(z)$ be a small function with respect to $f(z)$. Set $\mathcal{F}_{1}(z)=$ $f^{n}(q z+c) H[f]$. If $n \geq \gamma_{p}+\sigma+1$, then $\mathcal{F}_{1}(z)-a(z)$ has infinitely many zeros.
Remark 1.1. In Theorem 1.1, if $H[f]=f^{\prime}(z)$, then we get $\left(\gamma_{p}=\gamma_{M_{1}}=1\right)$, $\left(\Gamma_{p}=\Gamma_{M_{1}}=2\right)$ and $\left(\sigma=\Gamma_{M_{1}}-\gamma_{M_{1}}=1\right)$, thus $n \geq 3$ and hence Theorem 1.1 reduces to Theorem D.

Theorem 1.2. Let $f(z)$ be a transcendental meromorphic function of finite logarithmic order $\rho_{l o g}(f)$, with the logarithmic exponent of convergence of poles less than $\rho_{l o g}(f)-1$ and $a(z)$ be a small function with respect to $f(z)$. Set $\mathcal{F}_{2}(z)=$ $f(z)^{m} f^{n}(q z+c) H[f]$. If m, n satisfy $m \geq n+\gamma_{p}+\sigma(o r) n \geq m+\gamma_{p}+\sigma$, then $\mathcal{F}_{2}(z)-a(z)$ has infinitely many zeros.

Remark 1.2. In Theorem 1.2, if $H[f]=f^{\prime}(z)$, then we get, $\left(\gamma_{p}=\gamma_{M_{1}}=1\right)$, $\left(\Gamma_{p}=\Gamma_{M_{1}}=2\right)$ and $\left(\sigma=\Gamma_{M_{1}}-\gamma_{M_{1}}=1\right)$, thus $m \geq n+2$ orn $\geq m+2$ and hence Theorem 1.2 reduces to Theorem E.

Theorem 1.3. Let $f(z)$ be a transcendental meromorphic function of finite logarithmic order $\rho_{\text {log }}(f)$, with the logarithmic exponent of convergence of poles less
than $\rho_{l o g}(f)-1, a(z)$ be a small function with respect to $f(z)$ and $P_{n}(z)=a_{n} z^{n}+$ $a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}$, where $a_{0}, a_{1}, \ldots, a_{n}(\neq 0)$ are complex constants, be a polynomial of degree n and t_{m} distinct zeros. Set $\mathcal{F}_{3}(z)=f(z)^{m} P_{n}(f(q z+c)) H[f]$. If $m \geq n+\gamma_{p}+1$, then $\mathcal{F}_{3}(z)-a(z)$ has infinitely many zeros.
Remark 1.3. In Theorem 1.3, if $H[f]=\prod_{j=1}^{k} f^{(j)}(z)$, then we get $\left(\gamma_{p}=\gamma_{M_{1}}=k\right)$, $\left(\Gamma_{p}=\Gamma_{M_{1}}=\frac{k(k+1)}{2}+k\right)$, and $\left(\sigma=\Gamma_{M_{1}}-\gamma_{M_{1}}=\frac{k(k+1)}{2}\right)$, thus $n \geq m+k+1$ and hence Theorem 1.3 reduces to Theorem F.

Theorem 1.4. Let $f(z)$ be a transcendental meromorphic function of finite logarithmic order $\rho_{l o g}(f)$, with the logarithmic exponent of convergence of poles less than $\rho_{l o g}(f)-1, a(z)$ be a small function with respect to $f(z)$ and $P_{n}(z)=a_{n} z^{n}+$ $a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}$, where $a_{0}, a_{1}, \ldots, a_{n}(\neq 0)$ are complex constants, be a polynomial of degree n and t_{m} distinct zeros. Set $\mathcal{F}_{4}(z)=P_{m}(f(z)) f^{n}(q z+c) H[f]$. If $m \geq n+\gamma_{p}+1$, then $\mathcal{F}_{4}(z)-a(z)$ has infinitely many zeros.
Remark 1.4. In Theorem 1.4, if $H[f]=\prod_{j=1}^{k} f^{(j)}(z)$, then we get $\left(\gamma_{p}=\gamma_{M_{1}}=k\right)$, $\left(\Gamma_{p}=\Gamma_{M_{1}}=\frac{k(k+1)}{2}+k\right)$, and $\left(\sigma=\Gamma_{M_{1}}-\gamma_{M_{1}}=\frac{k(k+1)}{2}\right)$, thus $n \geq m+k+1$ and hence Theorem 1.4 reduces to Theorem G.
Theorem 1.5. Let $f(z)$ and $g(z)$ be two transcendental meromorphic functions of order zero and n be a positive integer. If $f^{n}(q z+c) H[f]$ and $g^{n}(q z+c) H[g]$ share a non-zero polynomial $q(z), \infty C M$ and $n \geq 3 \gamma_{p}+3 \sigma+5$, then $f^{n}(q z+c) H[f]=$ $g^{n}(q z+c) H[g]$.

Corollary 1.5. Let $f(z)$ and $g(z)$ be two transcendental entire functions of order zero and n be a positive integer. If $f^{n}(q z+c) H[f]$ and $g^{n}(q z+c) H[g]$ share a nonzero polynomial $q(z) C M$ and $n \geq 3 \gamma_{p}+3 \sigma+3$, then $f^{n}(q z+c) H[f]=g^{n}(q z+c) H[g]$.
Theorem 1.6. Let $f(z)$ and $g(z)$ be two transcendental meromorphic functions of order zero, n be a positive integer, $P_{m}(z)$ be a polynomial of degree m and t_{m} distinct zeros. If $f^{n}(z) P_{m}(f(q z+c)) H[f]$ and $g^{n}(z) P_{m}(g(q z+c)) H[g]$ share a non-zero polynomial $q(z), \infty C M$ and $n \geq 2 t_{m}+m+3 \gamma_{p}+3 \sigma+5$, then $f^{n}(z) P_{m}(f(q z+c)) H[f]$ $=g^{n}(z) P_{m}(g(q z+c)) H[g]$.
Corollary 1.6. Let $f(z)$ and $g(z)$ be two transcendental entire functions of order zero, n be a positive integer, $P_{m}(z)$ be a polynomial of degree m and t_{m} distinct zeros. If $f^{n}(z) P_{m}(f(q z+c)) H[f]$ and $g^{n}(z) P_{m}(g(q z+c)) H[g]$ share a non-zero polynomial $q(z) C M$ and $n \geq 2 t_{m}+m+3 \gamma_{p}+3$, then $f^{n}(z) P_{m}(f(q z+c)) H[f]=$ $g^{n}(z) P_{m}(g(q z+c)) H[g]$.
Theorem 1.7. Let $f(z)$ and $g(z)$ be two transcendental meromorphic functions of order zero, n be a positive integer, $P_{m}(z)$ be a polynomial of degree m and t_{m} distinct zeros. If $f^{n}(q z+c) P_{m}(f(z)) H[f]$ and $g^{n}(q z+c) P_{m}(g(z)) H[g]$ share a non-zero polynomial $q(z), \infty C M$ and $n \geq 2 t_{m}+m+3 \gamma_{p}+3 \sigma+5$, then $f^{n}(q z+c) P_{m}(f(z)) H[f]$ $=g^{n}(q z+c) P_{m}(g(z)) H[g]$.
Corollary 1.7. Let $f(z)$ and $g(z)$ be two transcendental entire functions of order zero, n be a positive integer, $P_{m}(z)$ be a polynomial of degree m and t_{m} distinct zeros. If $f^{n}(q z+c) P_{m}(f(z)) H[f]$ and $g^{n}(q z+c) P_{m}(g(z)) H[g]$ share a non-zero polynomial $q(z) C M$ and $n \geq 2 t_{m}+m+3 \gamma_{p}+3$, then $f^{n}(q z+c) P_{m}(f(z)) H[f]=$ $g^{n}(q z+c) P_{m}(g(z)) H[g]$.

2. Lemmas

This section provides all the necessary lemmas used in the sequel.
Lemma 2.1. [13] Let f be a non-constant meromorphic function and let $a_{1}, a_{2}, \ldots, a_{n}$ be finite complex numbers, $a_{n} \neq 0$. Then

$$
T\left(r, a_{n} f^{n}+\ldots+a_{2} f^{2}+a_{1} f+a_{0}\right)=n T(r, f)+S(r, f)
$$

Lemma 2.2. [11] Let $f(z)$ be a transcendental meromorphic function of finite logarithmic order and q, c be two non-zero complex constants. Then

$$
\begin{aligned}
T(r, f(q z+c)) & =T(r, f)+S_{1}(r, f), \\
N(r, f(q z+c)) & =N(r, f)+S_{1}(r, f) \\
N\left(r, \frac{1}{f(q z+c)}\right) & =N\left(r, \frac{1}{f}\right)+S_{1}(r, f)
\end{aligned}
$$

Lemma 2.3. [9] Let $f(z)$ be a non-constant zero order meromorphic function and $q \in \mathbb{C} \backslash\{0\}$. Then

$$
m\left(r, \frac{f(q z+c)}{f(z)}\right)=S_{1}(r, f)
$$

Lemma 2.4. [13] Let $f(z)$ be a non-constant meromorphic function in the complex plane and k be a positive integer. Then

$$
\begin{aligned}
T\left(r, f^{(k)}\right) & \leq T(r, f)+k \bar{N}(r, f)+S(r, f) \\
N\left(r, f^{(k)}\right) & \leq N(r, f)+k \bar{N}(r, f)
\end{aligned}
$$

Lemma 2.5. [1] Let f be a non constant meromorphic function and $H[f]$ be a differential polynomial in f. Then

$$
\begin{aligned}
m\left(r, \frac{H[f]}{f^{\gamma_{p}}}\right) \leq & \left(\gamma_{p}-\underline{\gamma}_{p}\right) m\left(r, \frac{1}{f}\right)+S(r, f), \\
m\left(r, \frac{H[f]}{f^{\underline{q}_{p}}}\right) \leq & \left(\gamma_{p}-\underline{\gamma}_{p}\right) m(r, f)+S(r, f), \\
N\left(r, \frac{H[f]}{f^{\gamma_{p}}}\right) \leq & \left(\gamma_{p}-\underline{\gamma}_{p}\right) N\left(r, \frac{1}{f}\right)+\sigma\left[\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)\right] \\
& +S(r, f), \\
N(r, H[f]) \leq & \gamma_{p} N(r, f)+\sigma \bar{N}(r, f)+S(r, f), \\
T(r, H[f]) \leq & \gamma_{p} T(r, f)+\sigma \bar{N}(r, f)+S(r, f),
\end{aligned}
$$

where $\sigma=\max \left\{n_{1 j}+2 n_{2 j}+3 n_{3 j}+\ldots+k n_{k j} ; 1 \leq j \leq l\right\}$.
Lemma 2.6. [3] If $f(z)$ is a transcendental meromorphic function of finite logarithmic order $\rho_{l o g}(f)$, then for any two distinct small functions $a(z)$ and $b(z)$ with respect to $f(z)$, we have

$$
T(r, f) \leq N\left(r, \frac{1}{f-a}\right)+N\left(r, \frac{1}{f-b}\right) o(U(r, f))
$$

where $U(r, f)=(\log r)^{\rho_{l o g}(f)}$ is a logarithmic-type function of $T(r, f)$. Further, if $T(r, f)$ has a finite lower logarithmic order

$$
\mu=\lim _{r \rightarrow \infty} \frac{\log T(r, f)}{\log \log r}
$$

with $\rho_{\text {log }}(f)-\mu<1$, then

$$
T(r, f) \leq N\left(r, \frac{1}{f-a}\right)+N\left(r, \frac{1}{f-b}\right) o(T(r, f)) .
$$

Remark 2.1. Here the complex values a and b can be easily changed into $a(z)$ and $b(z)$, where $a(z)$ and $b(z)$ are two distinct small functions with respect to $f(z)$.
Lemma 2.7. Let $f(z)$ be a transcendental meromorphic function of order zero. Set $\mathcal{F}_{1}=f^{n}(q z+c) H[f]$. Then, we have

$$
\begin{equation*}
\left(n-\gamma_{p}-\sigma\right) T(r, f)+S_{1}(r, f) \leq T\left(r, \mathcal{F}_{1}\right) \leq\left(n+\gamma_{p}+\sigma\right) T(r, f)+S_{1}(r, f) . \tag{1}
\end{equation*}
$$

Proof. If $f(z)$ is a meromorphic function of order zero, then from Lemmas 2.1, 2.2 and 2.5 , we have

$$
T\left(r, \mathcal{F}_{1}\right) \leq n T(r, f(q z+c))+T(r, H[f]) \leq\left(n+\gamma_{p}+\sigma\right) T(r, f)+S_{1}(r, f) .
$$

Once again from Lemmas 2.1, 2.2 and 2.5, we have

$$
\begin{aligned}
(n+1) T(r, f) & =T\left(r, f^{n+1}(q z+c)\right)+S_{1}(r, f) \\
& \leq T\left(r, \mathcal{F}_{1}\right)+T\left(r, \frac{f(q z+c)}{H[f]}\right)+S_{1}(r, f) \\
& \leq T\left(r, \mathcal{F}_{1}\right)+T(r, f)+\gamma_{p} T(r, f)+\sigma \bar{N}(r, f)+S_{1}(r, f) \\
& \leq T\left(r, \mathcal{F}_{1}\right)+\left(\gamma_{p}+\sigma+1\right) T(r, f)+S_{1}(r, f) .
\end{aligned}
$$

Thus, we get (1). This completes the proof of Lemma 2.7.
Lemma 2.8. Let $f(z)$ be a transcendental meromorphic function of order zero. Set $\mathcal{F}_{2}=f^{m}(z) f^{n}(q z+c) H[f]$. Then, we have

$$
\begin{equation*}
T\left(r, \mathcal{F}_{2}\right) \leq\left(m+n+\gamma_{p}+\sigma\right) T(r, f)+S_{1}(r, f) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(|m-n|-\gamma_{p}-\sigma\right) T(r, f)+S_{1}(r, f) \leq T\left(r, \mathcal{F}_{2}\right) . \tag{3}
\end{equation*}
$$

Proof. If $f(z)$ is a meromorphic function of order zero, then from Lemmas 2.1, 2.2 and 2.5 , we have
$T\left(r, \mathcal{F}_{2}\right) \leq m T(r, f)+n T(r, f(q z+c))+T(r, H[f]) \leq\left(m+n+\gamma_{p}+\sigma\right) T(r, f)+S_{1}(r, f)$.
Thus, we have (2). Once again from Lemmas 2.1, 2.2 and 2.5, we have

$$
\begin{aligned}
(n+m+1) T(r, f)= & T\left(r, f^{n+m+1}\right)=T\left(r, \frac{f^{n+1}(z) \mathcal{F}_{2}}{f^{n}(q z+c) H[f]}\right) \\
\leq & T\left(r, \mathcal{F}_{2}\right)+T\left(r, f^{n+1}(z)\right)+T\left(r, f^{n}(q z+c)\right) \\
& +T(r, H[f])+S_{1}(r, f) \\
\leq & T\left(r, \mathcal{F}_{2}\right)+\left(2 n+\gamma_{p}+\sigma+1\right) T(r, f)+S_{1}(r, f) .
\end{aligned}
$$

Thus, we have (3), where we assume $m \geq n$ without the loss of generality. This completes the proof of Lemma 2.8.

Lemma 2.9. Let $f(z)$ be a transcendental meromorphic function of order zero. Set $\mathcal{F}_{3}=f^{m}(z) P_{n}(f(q z+c)) H[f]$. Then, we have

$$
\begin{equation*}
\left(m-n-\gamma_{p}\right) T(r, f) \leq T\left(r, \mathcal{F}_{3}\right)+\sigma \bar{N}(r, f)+S_{1}(r, f) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
T\left(r, \mathcal{F}_{3}\right) \leq\left(m+n+\gamma_{p}+\sigma\right) T(r, f)+S_{1}(r, f) . \tag{5}
\end{equation*}
$$

Proof. If $f(z)$ is a transcendental meromorphic function of order zero, then from Lemmas 2.1, 2.2 and 2.5, we have
$T\left(r, \mathcal{F}_{3}\right) \leq m T(r, f)+n T(r, f(q z+c))+T(r, H[f]) \leq\left(m+n+\gamma_{p}+\sigma\right) T(r, f)+S_{1}(r, f)$.
Thus we have (5). Once again from Lemmas 2.1, 2.2 and 2.5, we have

$$
\begin{aligned}
(m+k) T(r, f) & =T\left(r, f^{m+k}\right) \leq T\left(r, \frac{f^{k}(z) \mathcal{F}_{3}}{P_{n}(f(q z+c)) H[f]}\right) \\
& \leq T\left(r, \mathcal{F}_{3}\right)+T\left(r, P_{n}(f(q z+c))\right)+T\left(r, f^{k}(z)\right)+T(r, H[f]) \\
& \leq T\left(r, \mathcal{F}_{3}\right)+\left(n+k+\gamma_{p}\right) T(r, f)+\sigma \bar{N}(r, f)+S_{1}(r, f)
\end{aligned}
$$

This completes the proof of Lemma 2.9.
Remark 2.2. In Lemma 2.9, if $H[f]=\prod_{j=1}^{k} f^{(j)}(z)$ then, we get $\left(\gamma_{p}=\gamma_{M_{1}}=k\right)$, $\left(\Gamma_{p}=\Gamma_{M_{1}}=\frac{k(k+1)}{2}+k\right)$ and $\left(\sigma=\Gamma_{M_{1}}-\gamma_{M_{1}}=\frac{k(k+1)}{2}\right)$ then Lemma 2.9. reduces to Lemma 2.8 in [15].
Lemma 2.10. Let $f(z)$ be a transcendental meromorphic function of order zero. Set $\mathcal{F}_{4}=P_{m}(f(z)) f^{n}(q z+c) H[f]$. Then, we have

$$
\begin{gather*}
\left(n-m-\gamma_{p}\right) T(r, f) \leq T\left(r, \mathcal{F}_{4}\right)+\sigma \bar{N}(r, f)+S_{1}(r, f) \tag{6}\\
T\left(r, \mathcal{F}_{4}\right) \leq\left(m+n+\gamma_{p}+\sigma\right) T(r, f)+S_{1}(r, f) \tag{7}
\end{gather*}
$$

Proof. Lemma 2.10 can be proved in a similar fashion to Lemma 2.9.
Remark 2.3. In Lemma 2.10 if $H[f]=\prod_{j=1}^{k} f^{(j)}(z)$ then, we get $\left(\gamma_{p}=\gamma_{M_{1}}=k\right)$, $\left(\Gamma_{p}=\Gamma_{M_{1}}=\frac{k(k+1)}{2}+k\right)$ and $\left(\sigma=\Gamma_{M_{1}}-\gamma_{M_{1}}=\frac{k(k+1)}{2}\right)$ then Lemma 2.10 reduces to Lemma 2.9 in [15].

3. Proof of Theorems

3.1. Proof of Theorem 1.1.

Proof. From Lemma 2.7, we can conclude that $T\left(r, \mathcal{F}_{1}\right)=O(T(r, f))$ holds for all r on a set of logarithmic density 1 . Since $f(z)$ is transcendental and $n \geq$ $\gamma_{p}+\sigma+1$, from Lemma 2.7, \mathcal{F}_{1} is transcendental. Since the logarithmic exponent of convergence of poles of $f(z)$ less than $\rho_{\text {log }}(f)-1$, we have

$$
\limsup _{r \rightarrow \infty} \frac{\log N(r, f)}{\log \log r}<\rho_{\log }(f) .
$$

Assume that $\mathcal{F}_{1}(z)-a(z)$ has only finitely many zeros. Then, from Lemmas 2.2, $2.5,2.6$ and 2.7 , we have

$$
\begin{aligned}
\left(n-\gamma_{p}-\sigma\right) T(r, f) \leq & T\left(r, \mathcal{F}_{1}\right)+S_{1}(r, f) \\
\leq & N\left(r, \mathcal{F}_{1}\right)+N\left(r, \frac{1}{\mathcal{F}_{1}-a}\right)+o(U(r, f))+S_{1}(r, f) \\
\leq & N\left(r, f^{n}(q z+c)\right)+N(r, H[f])+N\left(r, \frac{1}{\mathcal{F}_{1}-a}\right) \\
& +o(U(r, f))+S_{1}(r, f) .
\end{aligned}
$$

Since $\mathcal{F}_{1}(z)-a(z)$ has finitely many zeros, hence $N\left(r, \frac{1}{\mathcal{F}_{1}-a}\right)=S_{1}\left(r, \mathcal{F}_{1}\right)=$ $S_{1}(r, f)$, and hence, the above inequality reduces to,

$$
\left(n-\gamma_{p}-\sigma\right) T(r, f) \leq\left(n+\gamma_{p}+\sigma\right) N(r, f)+o(U(r, f))+S_{1}(r, f)
$$

Since, $n \geq \gamma_{p}+\sigma+1$, from the above inequality, we get

$$
\limsup _{r \rightarrow \infty} \frac{\log T(r, f)}{\log \log r} \leq \limsup _{r \rightarrow \infty} \frac{\log N(r, f)}{\log \log r} \leq \rho_{\log }(f)
$$

which contradicts the fact that $T(r, f)$ has finite logarithmic order $\rho_{l o g}(f)$. Thus, $\mathcal{F}_{1}(z)-a(z)$ has infinitely many zeros. i.e., $f^{n}(q z+c) H[f]-a(z)$ has infinitely many zeros.
3.2. Proofs of Theorems 1.2-1.4. Theorems 1.2, 1.3, and 1.4 can be proved easily by using a similar argument of that of Theorem 1.1, by applying the Lemmas $2.8,2.9$ and 2.10 respectively.
3.3. Proofs of Theorems 1.5-1.7. Here, we only give the proof of Theorem 1.6, because the method of proof of Theorem 1.5, 1.6 and 1.7 are very similar. Their corollaries can also be proved in a similar fashion by taking $N(r, f)=S(r, f)$.

3.4. Proof of Theorem 1.6.

Proof. Let us consider,

$$
\begin{equation*}
F(z)=f^{n}(z) P_{m}(f(q z+c)) H[f] \quad \text { and } \quad G(z)=g^{n}(z) P_{m}(g(q z+c)) H[g] \tag{8}
\end{equation*}
$$

Now,

$$
\begin{align*}
T(r, F(z)) & =T\left(r, f^{n}(z) P_{m}(f(q z+c)) H[f]\right) \\
& \leq T\left(r, f^{n}(z)\right)+T\left(r, P_{m}(f(q z+c))\right)+T(r, H[f])+S_{1}(r, f) \tag{9}
\end{align*}
$$

From Lemmas 2.1, 2.2 and 2.5, we get

$$
\begin{equation*}
T(r, F(z)) \leq n T(r, f)+m T(r, f)+\gamma_{p} T(r, f)+\sigma \bar{N}(r, f)+S_{1}(r, f) \tag{10}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
T(r, F(z)) \leq\left(n+m+\gamma_{p}+\sigma\right) T(r, f)+S_{1}(r, f) \tag{11}
\end{equation*}
$$

Once again from Lemmas 2.1, 2.2, 2.5 and the First fundamental theorem,

$$
\begin{align*}
&(n+k) T(r, f)= T\left(r, f^{n+k}\right) \\
&= T\left(r, \frac{f^{k} \cdot F(z)}{P_{m}(f(q z+c)) \cdot H[f]}\right) \\
& \leq T(r, F(z))+T\left(r, P_{m}(f(q z+c))\right)+T\left(r, f^{k}\right)+T(r, H[f]) \\
&+S_{1}(r, f) \\
& \leq T(r, F(z))+m T(r, f)+k T(r, f)+\gamma_{p} T(r, f)+\sigma \bar{N}(r, f) \\
&+S_{1}(r, f) \\
&(n+k) T(r, f) \leq T(r, F(z))+\left(m+k+\gamma_{p}+\sigma\right) T(r, f)+S_{1}(r, f) \tag{12}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
\left(n-m-\gamma_{p}-\sigma\right) T(r, f)+S_{1}(r, f) \leq T(r, F(z)) \tag{13}
\end{equation*}
$$

From (11) and (13), we get
$\left(n-m-\gamma_{p}-\sigma\right) T(r, f)+S_{1}(r, f) \leq T(r, F(z)) \leq\left(n+m+\gamma_{p}+\sigma\right) T(r, f)+S_{1}(r, f)$.

From (14), we have $S_{1}(r, F)=S_{1}(r, f)$. Similarly, we have $S_{1}(r, G)=S_{1}(r, g)$ and $\left(n-m-\gamma_{p}-\sigma\right) T(r, g)+S_{1}(r, g) \leq T(r, G(z)) \leq\left(n+m+\gamma_{p}+\sigma\right) T(r, g)+S_{1}(r, g)$.

Since $f(z)$ and $g(z)$ are transcendental meromorphic functions of zero order and share $q(z), \infty$ CM, we have

$$
\begin{equation*}
\frac{F(z) / q(z)-1}{G(z) / q(z)-1}=\beta \tag{16}
\end{equation*}
$$

where β is a non-zero constant.
Case 1. If $\beta=1$, then we have $F(z)=G(z)$, which implies

$$
f^{n}(z) P_{m}(f(q z+c)) H[f]=g^{n}(z) P_{m}(g(q z+c)) H[g] .
$$

Case 2. If $\beta \neq 1$, then we have

$$
\begin{array}{r}
F(z)-q(z)=\beta G(z)-\beta q(z) \\
F(z)-(1-\beta) q(z)=\beta G(z) \tag{18}
\end{array}
$$

Since $P_{m}(z)$ has t_{m} distinct zeros, hence by using Second fundamental theorem, we have

$$
\begin{aligned}
T(r, F(z)) \leq & \bar{N}(r, F)+\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{F-q(z)(1-\beta)}\right)+S_{1}(r, F) \\
\leq & \bar{N}(r, f)+\bar{N}(r, f(q z+c))+\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{P_{m}(f(q z+c))}\right) \\
& +\bar{N}\left(r, \frac{1}{H[f]}\right)+\bar{N}\left(r, \frac{1}{G}\right)+S_{1}(r, f) \\
\leq & \bar{N}(r, f)+\bar{N}(r, f(q z+c))+\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{P_{m}(f(q z+c))}\right) \\
& +\bar{N}\left(r, \frac{1}{H[f]}\right)+\bar{N}\left(r, \frac{1}{g}\right)+\bar{N}\left(r, \frac{1}{P_{m}(g(q z+c))}\right)+\bar{N}\left(r, \frac{1}{H[g]}\right) \\
& +S_{1}(r, f)+S_{1}(r, g) \\
\leq & \bar{N}(r, f)+\bar{N}(r, f(q z+c))+\bar{N}\left(r, \frac{1}{f}\right)+\sum_{i=1}^{t_{m}} \bar{N}\left(r, \frac{1}{f(q z+c)-a_{i}}\right) \\
& +T(r, H[f])+\bar{N}\left(r, \frac{1}{g}\right)+\sum_{i=1}^{t_{m}} \bar{N}\left(r, \frac{1}{g(q z+c)-a_{i}}\right)+T(r, H[g]) \\
& +S_{1}(r, f)+S_{1}(r, g) .
\end{aligned}
$$

Hence,
$T(r, F(z)) \leq\left(t_{m}+\gamma_{p}+\sigma+3\right) T(r, f)+\left(t_{m}+\gamma_{p}+\sigma+1\right) T(r, g)+S_{1}(r, f)+S_{1}(r, g)$,
where $a_{1}, a_{2}, \ldots, a_{t_{m}}$ are the distinct zeros of $P_{m}(z)$.
Similarly, we have
$T(r, G(z)) \leq\left(t_{m}+\gamma_{p}+\sigma+3\right) T(r, g)+\left(t_{m}+\gamma_{p}+\sigma+1\right) T(r, f)+S_{1}(r, f)+S_{1}(r, g)$.

From (14), (15), (19) and (20), we get

$$
\begin{align*}
\left(n-m-\gamma_{p}-\sigma\right)\{T(r, f)+T(r, g)\} \leq & \left(2 t_{m}+2 \gamma_{p}+2 \sigma+4\right)\{T(r, f)+T(r, g)\} \\
& +S_{1}(r, f)+S_{1}(r . g) \tag{21}
\end{align*}
$$

which contradicts with $n \geq 2 t_{m}+m+3 \gamma_{p}+3 \sigma+5$.
Hence $\beta=1$, which implies, $f^{n}(z) P_{m}(f(q z+c)) H[f]=g^{n}(z) P_{m}(g(q z+c)) H[g]$.
This completes the proof of Theorem 1.6.

References

[1] S. S. Bhoosnurmath and A. J. Patil, On the growth and value distribution of meromorphic functions and their differential polynomials, J. Indian Math. Soc. (N.S.) 74 (2007), no. 3-4, 167-184 (2008).
[2] H. H. Chen and M. L. Fang, The value distribution of $f^{n} f^{\prime}$, Sci. China Ser. A 38 (1995), no. 7, 789-798.
[3] P. T.-Y. Chern, On meromorphic functions with finite logarithmic order, Trans. Amer. Math. Soc. 358 (2006), no. 2, 473-489.
[4] R. G. Halburd and R. J. Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl. 314 (2006), no. 2, 477-487.
[5] R. G. Halburd and R. J. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 2, 463-478.
[6] W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math. (2) 70 (1959), 9-42.
[7] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
[8] I. Lahiri, Value distribution of certain differential polynomials, Int. J. Math. Math. Sci. 28 (2001), no. 2, 83-91.
[9] K. Liu and X.-G. Qi, Meromorphic solutions of q-shift difference equations, Ann. Polon. Math. 101 (2011), no. 3, 215-225.
[10] N. V. Thin, Uniqueness of meromorphic functions and Q-difference polynomials sharing small functions, Bull. Iranian Math. Soc. 43 (2017), no. 3, 629-647.
[11] J. Xu and X. Zhang, The zeros of q-shift difference polynomials of meromorphic functions, Adv. Difference Equ. 2012, 2012:200, 10 pp.
[12] C. C. Yang, On deficiencies of differential polynomials. II, Math. Z. 125 (1972), 107-112.
[13] C.-C. Yang and H.-X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557, Kluwer Academic Publishers Group, Dordrecht, 2003.
[14] L. Yang, Value distribution theory, translated and revised from the 1982 Chinese original, Springer-Verlag, Berlin, 1993.
[15] X.-M. Zheng and H.-Y. Xu, On value distribution and uniqueness of meromorphic function with finite logarithmic order concerning its derivative and q-shift difference, J. Inequal. Appl. 2014, 2014:295, 11 pp.

Harina P. Waghamore
Department of Mathematics, Jnanabharathi Campus, Bangalore University, Bangalore, India - 560056

E-mail address: harinapw@gmail.com, harina@bub.ernet.in
Preetham N. Raj
Department of Mathematics, Jnanabharathi Campus, Bangalore University, Bangalore, IndiA - 560056

E-mail address: preethamnraj@gmail.com

[^0]: 2010 Mathematics Subject Classification. 30D35.
 Key words and phrases. Differential polynomial, Differential-q-shift difference, Logarithmic order, Meromorphic functions.

 Submitted Oct. 13, 2021.

