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UNIQUENESS OF MEROMORPHIC FUNCTIONS WITH FINITE

LOGARITHMIC ORDER REGARDING THEIR q-SHIFT

DIFFERENCE AND DIFFERENTIAL POLYNOMIAL

HARINA P. WAGHAMORE AND PREETHAM N. RAJ

Abstract. In this paper, we investigate the uniqueness and value distribution

of transcendental meromorphic functions with zero order by considering their
q-shift difference and differential polynomial and obtain some results which
improve and generalise the previous theorems given by Zheng and Xu [15].

1. Introduction and main results

We assume that the reader is accustomed with the Nevanlinna value distribution
theory and knows the standard notations and definitions used in it such as T (r, f),
m(r, f), N(r, f), N(r, f), etc. (see Hayman [7], Yang [14], Yi and Yang [13]).
Let f and g be two transcendental meromorphic functions in the open complex
plane. For a ∈ C∪{∞} and k ∈ Z+∪{∞} the set, E(a, f) = {z : f(z)−a = 0}, de-
notes all those a-points of f , where each a-point of f with multiplicity k is counted
k times in the set and the set, E(a, f) = {z : f(z) − a = 0}, denotes all those
a-points of f , where the multiplicities are ignored. If f(z)−a and g(z)−a assumes
the same zeros with the same multiplicities, then we say that f(z) and g(z) share
the value a CM (counting multiplicity) and we have E(a, f) = E(a, g); Suppose,
if f(z) − a and g(z) − a assumes the same zeros ignoring the multiplicities, then
we say that f(z) and g(z) share the value a IM (ignoring multiplicity) and we will
have E(a, f) = E(a, g).
A meromorphic function a(z) is called a small function with respect to f(z), if
T (r, a) = S(r, f), where S(r, f) denotes any quantity which satisfies S(r, f) =
o(T (r, f)) as r → +∞ possibly outside a set I with finite linear measure lim

r→∞

∫
(1,r]∩I

dt
t

< ∞. We also denote by S1(r, f) any quantity which satisfies S1(r, f) = o(T (r, f))
for all r on a set F of logarithmic density 1.
We need the following standard definitions of Nevanlinna Theory.
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Definition 1.1. [3] The logarithmic density of a set F is defined by,

lim
r→∞

1

log r

∫
(1,r]∩F

1

t
dt.

Definition 1.2. [3] The order ρ(f) of a meromorphic function f(z) is defined as,

ρ(f) = lim
r→∞

log T (r, f)

log r
.

Definition 1.3. [3] The logarithmic order of a meromorphic function f(z) is de-
fined by,

ρlog(f) = lim
r→∞

log T (r, f)

log log r
.

If ρlog(f) < ∞, then f(z) is said to be of finite logarithmic order. It is clear that, if
a meromorphic function f(z) has finite logarithmic order, then f(z) has order zero.
From the definition of logarithmic order, we can easily say that a constant function
will have the logarithmic order zero and for a non-constant rational function it will
be 1. A transcendental meromorphic function f(z) will have the logarithmic order
atleast 1. If f(z) is a meromorphic function having finite positive logarithmic order
ρlog(f), then T (r, f) will have proximate logarithmic order ρlog(r). The logarithmic-

type function of T (r, f) is defined as U(r, f) = (log r)ρlog(r). We will have T (r, f) ≤
U(r, f) for sufficiently larger r. The logarithmic exponent of convergence of a-points
of f(z) will be equal to the logarithmic order of n(r, f = a), which is defined as,

λlog(a) = lim sup
r→∞

log n
(
r, 1

f−a

)
log log r

.

It is known that for any meromorphic function f(z) having finite positive order and
for any a ∈ C, the counting function N(r, f = a) and n(r, f = a), both have same
order, the situation is different for functions having finite logarithmic order, that is
logarithmic order of N(r, f = a) is λlog(a) + 1, where λlog(a) is logarithmic order
of n(r, f = a), see [3].

Definition 1.4. [8] Let n0j , n1j , ..., nkj be non-negative integers. The expression,

Mj [f ] = (f)n0j (f (1))n1j ...(f (k))nkj ,

is called a differential monomial generated by f of degree γMj =
∑k

i=0 nij and

weight ΓMj =
∑k

i=0(i+ 1)nij. The sum,

H[f ] =
l∑

i=1

bjMj [f ],

is called a differential polynomial generated by f of degree γp = max{ γMj : 1 ≤
j ≤ l } and weight Γp = max{ ΓMj : 1 ≤ j ≤ l }, where T (r, bj) = S(r, f) for the
co-efficients bj(j = 1, 2, ..., l). The numbers, γ

p
= min{γMj : 1 ≤ j ≤ l } and k

(the highest order of the derivarive of f in H[f ]) are called, respectively, the lower
degree and order of H[f ]. We denote by σ = max{ΓMj − γMj : 1 ≤ j ≤ l } =
max{n1j + 2n2j + ...+ knkj : 1 ≤ j ≤ l }.
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H[f ] is said to be homogeneous if γp = γ
p
. Also H[f ] is called a quasi differential

polynomial generated by f , if instead of assuming T (r, bj) = S(r, f), we just assume
that m(r, bj) = S(r, f) for the co-efficients bj(j = 1, 2, ..., l).

In 1959, Hayman [6] discussed the Picard’s value of meromorphic functions and
their derivatives and he obtained the following well-known result.

Theorem A. [6] Let f(z) be a transcendental entire function. Then
(a) for n ≥ 2, f ′(z)f(z)n assumes all finite values except possibly zero infinitely
often;
(b) for n ≥ 3 and a ̸= 0, f ′(z)− af(z)n assumes all finite values infinitely often.

Later in 1995, Chen and Fang [2] obtained the following result for transcendental
meromorphic function.

Theorem B. [2] Let f(z) be a transcendental meromorphic function. If n ≥ 1, is
a positive integer, then f ′(z)f(z)n − 1 has infinitely many zeros.

Around 2006, Halburd and Korhonen established the difference analogies of the
Nevanlinna Theory (see [4], [5]). Since then the study of difference analogies became
a subject of great interest for many mathematicians. In 2012, Xu and Zhang [11]
studied the zeros of q-shift difference polynomials of meromorphic functions of finite
logarithmic order and gave the following result.

Theorem C. [11] If f(z) is a transcendental meromorphic function of finite loga-
rithmic order ρlog(f) with the logarithmic exponent of convergence of poles less than
ρlog(f)− 1 and q, c are non-zero complex constants, then for n ≥ 2, f(z)nf(qz+ c)
assumes every value b ∈ C infinitely often.

In 2014, Zheng and Xu [15] investigated the zeros of differential-q-shift-difference
polynomials about f(z), f ′(z), and f(qz + c), where f(z) is of finite positive loga-
rithmic order and obtained the following results.

Theorem D. [15] Let f(z) be a transcendental meromorphic function of finite
logarithmic order ρlog(f), with the logarithmic exponent of convergence of poles less
than ρlog(f) − 1. Set F1(z) = f(qz + c)nf ′(z). If n ≥ 3, then F1(z) − a(z) has
infinitely many zeros.

Theorem E. [15] Let f(z) be a transcendental meromorphic function of finite
logarithmic order ρlog(f), with the logarithmic exponent of convergence of poles less
than ρlog(f)−1. Set F3(z) = f(z)mf(qz+c)nf ′(z). If m, n satisfy m ≥ n+2 or n ≥
m+ 2, then F3(z)− a(z) has infinitely many zeros.

Let Pn(z) = anz
n + an−1z

n−1 + ...+ a1z + a0, be a non-zero polynomial, where
a0, a1, ..., an(̸= 0) are complex constants and tn be the number of the distinct zeros
of Pn(z). Then

Theorem F. [15] Let f(z) be a transcendental meromorphic function of finite
logarithmic order ρlog(f), with the logarithmic exponent of convergence of poles less

than ρlog(f) − 1. Set F4(z) = f(z)mPn(f(qz + c))
k∏

j=1

f (j)(z). If m ≥ n + k + 1,

then F4(z)− a(z) has infinitely many zeros.

Theorem G. [15] Let f(z) be a transcendental meromorphic function of finite
logarithmic order ρlog(f), with the logarithmic exponent of convergence of poles less
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than ρlog(f) − 1. Set F5(z) = Pm(f(z))f(qz + c)n
k∏

j=1

f (j)(z). If m ≥ n + k + 1,

then F5(z)− a(z) has infinitely many zeros.

Zheng and Xu [15], further studied the uniqueness of differential q-shift difference
polynomials of entire functions of order zero and gave the following results.

Theorem H. [15] Let f(z) and g(z) be transcendental entire functions of order
zero and n ≥ 5. If f(qz+ c)nf ′(z) and g(qz+ c)ng′(z) share a non-zero polynomial
p(z) CM, then f(qz + c)nf ′(z) = g(qz + c)ng′(z).

Theorem I. [15] Let f(z) and g(z) be transcendental entire functions of order zero
and m ≥ n+2tn+5. If f(z)mPn(f(qz+c))f ′(z) and g(z)mPn(g(qz+c))g′(z) share
a non-zero polynomial p(z) CM, then f(z)mPn(f(qz + c))f ′(z) = g(z)mPn(g(qz +
c))g′(z).

Theorem J. [15] Let f(z) and g(z) be transcendental entire functions of order zero
and n ≥ m+2tm+5. If Pm(f(z))f(qz+c)nf ′(z) and Pm(g(z))g(qz+c)ng′(z) share
a non-zero polynomial p(z) CM, then Pm(f(z))f(qz + c)nf ′(z) = Pm(g(z))g(qz +
c)ng′(z).

The motivation to this paper is [10], where Thin, states that the inequality
N(r, P (f)) ≤ mT (r, f) + S(r, f) (where P (z) is a polynomial with m distinct ze-
ros and f(z) is a transcendental meromorphic function), is very weak and indeed
we have the equality N(r, P (f)) = N(r, f). Thus, we can easily get, N(r,H[f ]) =
N(r, f), whereH[f ] is a differential polynomial generated by a transcendental mero-
morphic function f .

In this paper, we extend the above theorems H-J from entire functions to mero-
morphic functions and also extend the differential monomials f ′(z) and g′(z) in
theorems D-J to differential polynomials H[f ] and H[g] respectively and we obtain
the following generalised results.

Theorem 1.1. Let f(z) be a transcendental meromorphic function of finite log-
arithmic order ρlog(f), with the logarithmic exponent of convergence of poles less
than ρlog(f) − 1 and a(z) be a small function with respect to f(z). Set F1(z) =
fn(qz + c)H[f ]. If n ≥ γp + σ + 1, then F1(z)− a(z) has infinitely many zeros.

Remark 1.1. In Theorem 1.1, if H[f ] = f ′(z), then we get (γp = γM1 = 1),
(Γp = ΓM1 = 2) and (σ = ΓM1 − γM1 = 1), thus n ≥ 3 and hence Theorem 1.1
reduces to Theorem D.

Theorem 1.2. Let f(z) be a transcendental meromorphic function of finite log-
arithmic order ρlog(f), with the logarithmic exponent of convergence of poles less
than ρlog(f) − 1 and a(z) be a small function with respect to f(z). Set F2(z) =
f(z)mfn(qz + c)H[f ]. If m, n satisfy m ≥ n + γp + σ (or)n ≥ m + γp + σ, then
F2(z)− a(z) has infinitely many zeros.

Remark 1.2. In Theorem 1.2, if H[f ] = f ′(z), then we get, (γp = γM1 = 1),
(Γp = ΓM1 = 2) and (σ = ΓM1 − γM1 = 1), thus m ≥ n+2 orn ≥ m+2 and hence
Theorem 1.2 reduces to Theorem E.

Theorem 1.3. Let f(z) be a transcendental meromorphic function of finite log-
arithmic order ρlog(f), with the logarithmic exponent of convergence of poles less
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than ρlog(f)− 1, a(z) be a small function with respect to f(z) and Pn(z) = anz
n +

an−1z
n−1+ ...+a1z+a0, where a0, a1, ..., an(̸= 0) are complex constants, be a poly-

nomial of degree n and tm distinct zeros. Set F3(z) = f(z)mPn(f(qz + c))H[f ]. If
m ≥ n+ γp + 1, then F3(z)− a(z) has infinitely many zeros.

Remark 1.3. In Theorem 1.3, if H[f ] =
k∏

j=1

f (j)(z), then we get (γp = γM1 = k),

(Γp = ΓM1 = k(k+1)
2 + k), and (σ = ΓM1 − γM1 = k(k+1)

2 ), thus n ≥ m+ k + 1 and
hence Theorem 1.3 reduces to Theorem F.

Theorem 1.4. Let f(z) be a transcendental meromorphic function of finite log-
arithmic order ρlog(f), with the logarithmic exponent of convergence of poles less
than ρlog(f)− 1, a(z) be a small function with respect to f(z) and Pn(z) = anz

n +
an−1z

n−1+ ...+a1z+a0, where a0, a1, ..., an(̸= 0) are complex constants, be a poly-
nomial of degree n and tm distinct zeros. Set F4(z) = Pm(f(z))fn(qz + c)H[f ]. If
m ≥ n+ γp + 1, then F4(z)− a(z) has infinitely many zeros.

Remark 1.4. In Theorem 1.4, if H[f ] =
k∏

j=1

f (j)(z), then we get (γp = γM1 = k),

(Γp = ΓM1
= k(k+1)

2 + k), and (σ = ΓM1
− γM1

= k(k+1)
2 ), thus n ≥ m+ k + 1 and

hence Theorem 1.4 reduces to Theorem G.

Theorem 1.5. Let f(z) and g(z) be two transcendental meromorphic functions of
order zero and n be a positive integer. If fn(qz + c)H[f ] and gn(qz + c)H[g] share
a non-zero polynomial q(z), ∞ CM and n ≥ 3γp + 3σ + 5, then fn(qz + c)H[f ] =
gn(qz + c)H[g].

Corollary 1.5. Let f(z) and g(z) be two transcendental entire functions of order
zero and n be a positive integer. If fn(qz+ c)H[f ] and gn(qz+ c)H[g] share a non-
zero polynomial q(z) CM and n ≥ 3γp+3σ+3, then fn(qz+c)H[f ] = gn(qz+c)H[g].

Theorem 1.6. Let f(z) and g(z) be two transcendental meromorphic functions of
order zero, n be a positive integer, Pm(z) be a polynomial of degree m and tm distinct
zeros. If fn(z)Pm(f(qz + c))H[f ] and gn(z)Pm(g(qz + c))H[g] share a non-zero
polynomial q(z), ∞ CM and n ≥ 2tm+m+3γp+3σ+5, then fn(z)Pm(f(qz+c))H[f ]
= gn(z)Pm(g(qz + c))H[g].

Corollary 1.6. Let f(z) and g(z) be two transcendental entire functions of order
zero, n be a positive integer, Pm(z) be a polynomial of degree m and tm distinct
zeros. If fn(z)Pm(f(qz + c))H[f ] and gn(z)Pm(g(qz + c))H[g] share a non-zero
polynomial q(z) CM and n ≥ 2tm +m+ 3γp + 3, then fn(z)Pm(f(qz + c))H[f ] =
gn(z)Pm(g(qz + c))H[g].

Theorem 1.7. Let f(z) and g(z) be two transcendental meromorphic functions of
order zero, n be a positive integer, Pm(z) be a polynomial of degree m and tm distinct
zeros. If fn(qz + c)Pm(f(z))H[f ] and gn(qz + c)Pm(g(z))H[g] share a non-zero
polynomial q(z), ∞ CM and n ≥ 2tm+m+3γp+3σ+5, then fn(qz+c)Pm(f(z))H[f ]
= gn(qz + c)Pm(g(z))H[g].

Corollary 1.7. Let f(z) and g(z) be two transcendental entire functions of order
zero, n be a positive integer, Pm(z) be a polynomial of degree m and tm distinct
zeros. If fn(qz + c)Pm(f(z))H[f ] and gn(qz + c)Pm(g(z))H[g] share a non-zero
polynomial q(z) CM and n ≥ 2tm +m+ 3γp + 3, then fn(qz + c)Pm(f(z))H[f ] =
gn(qz + c)Pm(g(z))H[g].
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2. Lemmas

This section provides all the necessary lemmas used in the sequel.

Lemma 2.1. [13] Let f be a non-constant meromorphic function and let a1, a2, ..., an
be finite complex numbers, an ̸= 0. Then

T (r, anf
n + ...+ a2f

2 + a1f + a0) = nT (r, f) + S(r, f).

Lemma 2.2. [11] Let f(z) be a transcendental meromorphic function of finite
logarithmic order and q, c be two non-zero complex constants. Then

T (r, f(qz + c)) = T (r, f) + S1(r, f),

N(r, f(qz + c)) = N(r, f) + S1(r, f),

N

(
r,

1

f(qz + c)

)
= N

(
r,

1

f

)
+ S1(r, f).

Lemma 2.3. [9] Let f(z) be a non-constant zero order meromorphic function and
q ∈ C\{0}. Then

m

(
r,
f(qz + c)

f(z)

)
= S1(r, f).

Lemma 2.4. [13] Let f(z) be a non-constant meromorphic function in the complex
plane and k be a positive integer. Then

T (r, f (k)) ≤ T (r, f) + kN(r, f) + S(r, f),

N(r, f (k)) ≤ N(r, f) + kN(r, f).

Lemma 2.5. [1] Let f be a non constant meromorphic function and H[f ] be a
differential polynomial in f . Then

m

(
r,
H[f ]

fγp

)
≤ (γp − γ

p
)m

(
r,

1

f

)
+ S(r, f),

m

(
r,
H[f ]

f
γ
p

)
≤ (γp − γ

p
)m (r, f) + S(r, f),

N

(
r,
H[f ]

fγp

)
≤ (γp − γ

p
)N

(
r,

1

f

)
+ σ

[
N(r, f) +N

(
r,

1

f

)]
+ S(r, f),

N (r,H[f ]) ≤ γpN(r, f) + σN(r, f) + S(r, f),

T (r,H[f ]) ≤ γpT (r, f) + σN(r, f) + S(r, f),

where σ=max {n1j + 2n2j + 3n3j + ...+ knkj ; 1 ≤ j ≤ l}.

Lemma 2.6. [3] If f(z) is a transcendental meromorphic function of finite loga-
rithmic order ρlog(f), then for any two distinct small functions a(z) and b(z) with
respect to f(z), we have

T (r, f) ≤ N

(
r,

1

f − a

)
+N

(
r,

1

f − b

)
o(U(r, f)),

where U(r, f) = (log r)ρlog(f) is a logarithmic-type function of T (r, f). Further, if
T (r, f) has a finite lower logarithmic order

µ = lim
r→∞

log T (r, f)

log log r
,
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with ρlog(f)− µ < 1, then

T (r, f) ≤ N

(
r,

1

f − a

)
+N

(
r,

1

f − b

)
o(T (r, f)).

Remark 2.1. Here the complex values a and b can be easily changed into a(z) and
b(z), where a(z) and b(z) are two distinct small functions with respect to f(z).

Lemma 2.7. Let f(z) be a transcendental meromorphic function of order zero. Set
F1 = fn(qz + c)H[f ]. Then, we have

(n− γp − σ)T (r, f) + S1(r, f) ≤ T (r,F1) ≤ (n+ γp + σ)T (r, f) + S1(r, f). (1)

Proof. If f(z) is a meromorphic function of order zero, then from Lemmas 2.1, 2.2
and 2.5, we have

T (r,F1) ≤ nT (r, f(qz + c)) + T (r,H[f ]) ≤ (n+ γp + σ)T (r, f) + S1(r, f).

Once again from Lemmas 2.1, 2.2 and 2.5, we have

(n+ 1)T (r, f) = T (r, fn+1(qz + c)) + S1(r, f)

≤ T (r,F1) + T

(
r,
f(qz + c)

H[f ]

)
+ S1(r, f)

≤ T (r,F1) + T (r, f) + γpT (r, f) + σN(r, f) + S1(r, f)

≤ T (r,F1) + (γp + σ + 1)T (r, f) + S1(r, f).

Thus, we get (1). This completes the proof of Lemma 2.7. �
Lemma 2.8. Let f(z) be a transcendental meromorphic function of order zero. Set
F2 = fm(z)fn(qz + c)H[f ]. Then, we have

T (r,F2) ≤ (m+ n+ γp + σ)T (r, f) + S1(r, f) (2)

and
(|m− n| − γp − σ)T (r, f) + S1(r, f) ≤ T (r,F2). (3)

Proof. If f(z) is a meromorphic function of order zero, then from Lemmas 2.1, 2.2
and 2.5, we have

T (r,F2) ≤ mT (r, f)+nT (r, f(qz+c))+T (r,H[f ]) ≤ (m+n+γp+σ)T (r, f)+S1(r, f).

Thus, we have (2). Once again from Lemmas 2.1, 2.2 and 2.5, we have

(n+m+ 1)T (r, f) = T (r, fn+m+1) = T

(
r,

fn+1(z)F2

fn(qz + c)H[f ]

)
≤ T (r,F2) + T (r, fn+1(z)) + T (r, fn(qz + c))

+ T (r,H[f ]) + S1(r, f)

≤ T (r,F2) + (2n+ γp + σ + 1)T (r, f) + S1(r, f).

Thus, we have (3), where we assume m ≥ n without the loss of generality.
This completes the proof of Lemma 2.8. �
Lemma 2.9. Let f(z) be a transcendental meromorphic function of order zero. Set
F3 = fm(z)Pn(f(qz + c))H[f ]. Then, we have

(m− n− γp)T (r, f) ≤ T (r,F3) + σN(r, f) + S1(r, f) (4)

and
T (r,F3) ≤ (m+ n+ γp + σ)T (r, f) + S1(r, f). (5)
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Proof. If f(z) is a transcendental meromorphic function of order zero, then from
Lemmas 2.1, 2.2 and 2.5, we have

T (r,F3) ≤ mT (r, f)+nT (r, f(qz+c))+T (r,H[f ]) ≤ (m+n+γp+σ)T (r, f)+S1(r, f).

Thus we have (5). Once again from Lemmas 2.1, 2.2 and 2.5, we have

(m+ k)T (r, f) = T (r, fm+k) ≤ T

(
r,

fk(z)F3

Pn(f(qz + c))H[f ]

)
≤ T (r,F3) + T (r, Pn(f(qz + c))) + T (r, fk(z)) + T (r,H[f ])

≤ T (r,F3) + (n+ k + γp)T (r, f) + σN(r, f) + S1(r, f).

This completes the proof of Lemma 2.9. �

Remark 2.2. In Lemma 2.9, if H[f ] =
k∏

j=1

f (j)(z) then, we get (γp = γM1 = k),

(Γp = ΓM1 = k(k+1)
2 + k) and (σ = ΓM1 − γM1 = k(k+1)

2 ) then Lemma 2.9. reduces
to Lemma 2.8 in [15].

Lemma 2.10. Let f(z) be a transcendental meromorphic function of order zero.
Set F4 = Pm(f(z))fn(qz + c)H[f ]. Then, we have

(n−m− γp)T (r, f) ≤ T (r,F4) + σN(r, f) + S1(r, f), (6)

T (r,F4) ≤ (m+ n+ γp + σ)T (r, f) + S1(r, f). (7)

Proof. Lemma 2.10 can be proved in a similar fashion to Lemma 2.9. �

Remark 2.3. In Lemma 2.10 if H[f ] =
k∏

j=1

f (j)(z) then, we get (γp = γM1 = k),

(Γp = ΓM1 = k(k+1)
2 + k) and (σ = ΓM1 − γM1 = k(k+1)

2 ) then Lemma 2.10 reduces
to Lemma 2.9 in [15].

3. Proof of Theorems

3.1. Proof of Theorem 1.1.

Proof. From Lemma 2.7, we can conclude that T (r,F1) = O(T (r, f)) holds for
all r on a set of logarithmic density 1. Since f(z) is transcendental and n ≥
γp + σ + 1, from Lemma 2.7, F1 is transcendental. Since the logarithmic exponent
of convergence of poles of f(z) less than ρlog(f)− 1, we have

lim sup
r→∞

log N(r, f)

log log r
< ρlog(f).

Assume that F1(z) − a(z) has only finitely many zeros. Then, from Lemmas 2.2,
2.5, 2.6 and 2.7, we have

(n− γp − σ)T (r, f) ≤ T (r,F1) + S1(r, f)

≤ N(r,F1) +N

(
r,

1

F1 − a

)
+ o(U(r, f)) + S1(r, f)

≤ N(r, fn(qz + c)) +N(r,H[f ]) +N

(
r,

1

F1 − a

)
+ o(U(r, f)) + S1(r, f).
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Since F1(z) − a(z) has finitely many zeros, hence N
(
r, 1

F1−a

)
= S1(r,F1) =

S1(r, f), and hence, the above inequality reduces to,

(n− γp − σ)T (r, f) ≤ (n+ γp + σ)N(r, f) + o(U(r, f)) + S1(r, f).

Since, n ≥ γp + σ + 1, from the above inequality, we get

lim sup
r→∞

log T (r, f)

log log r
≤ lim sup

r→∞

log N(r, f)

log log r
≤ ρlog(f),

which contradicts the fact that T (r, f) has finite logarithmic order ρlog(f). Thus,
F1(z) − a(z) has infinitely many zeros. i.e., fn(qz + c)H[f ] − a(z) has infinitely
many zeros. �
3.2. Proofs of Theorems 1.2 - 1.4. Theorems 1.2, 1.3, and 1.4 can be proved
easily by using a similar argument of that of Theorem 1.1, by applying the Lemmas
2.8, 2.9 and 2.10 respectively.

3.3. Proofs of Theorems 1.5 - 1.7. Here, we only give the proof of Theorem 1.6,
because the method of proof of Theorem 1.5, 1.6 and 1.7 are very similar. Their
corollaries can also be proved in a similar fashion by taking N(r, f) = S(r, f).

3.4. Proof of Theorem 1.6.

Proof. Let us consider,

F (z) = fn(z)Pm(f(qz + c))H[f ] and G(z) = gn(z)Pm(g(qz + c))H[g]. (8)

Now,

T (r, F (z)) = T (r, fn(z)Pm(f(qz + c))H[f ])

≤ T (r, fn(z)) + T (r, Pm(f(qz + c))) + T (r,H[f ]) + S1(r, f). (9)

From Lemmas 2.1, 2.2 and 2.5, we get

T (r, F (z)) ≤ nT (r, f) +mT (r, f) + γpT (r, f) + σN(r, f) + S1(r, f). (10)

Therefore,
T (r, F (z)) ≤ (n+m+ γp + σ)T (r, f) + S1(r, f). (11)

Once again from Lemmas 2.1, 2.2, 2.5 and the First fundamental theorem,

(n+ k)T (r, f) = T (r, fn+k)

= T

(
r,

fk · F (z)

Pm(f(qz + c)) ·H[f ]

)
≤ T (r, F (z)) + T (r, Pm(f(qz + c))) + T (r, fk) + T (r,H[f ])

+ S1(r, f)

≤ T (r, F (z)) +mT (r, f) + kT (r, f) + γpT (r, f) + σN(r, f)

+ S1(r, f)

(n+ k)T (r, f) ≤ T (r, F (z)) + (m+ k + γp + σ)T (r, f) + S1(r, f). (12)

Therefore,
(n−m− γp − σ)T (r, f) + S1(r, f) ≤ T (r, F (z)). (13)

From (11) and (13), we get

(n−m−γp−σ)T (r, f)+S1(r, f) ≤ T (r, F (z)) ≤ (n+m+γp+σ)T (r, f)+S1(r, f).
(14)
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From (14), we have S1(r, F ) = S1(r, f). Similarly, we have S1(r,G) = S1(r, g) and

(n−m− γp−σ)T (r, g)+S1(r, g) ≤ T (r,G(z)) ≤ (n+m+ γp+σ)T (r, g)+S1(r, g).
(15)

Since f(z) and g(z) are transcendental meromorphic functions of zero order and
share q(z), ∞ CM, we have

F (z)/q(z)− 1

G(z)/q(z)− 1
= β, (16)

where β is a non-zero constant.
Case 1. If β = 1, then we have F (z) = G(z), which implies

fn(z)Pm(f(qz + c))H[f ] = gn(z)Pm(g(qz + c))H[g].

Case 2. If β ̸= 1, then we have

F (z)− q(z) = βG(z)− βq(z) (17)

F (z)− (1− β)q(z) = βG(z) (18)

Since Pm(z) has tm distinct zeros, hence by using Second fundamental theorem, we
have

T (r, F (z)) ≤ N(r, F ) +N

(
r,

1

F

)
+N

(
r,

1

F − q(z)(1− β)

)
+ S1(r, F )

≤ N(r, f) +N(r, f(qz + c)) +N

(
r,

1

f

)
+N

(
r,

1

Pm(f(qz + c))

)
+N

(
r,

1

H[f ]

)
+N

(
r,

1

G

)
+ S1(r, f)

≤ N(r, f) +N(r, f(qz + c)) +N

(
r,

1

f

)
+N

(
r,

1

Pm(f(qz + c))

)
+N

(
r,

1

H[f ]

)
+N

(
r,
1

g

)
+N

(
r,

1

Pm(g(qz + c))

)
+N

(
r,

1

H[g]

)
+ S1(r, f) + S1(r, g)

≤ N(r, f) +N(r, f(qz + c)) +N

(
r,

1

f

)
+

tm∑
i=1

N

(
r,

1

f(qz + c)− ai

)

+ T (r,H[f ]) +N

(
r,
1

g

)
+

tm∑
i=1

N

(
r,

1

g(qz + c)− ai

)
+ T (r,H[g])

+ S1(r, f) + S1(r, g).

Hence,

T (r, F (z)) ≤ (tm+γp+σ+3)T (r, f)+(tm+γp+σ+1)T (r, g)+S1(r, f)+S1(r, g),
(19)

where a1, a2, ..., atm are the distinct zeros of Pm(z).
Similarly, we have

T (r,G(z)) ≤ (tm+γp+σ+3)T (r, g)+(tm+γp+σ+1)T (r, f)+S1(r, f)+S1(r, g).
(20)
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From (14), (15), (19) and (20), we get

(n−m− γp − σ){T (r, f) + T (r, g)} ≤ (2tm + 2γp + 2σ + 4){T (r, f) + T (r, g)}
+ S1(r, f) + S1(r.g), (21)

which contradicts with n ≥ 2tm +m+ 3γp + 3σ + 5.
Hence β = 1, which implies, fn(z)Pm(f(qz + c))H[f ] = gn(z)Pm(g(qz + c))H[g].
This completes the proof of Theorem 1.6. �
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