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STABILITY OF SOLUTION FOR RAO-NAKRA SANDWICH
BEAM WITH BOUNDARY DISSIPATION OF FRACTIONAL
DERIVATIVE TYPE

0. P. V. VILLAGRAN, C. A. RAPOSO, C. A. NONATO, A. J. A. RAMOS

ABSTRACT. This paper deals with stability for a one-dimensional model of
Rao-Nakra sandwich beam with a boundary dissipation of fractional derivative
type. Fractional derivative can applied in several real life situations, [15, 26,
35, 37]. We show the polynomial stability of the system by using the semigroup
theory together with a sharp result given by Borichev and Tomilov.

1. INTRODUCTION

In this article we are interested in studying the stabilization of Rao-Nakra sand-
wich beam with a boundary dissipation of fractional derivative type given by

o1hiuy — Erhitug, — k(—u+v +yw,) = 0,
EQNS 03h3vy — Fshavg, + k(_u +v+ ,wa) =0,
ohwiy + Elwgpre — k'Y(_'UJ +v+ ’Ywac)ac =0,
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BC{ Eyhyug(L, t) = —0%"u(L, t),

Elwg.. (L, t) = 0y "w(L, t),

with 0 < < L and ¢ > 0. In (1): EQNS = Equations, IC = Initial Condition and
BC = Boundary Condition.

A sandwich beam is an engineering model for a beam consisting of three-layer
stiff: Botton and top faces, and a compliant inner more core layer. The Rao-
Nakra [33] system consists of three layers and a no-slip assumption along in the
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interfaces of contacts. The top and bottom layers are are wave equations for the
longitudinal displacements under Euler-Bernoulli beam assumptions. The core layer
is one equation that describes the transversal displacement under Timoshenko beam
assumptions.

For the physical origin of problem of the hinged beam which is either stretched or
compressed by an axial force see Burgreen [5] and Eisley [7] for instance. From the
mathematical point of view, we cite the pioneer works of Kirchhoff [17], Woinowsky-
Krieger [38] and Berger [3].

S. P. Timoshenko [36] presented in 1921 a system that describes the dynamics
of a beam, given by

01Ut — k(uy + 1), =0, in(0,L) x R, (2)
02Vt — Dy + k (uz + ) =0, in(0,L) X R+, (3)

where u(xz,t), ¥ (x,t) model the transverse displacement of the beam and the an-
gular direction of the filament of the beam respectively and g1, 02, k, b are positive
real numbers. From them, (2)-(3) has been widely studied by several authors in
different contexts. See, for instance [27] and references therein.

Based in the Timoshenko’s theory, S. Hansen [10] proposed a model for a two-
layer laminated beam given by

ows + G —wy), =0, in(0,L) x RT, (4)
19(35tt — 1/1“) — D(3ST7- — sz) — G(’l/) — U;,;) = 0, n (0, L) X R+, (5)
31y81 — 3D sy + 3G (Y — w,) + 4us +48s;, = 0, in (0, L) x RT, (6)

where o, G, I,, D, and § are positive constants and represent density, shear stiff-
ness, mass moment of inertia, flexural rigidity, adhesive stiffness, and adhesive
damping parameter, respectively. The function w(x,t) denotes the transversal dis-
placement, 1 (x, t) represents the rotational displacement, and s(z, t) is proportional
to the amount of slip along the interface at time ¢ and longitudinal spatial variable
2. This model has received a lot of attention of several authors in the last years.
See, for instance [8], where was considered the dynamics of laminated Timoshenko
beams.

A Rao-Nakra sandwich beam was derived of the general three-layer laminated
beam and plate models developed in 1999 by Liu-Trogdon-Yong [21]

o1hiug — Erhitug, — 7 =0, (7)

03h3vyy — Eghzvg, +7 =0, (8)

Qhwtt + Elwwza:a: - C;lhl (wz + (bl)w - GShS(w:v + ¢3)JE - hQTa: = 07 (9)
h

o1lip14e — Erli 1 o0 — 317' + Grhi(wz + ¢1) =0, (10)
h

031303 1t — Esl3¢3 o0 — ;T + Gzhz(wsz + ¢3) = 0. (11)

The physical parameters h;, p;, E;, G;, I; > 0 are the thickness, density, Young’s
modulus, shear modulus, and moments of inertia of the i-th layer for i = 1,2, 3,
from bottom to top, respectively. In addition, ph = g1h1 + g2hs + p3hs and EI =
Eq Il + E3]3.
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The Rao-Nakra system
01h1ust — Erhitg, —k(—u +v + yw,) =0, in (0,L) x RT,
03h3vst — E3h3vg, +k(—u 4+ v+ yw,)= 0, in (0, L) x RT, (12)
ohwit+ETwgppe —ak(—u+ v + ywy,),= 0, in (0, L) x RT,

is obtained from (7)-(11) when we consider the core material to be linearly elastic,
i.e., T = 2G5¢ with the shear strain

1 1
=5 (~u+v+yw,) and v = ha + 5 (h1 + h3),
2ho 2
G E 1
where k := —2, the shear modulus Gy = 72, and —1 < v < — is the Poisson
ho 2(1+v)

ratio.

When the extensional motion of the bottom and top layers is neglected, we obtain
from (12) the two-layer laminated beam model proposed by Hansen. System (4)-(6)
reduces to the Timoshenko system when s(z,t) = 0.

The following Rao-Nakra model with internal damping and Kelvin-Voigt damp-
ing was considered in [18]

o1hiug — E1hiug, —k(—u 4+ v + ywy ) — a1Usge + aguy = 0, (13)
03hsve — Eshsvg, +k(—u 4+ v + ywy) — bitggs + bauy = 0, (14)
ohwis+ ElWegzee —VE(—u + v + YWe )2 — C1Wizaze + C2us = 0, (15)

where a;,b;,¢; > 0, i = 1,2. Authors showed that (13)-(15) is unstable if one damp-
ing is only imposed on the beam equation, beyond this, the exponential stability
holds when all three displacements are damped while polynomial stability holds
when just two of the three equations are damped.

Liu-Rao-Zhang [20] studied the Rao-Nakra system with a internal damping given
by

o1hiuy— Erhitug, —k(—u+ v + yw,) + aguy = 0, in (0,1) x RT,
03h3vy — Eshgvge +k(—u + v+ ywy)+ ajv, = 0, in (0,1) x RT,
Qhwtt'i_EIwmzzz_'yk(_u + v+ ’sz)z'i‘ aswy = 0, in (0, ].) x RT.

They proved that the polynomial stability occurs when there is only one viscous
damping acting either on the beam equation or one of the wave equations.

Now we present a brief literature review on Rao-Nakra system. Exact control-
lability results for the multilayer Rao-Nakra plate system with locally distributed
control in a neighborhood of a portion of the boundary was obtained in [11, 12].

Exact controllability of a multilayer plate system with free boundary conditions
was obtained by the method of Carleman estimates in [11]. The multilayer plate
system is a natural multilayer generalization of a three-layer “sandwich plate” sys-
tem due to Rao and Nakra. This paper is the sequel to [12] in which only clamped
and hinged boundary conditions are considered.

In [13] was considered the problem of boundary control using bending moment
and lateral force control at one end. Authors proved that the space of exact control-
lability has finite co-dimension and provide sufficient conditions for exact control-
lability to a zero energy state. Boundary controllability for the Rao-Nakra beam
equation have been studied also in [14, 28, 29, 32].
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As far as we know, this is the first time that Rao-Nakra system with fractional
derivative type is analysed. For the past three decades or maybe so, a growing
interest in the study of fractional calculus has been shown by a great many number
of scientists. Several point views of engineering, applied sciences, and mathematical
physics benefited greatly from this ascending wave of applications growing in this
area. Space sciences, fluids mechanics, porous media flows, viscoelastic and bio-
logical processes, are but few areas in which fractional order differential equations
have become a favored tool to tread new path.

On the appearance of the fractional derivative in the behavior of real materials
see [26, 35, 37] and references therein. Many problems in several scientific applied
areas, including analysis of viscoelastic materials, heat conduction in materials
with memory, electrodynamics with memory, signal processing, among others, can
be modeled with fractional differential calculus, this because of that many investi-
gations have shown that models involving fractional derivatives are more realistic
to represent some natural phenomena that models involving classical derivatives.

For instance, [15] collects review articles surveying areas of physics in which
applications of fractional calculus have recently become prominent: Fractional ki-
netics of Hamiltonian chaotic systems. Problems in polymer physics and rheology.
Problems in biophysics. Regular variation in thermodynamics. In [1], Three real
life applications for fractional calculus are given: Nuclear (strong) interactions,
earthquake prediction and epidemics.

Fractional derivative models are widely used to easily characterise more complex
damping behaviour than the viscous one, although the underlying properties are
not trivial. The studies the properties of structural systems whose damping is
represented by a fractional model from the point of view of a mechanical engineer
was considered in [39]. See also [30].

For 1D wave equation with a boundary viscoelastic damper of the fractional
derivative type, see [24]. Author showed that the system is well-posed in the sense
of semigroup and proved that the associated semigroup is not exponentially stable,
but only strongly asymptotically. For more information we refer to [16, 25, 34] and
references therein.

The present manuscript is organized in the following way: in Section 2, we
introduce the basic spaces, the norms, properties, and notations which we are going
to work on within the subsequent sections. The augmented model is presented.
In Section 3, by using the semigroup theory of linear operators we obtain the
existence, uniqueness, and smoothness theorem for the augmented model. In section
4 by using a general criteria due to Arendt-Batty (see [2]) we prove the strong
stability of the Cg-semigroup e’ associated to the system (33) in the absence of
the compactness of the resolvent of A. In the section 5, by using Borichev-Tomilov
Theorem (see [4])we show that the Cp-semigroup is polynomially stable. Finally,
we present a short conclusion where an interesting open problem is collocated.

2. PRELIMINARY

Throughout this paper, we will use the following standard L?(0, L)space, we are
the scalar product and the norm are denoted by

L L
. Dron) = / Fade, f12s00 = / PP
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In a similar way, let L?(IR) be the Hilbert space of all measurable square integrable
functions on the real line with the inner product

. D =/Rf§d€, f. g€ IA(R).

As we are interested in the stability of the solution, we will start proving that the
full energy of the system (1), defined by

E(t) = |e1hluclF2(0, 1) + 03hsllvllTz0, 1y + ehllwellZ2(0, 1)
+ E1hy ||Ua:||2L2(o, Lt E3h3||Uac||2L2(o, ot EI||wa:a:||2L2(o, L)
+ kll = u4v+ywalliz 0, 1) (16)
is nonincreasing.

Lemma 2.1. The energy functional E(t), satisfies

d
ﬁE(t) = —uy (L, t) 0y "u(L, t) — ve(L, )07 "v(L, t) — we(L, )0 "w(L, t). (17)
Proof. Multiplying (1) pQns, .5 by ut, v¢ and w; respectively, integrating on (0, L)

and using integration by parts, we get

1d o
3 35 Lol + B sl = [ (—ut o) wda
= _Elhlut(L7 t) ux(Lv t)a (18)
1d ) ) L
5 |eshallvelie 1y + Bohallvs e ] +k [ (—utv+qw,)vda
0
= —FEshgve(L, t) v, (L, t),  (19)
1d ) ) v
> {QhHwt”LQ(O, 1) + Ell|wazl|72(o, 1)} +k [ (—utv+yw,) ywgeds
0
= —ETwi(L, t) Wyze (L, t).  (20)
Adding (18)-(20) and replacing (1)pc, ; the result follows. O

Now, consider the following definitions of fractional integro-differential operators
with weight exponential establish by Choi and MacCamy [6].

The exponential fractional integral of order a, 0 < a« < 1, 5 > 0,

IO () = ﬁ / e (¢ — )21 f(r) dr, (21)

with f € LY(0,t) and t > 0.

The exponential fractional derivative operator of order o, 0 < @ < 1, p > 0,

oM (L) = ﬁ /0 e T — )7 d];(:)df, (22)

with f € W1(0,t) and t > 0. Note that 9y "f(t) = JL=%1f/(t).

The following results are going to be used some time from now on and are fun-
damental to the proof of our results:
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Theorem 2.2. [24] Let p be the function

p() = gD ¢eR, 0<ac<l. (23)
Then, the relation between the Input U and the Output O if the following system

@i, )+ E20(&, t) +np(&, t) —U(M)u(€) =0, £€R, n>0, t>0, (24)
©(&, 0) =0, (25)

0 =[x sin(a7) / u(€)pl€, 1)de, (26)

is given by O = I'=%"U = D™, where

)afl

gl = e [ U

a)

e" f(s)ds. (27)

Lemma 2.3. fAeD={Ae€C: ReA+n>0U{Ne€C: Im\+#0}. Then

pAE)de  ow o
/R§2+77+/\ B sin(aﬂ)(n+>\) 1

On the other hand, the strategy for to get our target is related to the elimination
of the fractional derivatives in time from the boundary condition in system (1). To
this, setting p(¢) = |€|2*~V/2 ¢ € R, ¢ = n~'sin(an), and exploiting the tech-
nique from [9], we transform (1) into a new system. That is, we reformulate system
(1) using Theorem 2.2, and the new system can be included into the augmented
model

thlutt — Elhlum — k(—u + v+ 'ywx) = 0,

(& 1)+ (2 + (€, t) —u(L, )u(€) =0,
03h3vy — Eshsvgg + k(—u+ v+ yw,) =0,

PONSAL 06, 1) + (€2 + molE. 1) — (L, (&) = 0,
Qhwtt + Elwegys — k’Y(_u +v+ ’Yw:v)w =0,
u(z, 0) = uole), uy(z, 0) = w(z),
v(z, 0) =wv (28)

e
©(§ 0) = @o(§) =0, (& 0) = do(§) =0, P(&, 0) = ho(§) =

w0,t) =0, v(0,¢)=0 in (0, +00),

wg(0, 1) = wy (L, t) = wmx(O t)=0 in (0, +00),
BCY Erhyua(L, t) = —€ [, u(€)p(&, t)de,
E3h3vac(L ) = _CfRM §7 )dgv
Elw;wcx(L t Q:f]R,u 57 )df,
where we denote € = 7! sin(a ).

The dissipative properties of the system (28) is given by the following lemma.
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Lemma 2.4. Let (u, us, v, 04, w, we, @, d, 1) be a solution of the system (28). Then,
the energy functional defined by

1
Elt) = 5 ahlludl 20, 1y + e3hsllvilZ2(0, 1y + ohllwil 200, 1y + Erhalluall7zo, 1)
+ Eshslva 7200, 1) + Elllwesl|720, 1y + kIl = w4 v +ywe|F20, 1)
+ €l g + EDl3e ) + ClblEaqe)] (29)

where E(t) be the energies associated with the system (28), satisfies
d
GEO == [+ nds — e [ (€ +neP(e, g
R R

¢ / (€ + n)UR(€, 1)dE < 0. (30)
R

In the next section, we use the semigroup theory of linear operators to obtain
the existence, uniqueness, and smoothness theorem for the system (28).

3. WELL-POSEDNESS OF THE PROBLEM

We define
H' (0, L) = {z € H*(0, L) : 2(0) =0},
H2(0, L) = {z € H3(0, L) N H3(0, L) : 2z2.(0) = 0}.
Then
H = [H'(0, L) x L*(0, L) x L*(R))* x [H?(0, L) x L*(0, L) x L*(R)],  (31)
equipped with the inner product given by
U, Uyy = glhl/ UUdx + Qghg/ VVdx + gh/ WWdx
0 0 0
L L L B
+FE1hy / Ugp Uy dx + E3h3/ VpUpdx + EI/ WapWayadT
0 0 0
L — — [
—l—k/ (—u+v+vyw,)(—u+ v+ yw,)dz
0
ve [ gad e [ odd+e [ wids (32)
R R R
where U = (u, U, @,v,V, ¢, w, W,)T and U = (@, U, 3, v,V,d, @, W,1)T. We now
wish to transform the initial boundary value problem (28) to an abstract problem

in the Hilbert space H. We introduce the functions u; = U, v; =V, w; = W and
rewrite the system (28) as the following initial value problem

d
SUt) = AU(H),
SUE) = AU o

UO) =Uy, Vt>0,
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where U = (U, Ua », v, ‘/7 ¢aw7 VVJ/’)T’ U() = (Uo, U1, ¥o, Yo, V1, ¢07w07w13 ¢0)T7 and
the operator A:D(A) C H — H is given by

U
[Elhluaw +k ( uU+v+ ’Ywa)]
—(&* + n)wv+ U(L)u(§)

Q1h1

= g3h3 [E3h3vee — k(—u + v + yw,)] (34)
—(&+ ¢+ V(L)u(E)
w

—(& +mv + W (L)u(€)

e See<es T

with the domain

u, v € H?(0, L), w € H*(0, L),
U,V e HY(0, L), W € H*(0, L),
—(& + )+ U(L)u(E) € LA(R),
—(&+n)o+V(L)u(E )ELQ(R)
DA)=qUEN (§2+U)¢+W( ) (5)6 *(R),
Elhluz +Q:IR/U' 90 5) 07
Eshzv, (L +€fR/~L ¢ (§)d¢ =0,
Elwgqee (L) — € [ n()y(§)dé = 0,
€], |§|¢» |§|¢€L2(R)

Note that D(.A) is independent of time ¢ > 0 and clearly, D(A) is dense in H. Now,
we are ready to prove the following well-posedness result.

Theorem 3.1. Let Uy € H, then there exists a unique weak solution U € C(RY, H)
of problem (33). Moreover, if Uy € D(A), thenU € C(RT, D(A)) N CHR*,H). In
this case, it is called a strong solution.

Proof. First, we prove that the operator A is dissipative.
For U = (u, U, o,v,V, ¢, w, W,))T € D(A), we want to show that

Re{ AU, U)y = — € /R (€ + )P (€, e — ¢ /R (€ + ) (€, t)de
iy /R (€ + )eR(€, )de < 0. (35)
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Direct computation, using (32), gives
L L L o
0 0 0
L - L -
+ k/ (—u+v+yw,)Ude — k/ (—u+v+yw,)Vdx
0 0
L
+k’y/ (—u+ v+ ywy), Wdx
0
L L L
+ E1hq / U,u,dx + E3h3/ Vovedax + ET W oW g dx
0 0 0
L
+ k/ (U +V 4+ W) (-t + 7 + ~yw,)dx
0
+UL)E [ aleypde +VILIE [ ue)ads + WL)e [ s
R R R
e [@enac-e [ (@ 4o e [ (@ e
R R R
Integrating by parts and using (28)g¢ it follows that
L L
(AU, Uyy = — 2iE1h1[m/ u U pdx — 2iE3h3[m/ vz V pdx
0 0
L [—
— 2iEIIm/ WegW zzdT

- 22k]m/ —u+v+yw)(=U +V + W, )dz

—2iIm [ @/ (pdx:| —2iIm [ C/ ¢dx:|
~%iIm [W(L)c /]R u(f)u)dw}

—e @ rnctas—e [ (@ endtac e [ (@ i

Taking the real part yields (35). Next, we will prove that the operator A\I —A is

surjective for A > 0. For this purpose, let F= (f1, f2, f3, f1, f5, fo, f7, fs, fo)T € H
we seek U = (u, U, p,v,V, ¢, w, W, )T € D(A) such that (AT — A)U = F, that is,

Ae—U=f in HY(0, L),

Aol = Bihite — k(— u+ m) =oilf, in L*(0, L),

Ap+ (& +n)e—UL)p(E) = fz in L*(R),

)\’U—V:f4 in H(O L),

Ao3h3V — Ezh3ve, + k(—u+ v +~yw,) = o3hsfs in  L*(0, L), (36)
A+ (& +n¢—V(L)u() = fo in L*(R),

Aw—W=f; in ]HIQ(O L),

NohW + Elwgazy — ky(—u + v +yw,)s = ohfs in  L%(0, L),

M+ (€ +ny = W(L)u) = fo in L*(R).
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From (36)37679 we have

_ [3(8) + U(L)u(&)
_ f6(&) + V(L)u(&)

o) = (37)
_ Jo(&) + W(L)u(§)

and, from (36)1,4,7 it follows that
U=Mu— f, € H(0, L),
V =Xv— f, € HY0, L), (38)
W = \w — f; € H*(0, L).
On the other hand, replacing (36)1,4,7 into (36)2 5, s respectively we obtain

AN 01mU — Erhitze — k(—u 4 v + yws) = 01h1 f2 + Aorha f1,
N 03h3V — Esh3vg, + k(—u + v+ yw,) = oshsfs + Noshs f1, (39)

To solve the system (39) is equivalent to finding u, v € H?(0, L) N H (0, L) and
w € H*(0, L) NH?(0, L) such that

L L
/ [Azglhlu — E1hiug, — k(—u+v+ 'ywm)] udz :/ 01h1(fo + Af1)ude,
0 0
(40)

L L
/ [)\2Q3h3'l} — E3h3vge + k(—u + v +yw,)| odx :/ o3hs(fs + Afs)vdz,
0 0
(41)

L L
/ P\QQ?,hgw + Flwgpee — ky(—u+ v+ 'ywz)z] wdx :/ oh(fs + A fr)wdz,
0 0
(42)

for all (@, v) € H'(0, L) x H*(0, L) and w € H?(0, L). Firstly, we estimate (40),
then

L L L
/ A2 o1 hyuiidz — E1hy / umﬁdx—k/ (—u+ v+ yw, )udz
0 0 0

L
= / thl(fg —|—)\f1)ﬂd$
0

Integrating by parts, using (28)p¢, and (37); we have

/0()\ o1hiut + Erhjugty)de + [ / e +77+)\d4 U(L)a(L)

L L
_k/o(—u+v+'ywx)ﬂda:=/0 o1hi(fo + A f1)adx — {/52_’_774_)\ ]N((Z;)
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Replacing (38); into (43) we obtain

L 2
/0 (N orhyuil + Eyhyugty)d + [Qf/R %df] Au(L)a(L)

L L
*k/ (= UJF”JF’Y'LUx)UdCﬂ:/ o1hi(f2 + A fi)adx
0

e a)+ [e [ G2Eae] pmay.

[ £2+n+)\

In a similar way we estimate (41) and (42), that is,

L 2
/0 (A% 03hsvd + Eshgv,,)dz + [@ /]R 521 7(753r Adg} Av(L)i(L)
L

L
‘Hf/ (—U+U+7wz)@diﬂ:/ 03hs(fs + A fa)vdx
0 0

- [eég(?iﬁfldg] 5(L) + |¢

)
[ | o, )

/ L(/\2Q3h3w1ﬂ+EwaxIDzw)d$+[ | &S ae| wotwyate
L L
+k‘7/0 (—u+v+7w$)w$dx:/o oh(fs + A fr)wdx
- [@ /R g(%flds] [ [ Ad&} FLBL).  (46)

The equations (44), (45) and (46) are equivalents to the problem
a((u, v, w), (@, v, w)) = L(a, v, W), (47)

where the bilinear form a : [H'(0, L) x H'(0, L) x H?(0, L)]2 — R and the linear
form £ : HY(0, L) x H*(0, L) x H?(0, L) — R are defined by

a((u, v, w), (@, 0, w)) =

/ ()\ o1hiut + Erhiu, i, )de + [
0

& + o Adg} Au(L)a(L)

12 (&)
E+n+A

12 (&)
E2+n+A

L
+/ (M 03h3vD + Ezhav,,)dx + [Q/ d{} Mv(L)o(L)
0 R

L
+ / (N 03h3wih + ETw,p iy, )da + [eﬁ / dg} Aw (L)@ (L)
0 R

L
+k/ (—u+ v+ yw, ) (=0 + 0 + Y, )dx (48)
0
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and
L@, b, ) =
L
/ 01h1(f2 +)\f1)ﬂdx+/
0 0
i 1€ f38) .. - 12 (€) .
_ _Qt/RE%nJrAdg a(L) + {Q/RW@} fi(L)a(L)
12 (€) _
12 (€) _
_ /§2+77+A la) + {Q/RW@} fr(Dya(L). (49)

It is easy to verify to a is continuous and coercive, and £ is continuous. So applying
the Lax-Milgram Theorem, we deduce for all

(@, o, w) € H(0, L) x H*(0, L) x H?(0, L)

L L
03h3(fs + A fa)odz + / oh(fs + A fr)wdx
0

the problem (47) admits a unique solution

(u, v, w) € H(0, L) x H*(0, L) x H?(0, L).
Using elliptic regularity, it follows from (44)-(46) that

(u, v, w) € H*(0, L) x H*(0, L) x H*(0, L).

Therefore, the operator AT — A is surjective for any A > 0. As consequence of
the Hille-Yosida Theorem [22, Theorem 1.2.2, page 3], we have that A generates a
Co—semigroup of contractions S(t) = e on H. From semigroup theory, U(t) =
e'AUy is the unique solution of (33) satisfying the conditions of theorem and the
proof is complete. (I

4. STRONG STABILITY
This section deals with strong stability, in the following approach:

Theorem 4.1. The Cy-semigroup et is strongly stable in H, that is, for all Uy €
H, the solution of (73) satisfies
: tA —
i 16400l =0

According to ideas from the works of the first author [23, 31], we will apply a
general criteria due to Arendt-Batty and Lyubich-Va to prove the strong stabil-
ity of the Cp-semigroup e, associated to the system (33) in the absence of the
compactness of the resolvent of A.

Theorem 4.2 (Arendt-Batty and Lyubich-Va, [2, 19]). Let B be a reflexive Ba-
nach space and {S(t)}1>0 be a Cy-semigroup generated by A on B. Assume that
{8(t)}i>0 is bounded and that no eigenvalues of A lie on the imaginary axis. If
o(A)NiR is countable, then S(t) is strongly stable.

Adapting the theorem 4.2 to Hilbert space, in the context of this work, the strong
stability result is given by:

Theorem 4.3. Let A be the infinitesimal generator of a uniformly bounded Cy-
semigroup {S(t)}i>0 on a Hilbert space H. If
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(i) If o(A) NiR is at most a countable set, where o(A) denotes the spectrum
of A;
(ii) If or(A) NiR =0, where o,.(A) denotes the set of residual spectrum of A.

Then the semigroup {S(t)}i>0 is asymptotically stable, that is,
ISyl =0 as t— oo, forany y € H.
The prove of Theorem 4.3 will be done by some lemmas.
Lemma 4.4. We have
o(A)N{iX, NER, A #£0} = 0.

Proof. The proof is by contradiction. We suppose that there A € R, A # 0 and
U # 0, such that AU =i AU, that is, (1A — A)U = 0. Then

ixu—U =0,
iAo1hiU — Erhiug, — k(—u+ v + yw,) =0,
ixp + (& +n)p —U(L)u(§) = 0,

-V =0,

iA03h3V — E3h3ve, + k(—u+v +yw,) = 0, (50)
i+ (€2 + 1) — V(L)u(§) =0,

tAw —W =0,

INOWW + Elwgppe — ky(—u + v 4+ ywy )z = 0,
M+ (62 + )Y — W(L)u(€) = 0.

Note that by (50)1,4,7 we have

L)=i
V(L) =i v(L), (51)

Now, from (35) we have (&) = ¢(&) = ¢(£) = 0. Hence from (50)3, ¢ we have
UL, t) = V(L, t) = V(L, t) = 0. (52)
Moreover, from the systems (50)1, 4,7 and (28)pc, ; ; We get
uw(L) =v(L) = w(L) =0, Ugp (L) = wy (L) = weae (L) = 0. (53)
On the other hand, replacing (50); 4,7 into (50)2, 5, s respectively we obtain

—)\2,th1u — Elhlum — k(—u + v+ vwm) = O7
—A203h3v — E3hgvg, + k(—u+ v +yw,) =0, (54)
~A20hw + Elwgppe — ky(—u + v + ywy), = 0.

Let’s consider X = (u, Uy, v, Vg, W, Wy, Wag, Wz ). Then we can rewrite (52)-(54)
as the initial value problem
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where
0 0 1 0 0 0 0 0
(=A203hs+k) —k —k
Eg'fhla E1 hl O 0 0 El h’}; 0 0
0 1 0 0 0 0
—k (=A\’03h3+k) k
A= Eshs Eohs 0 0 0 mr 0 0 (56)
0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
k k M\ oh k~y?
0 0 ~m wm wmr O pr 0
Using the Picard theorem (ordinary differential equations), (55) has a unique solu-

tion X = 0. Thus, v = 0, v = 0 and w = 0. It follows from (50)1, 4,7 that U = 0,
V =0, and W = 0. Therefore, Y = 0. Then, iR C p(A) = C o(.A) and consequently,
A does not have purely imaginary eigenvalues. O

By Theorem 4.3, the condition (¢) holds if we show that any point o(A) N {i R}
is at most a countable set. It’s will proved in the following two lemmas.

Lemma 4.5. The operator i \I — A is surjective for X # 0.

Proof. In fact, we will prove that the operator i A\l — A is surjective for A # 0.
For this purpose, let F' = (f1, fo, f3, f1, 5, fo f1, fs, fo)T € H, we seek U =
(u, U, 0,0, V, ¢, w, W, )T € D(A) such that (i \I — AU = F, that lead to,
iMu —U=f; in HY0, L),
iNo1hiU — Eyhiug, — k(—u+v +yw,) = o1hi fo  in L0, L),
o+ (&€ + e —U@L)uE) =fz in L*(R),
ixo—V =f in HY0, L),
i)\Qgth — Eghgvzx + k(—u +v+ ’Y’LUx) = Q3h3f5 in LQ(O, L), (57)
X+ (E+mo—V(L)u(€) = fo in L*(R),
idMw—W = f; in H%0, L),
iINOAW + Elw,ppr — ky(—u+v +ywy), = ohfs in L0, L),
XY+ (& + ) = W(L)u(€) = fo, in L*(R)
with the following conditions
Erhiug (L) = =€ [ u(§)e(8)ds,
Eshsve (L) = —€ [ 1(€)¢(&)ds, (58)
Elwger (L) = € [o ()9 ()€

Suppose that we have found u, v and w with the appropriated regularity. Therefore,
from (57)1,4,7 we have

U=ilu— f1,
V=ilv— fy, (59)
W =ilw— fr.
and
U(L) = idu(L) — f1(L),
V(L) = idv(L) — fu(L), (60)
W(L) = idw(L) = fz(L)



130 O. P. V. VILLAGRAN, C. A. RAPOSO, C. A. NONATO, A. J. A. RAMOS JFCA-2022/13(2)

It is clear that u, v € H'(0, L) and w € H?(0, L). Then, replacing (59)1, 2,3 into
(57)2,5,8 it follows that

—A203h3v — E3hgvg, + k(—u+ v+ yw,) = oshs f5 + iXoshs fu, (61)

—Mo1hiu — Erhiug, — k(—u+ v 4+ yw,) = o1hy fo + iXo1h fi,

Solving system (61) is equivalent to finding (u, v) € [H?(0, L) NH(0, L)]2 and
w € HY0, L) NH?2(0, L) such that

L L
/ [—/\2Q1h1’u, — Elhlum — k(—u + v+ ’YU)L)] udx = / [Q1h1f2 + i/\thlfl] ﬂdx,
0 0

L L
/ [=A203h3v — E3hgvag + k(—u + v + yw,)] dde = / [03h3 f5 + iXoshs fa] vdx,
0 0
L L
/ [=A20hw + Elwgges — ky(—u + v + yw,), | wdx = / [ohfs + iXoh f7] wdx,
0 0
(62)

for all @, o € HY(0, L) and @ € H2(0, L). Performing similar estimates as (40),
(41) and (42) we obtain

12 ()

L
N2 o1 hiuii + Erhyugiie deri/\{G/_
/0( 0111 111 ) R§2+7]+2)\

dg] w(L)a(L)

L L
_ k/ (—u+ v+ yw, )udz :/0 01h1(fo + iNf1)dda
[ / € +n+i\ +n+ >\ } (L) + {eémdf} fi(L)ua(L), (63)

1> ()

L
— M2 03h300 + E3hsv, 0, )da + i) e
/0 ( 03hsv0 + Eshsv, Uy )dx + i |:¢,/R§2+7’+7:)\

dﬁ} v(L)o(L)
L L

—I—k/ (- u—l—v—i—wwm)ﬁd:ﬂ:/ oshs(fs + i\fy)vdx

0

[ /§2+n+ i } o(L) + {Q/RM} fa(L)o(L), (64)

1> (€)

L
—\? 0 ET xw~xa: ] /7
/0 (=A% 03h3w + ETwgWyy )de + 1A [@ =

dg} w(D)a(L)

L L
+k [ (—u+v+yw,)yide = / oh(fs + i\f7)wdx
0 0

- [e /R Mdg} (L) + [@ /R M} f(Lya(L). (65)

The system (63)-(65) is equivalent to the problem

— (LU, V) (o, yxmr 0, ) xE2(0, 1))2 + Us V) o, Lyxm (0, ) xm2(0, 172 = V),
(66)



JFCA-2022/13(2) STABILITY OF SOLUTION FOR RAO-NAKRA SANDWICH BEAM 131

where

L 2
(L U, V) :/\2/0 [01h1ut + 03h3vD + phwd] dx — i\ [@/R m\d{} w(L)a(L)

— i\ [e/R%dg} o(L)5(L) — iX [e/R%dg} w(L)w(L)

[~

and
L L L
U, v) :Elhl/ Uy Uy dT + E3h3/ VpOpdx + EI/ WaWydx
0 0 0

L
- k/ (—u+ v+ yw ) (=t + U + v, )dzx.
0
Using that
L2(0, L) < H=(0, L), that is, (L?(0, L) <, H=2(0, L)),
H'(0, L) < L*(0, L), that is, (H?(0, L) <> L*(0, L)),

it follows that the operator LLy is compact from [L?(0, L)]* into [L?(0, L)]3. This
way, by Fredholm alternative, proving the existence of U solution of (66) reduces
to show that 1 is not a eigenvalue of L. In fact, if 1 is an eigenvalue, then there
exists U # 0, such that

(LU, V)pee = (U, Ve, (67)
for all V = (@, 0, w) € M, where M = {@, o € H'(0, L) and @ € H*(0, L)}. In

particular for U =V, we have

z? [thlHu”%%o,L) + Q3h3||”||%2(o,L) + Qh”wH%?(o,L)}

— i\ {@/R%d&} [u(L)|? —iA [Q/Rmdé} o(L)[?

~ifef mds} (L)

= Evha||ug |20, £y + Eshsllvellizo, o)+ Elllwel| 22, 1)+l —utvtywelia, 1)-
Thus, by the above equation the imaginary term are equal to zero, then we have
u(L) =v(L) =w(L) =0. (68)

From (67) we obtain

and
—No1hu — Erhyug, — k(—u+v +yw,) =0,
—M203h3v — Eshgvg, + k(—u+ v + yw,) = 0, (70)
~ N ohw + ETweppe — ky(—u 4+ v + yw,), = 0.



132 O. P. V. VILLAGRAN, C. A. RAPOSO, C. A. NONATO, A. J. A. RAMOS  JFCA-2022/13(2)

Similar to what was done in (54) us consider X= (u, v, Uy, Vg, W, Wy, Wag, Wezs )-
Then we can rewrite (68)-(70) as the initial value problem

4y _ax,
X(L) =0,

Using the Picard theorem (ordinary differential equations), (71) has a unique solu-
tion X = 0. Thus, v = 0, v = 0, and w = 0. It follows from (57) that U =0, V =0,
and W = 0. Therefore, U = 0. O

Lemma 4.6. If A\ # 0, we have that 0 € o(A).

Proof. We have that U = (u, U, ¢, v, V, ¢, w, W,9)T € ker(A) if and only if AU = 0.
From (34), we have

U =0,
Eihiugs + k(_u +v+ ’wa) =0,
(& +n)e —UL)uE) =0,

V =0,

Esh3vge — k(_u + v+ ’sz) =0, (72)
(& +n)o - V(L)u() =0,

W =0,

Elwgpee — ky(—u+ v 4+ ywy )z =0,

(& + ) — W(L)p(€) = 0.

Replacing (72)1,4,7 into (72)3,6,9 implies U =V =W = ¢ = ¢ = ¢ = 0. Multi-
plying (72)2,5 s by u, v, and w respectively, integrating each equation over (0, L),
and using the definition of H'(0, L) and H?(0, L) we obtain

L L
—Elhl/ uidﬂc—i—k/ (—u+ v+ ywg)udz + u(L)Erhug, (L) = 0,
0 0
L L
—FEshs / vide —k | (—u+ v+ yw,)vde + v(L)Eshzv, (L) =0,  (73)
0 0

L L
—EI/ w? dr — k/ (—u+ v+ yw)ywy — W (L) EIwygy (L)dz = 0.
0 0

Using (28) ¢, 5., and performing straightforward calculations we get

L L L L
—Elhl/ u d{,C—Eghd/ v dac—EI/ wizdx—k/ |—u+v+’ywm|2daj
0

(e [ w©e€)d —viv)e [ p©o(e)d ~wnie [ uewie)as o

Now, using that ¢ = ¢ = 0 it follows that

E1h1||“w||2L2(0, L)+E3h3HU$H%2(O,L)+E1wa1||%2(0,L)+k” “‘H’"‘waHL? 0,0)=0-
(74)

From (74) we have that u and v are constant functions and the last term in (74)
implies that w is a constant function. Thereby, U = (u, U, @, v, V, ¢, w, W,9)T =0
and A is injective.
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NOW7 given F= (f17 f27 f37 f47 f5a f67 f77 f87 f9) € Ha we must show that there ex-
ists a unique U = (u, U, p,v,V, ¢, w, W,9)T in D(A), such that —AU = F, namely

7U = f17
—E1hiuge — k(—u+v +yw,) = 0171 fa,
(& +n)e—UL)uE) = fs,

=V = fa,

—FE3h3ves + k(—u+ v + yw,) = 03hsfs, (75)
(& +mo—V(L)u(&) = fo

W = f77

(& + )y = W(L)u() = fo,

with the following boundary conditions

Evhyug (L) = —¢ / () p(€)de,

R

Bshav,(L) = € / H(€)B(E)de. (76)

R

Elwgns(L) = € / H(E)B(E)de,

R

1

where € = 7~ sin(ar). Using the same idea to the system (63)-(65) for A = 0 it

follows that

/OL Erhaugtipdr — k /OL(u 0+ yw, )udz = /OL o1hy frudz
e [ M98 o sty ¢ [e | gf;dg} AT, -
/OL E3h3v,0.dx + k /OL(—U + v+ yw,)Udr = /OL 03hs fsvdx
e [ e [e | g’iQfZ}df} (D)D), (79)

L
/ Elw, Wepdx + k/ —u + v+ Yw, ) YW dx = / oh fswdz
0

e[S e[ £ oo

The system (77)-(79) is equivalent to the problem

a, ((u, v, w), (4, v, w)) = Ly(a, v, W), (80)
where the bilinear form continuous and coercive

a, : [H'(0, L) x H'(0, L) x H*(0, L)]* - R
and the continuous linear form

L, :H' (0, L) x H'(0, L) x H*(0, L) —» R
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is defined by
L L L

a, (u, v, w), (@, v, W)) :Elhl/ Uy Uy dX + Egh,g/ VypUpdx + EI/ Wy Wyy AT
0 0 0
L
+l<:/ (—u+v+yw,) (=t + 0 + YW, )dx (81)
0

and
L L L
ﬁ(ﬂ, 0, ’II)) :thl/ foudx + Q3h3/ fsodxr + Qh/ fswdx
0 0 0

RNGIGRE { H2(€) ] i
C/R & 10 d§_ (L) + Q/R e +nd§ fi(L)a(L)
RRTGLGE { W2 () ] i
_(’E/R & 11 d§_ (L) + QI/R e +nd§ fa(L)o(L)
[ /o) .. - °(€ .

- _Q:/R“(fz)j;)dg_ W(L)+ {e/ﬂgg‘;izdg] FAD)YB(L).  (82)
Applying the Lax-Milgran theorem, we have that for all

(@, 9, w) € H'(0, L) x H'(0, L) x H?*(0, L)
the problem (80) admits a unique solution

(u, v, w) € H'(0, L) x H'(0, L) x H?(0, L).
Using elliptic regularity, it follows from (77)-(79) that

(u, v, w) € H*(0, L) x H?(0, L) x H*(0, L).

Therefore, the operator A is surjective. (I

Now we introduce the operator A*.
Lemma 4.7. Let A be defined by (34), then
-U
LB g, + k (—u + v + yw,)]

" e e )
(€ 4 ) — V(L)u(E)
W

A*

Qflh [_Elwll.LL + k"Y(—U tv+ ryw"L)"L]
& - W)

e Te o <Tces Qe

with the domain

U,V e HY (0, L), W € H*(0, L),

—(&+n) e —UL) p(§) € L*(R),

—(&+mn) ¢ — V(L) u(€) € L*(R),
DA ) =cUeH| —(&+n)¢—-W(L)uE) e L*(R),

Elwgqq (L) — QIR (&) Y(§)dg =0,
Ele, [€le, 1€l €
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Proof. Tt is not difficult to show that (AU, U) = (U, A*U). O

The prove that no eigenvalues of A lie on the imaginary axis is given by the next
lemma.

Lemma 4.8. 0,.(A) = 0, where 0,.(A) denotes the set of residual spectrum of A.

Proof. Since A € 0,.(A), A € 0,(A*) the proof will be successful if we can show
that 0,(A) = o,(A*). This is because we have considering that the eigenvalues of
A are symmetric on the real axis. In fact, we will consider the eigenvalue problem
AU =AU for \€e Cand 0 AU = (u, U, p,v,V, ¢, w, W ) in D(A*), that is, from
(83)

Au+U =0,
Ao1hiU — Erhytug, + k(—u +v —yw,) =0,
Ap + (&2 +n)e +U(L)u(&) =0,

A+ V =0,

A3h3V — E3h3vge + k(—u+ v +yw,) = 0, (84)
N+ (€2 + )6 + V(L)(E) = 0

Aw+ W =0,

AWW + Elwggge — k(—u + v + ywy), =0,
A+ (€ + )y + W(L)u(§) = 0.

Replacing (84);,4, 7 into (84)2, 5, s respectively we obtain

~MN01hU — Eihiug, + k(—u +v — yw,) = 0,
—N?03h3V — E3hgvg, + k(—u+ v+ yw,) =0, (85)
~N20hW + Elwgppe — k(—u +v +yw,), = 0,
with the following boundary conditions
u(0, t) = v(0, t) =0,
Eyhyug (L) = =A(A+1)* (L), (86)
Fshzv, (L) = =M\ +n)**o(L).
U(

On the other hand, ETwg..(L) = @fR,u €). Then from (84)7,¢ and Lemma
2.3 we obtain

Elwge (L) =¢€ de = -W(L —>d
wrea(2) = € [ u©i(e)da | et
=AA+n)*'w(L) (87)
with the following conditions
w(0) =0, w;(0)=0, wg(L)=0. (88)
Thereby, the system (86)-(88) is exactly the eigenvalue problem of A. Thus, A* has
the same eigenvalues with A. O

5. POLYNOMIAL STABILITY

In this section, we show that the Cg-semigroup e** is polynomially stable by
using Borichev-Tomilov Theorem 5.1.
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Theorem 5.1 (Borichev-Tomilov, [4]). Let S(t) = et be a Cy-semigroup of con-
tractions on Hilbert space H. If

. 1. _
iRCo(A) and sup —;[[(iB1—.A) 1||£(H)<M,
1811 B

for some £, then there exist ¢ such that
A 2 ¢ 2
lle?*Uol? < 7272 10ollpa)-
The main theorem of this section is presented as follows.

Theorem 5.2. The semigroup S4(t)i>0 is polynomially stable and

1
ISat ol < sy Uolloie (59)
Proof. We will study the resolvent equation (¢ A\ I — A)U = F, A € R. That is,
iu—U = fl,

i/\thlU — Eihiug, — k(—u + v+ 'ywx) = Q1h1 fg,
ixp + (& +n)p —U(L) p(€) = f,

tAv—V = f4,

iA03h3V — E3hgvz, + k(—u+ v +yw,) = 03h3 fs, (90)
iAp+ (&2 + )¢ — V(L) u(€) = fe,

w—W = f7,

INOWW + Elwgpee — ky(—u 4+ v 4+ ywy ) = ohfs,
iMp+ (€2 4+ )Y — W(L) u(€) = fo,

where F = (f1, fa2, 3, fa, 5, f6, f7, fs, fo) L. Taking the inner product in H with U
and using (35) we have

| Re{AU, Uyp| < U130 1712,
that is,
€ Jp (€2 +n) lel?ds < Ul [ F 3¢,
€ fo (8% +n) [¢l%de < [Ulla | F 2, (91)
€[5 (€ +n) [Pdg < Uz |l
Moreover, from (90)1,4,7 we have

Alw(L, ) = [f1(D)]] < [idu(L) = (L) = [U(L)],
[N o(L)] = [£a(D)] < [ido(L) = fa(L)] = [V(L)],
[INw(L)] = [f2(L)]| < [idw(L) = f2(L)] = [W(L)],

then
AP[u(L)]* < ClAL)? + ClU(L)P,
AP[o(L)? < Clf1(L)]? + CIV(L)[%, (92)
A[w(L)]? < Clf2(L)PP + CIW (L)
On the other hand, from (28)pc, ; , and using the Cauchy-Schwartz inequality we
have
Bl ug (L) < ClU |3 )| F I
Eshslve (L)[* < CllUll]| Fllax, (93)
Elwege (L)[* < ClUl3]| Fll3-
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From (90)3, 6,9 we obtain

U(L)u(€) = (€2 +n+iNp — f3(€),
V(L)u(€) = (€ +n+iNo — fs(8), (94)
W(L)u(€) = (£ +n+i M) — fo(§).

(

Now, multiplying (94); by (£2 4+ 7+ i A)~tu(€), applying absolute values and inte-
grating over f € R we get

A
</ \§2+n+M| d§>|U |</|’“‘ "“"'d§+/|£2+n+m a

< / (€ + )2 |u(E)] (€ + )2 || de

/ NZIEGIN .
|£2+77+z/\

Using the Cauchy-Schwartz inequality and straightforward estimates it follows that

() w595 ) ([t )

+ ([ e ) (/'f3'2 df) B

Applying power squared on both sides of the inequality and using 2ab < a? + b?
we obtain

(/ M)waw </ i de) ([&+miok ac)

w2 @turme ) ([ 'Qdé)

Hence, using (91); we have

([ tie o) wwr <e ([ 6

e ( |>\|+§2+772 f)fIIH (96)

Now, from Lemma 2.3, it follows that

UL < CINP2 Ul 1F I3 + CIF N (97)

) Ul |1 F

Similarly, we estimate (94)2, 3, that is,

V(L)]? < CINP2 U]l 1 F Nl + CIF I
(W(L)? < CIAP2 Ul [|Flloe + CIIFI13,-

Therefore

UL + V(L) + WD) < CINP2 Ul Fllae + CIFIZ- (99)
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Consequently,

C
UL (L)P + [Va(L) + [Wa(D)? < c( +1) Wl Pl + 15 11 (100

1
|)\|2 «
To conclude the proof of the theorem we need the following lemma:

Lemma 5.3. Let q(x) € H?(0, L). Then we have

L L
/ [2@1h1q|U|2 + 2E1h1q|u$|2 — Elhlqm|u\2] dx =2kRe/ qu(—u + v + yw, )dz
0 0

+ 2E1h1qﬂux |£
— @l |§ + R (101)

where
L L B
Ry = 291h1/ qRe(uf)dx — 291h1/ qRe(U f1)dz. (102)
0 0

L L
/ [293h3q\V\2+2E3h3q|vz|2—E3h3qm|v|2] dr = — QkRe/qE(—u + v+ ywy )dx
0 0

+ 2E3 h3 q@’l)m ‘ 6

— gl |§ + Re (103)
where
L L 7
Ry = 293h3/ qRe(vf5)dx — 293h3/ qRe(V f4)dz. (104)
0 0
In the third case we consider p(z) € H*(0, L) then we have
L L d
| oo [ohWP + 3BT i) do = 28T [ pra P
0 0 dx

L
- 2k’yRe/ P (—u + v+ ywy)pdx = —2EIpRe(Wywyps) |0L
0
+ EIp[W |5 + EIplw,.|* |¥ + Ry (105)

where
L L
R3 = 2QhR€/ PW, fedx + 2QhR€/ pW i frpdx. (106)
0 0

Remark. For each R;, (i = 1, 2, 3) we have
R < CUlly | Fll3e, i=1,2. (107)

Proof. Multiplying (90)2 by gu and integrating over (0, L) we have

L L
—Q1h1/ q(idu)Udx — E1h1/ qUUgdT
0 0

L L
—k/ qu(—u + v + yw, )dx = p1hy / qu fodx.
0 0
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From (90); we obtain
L L
thl/ q\U|2dx—E1h1/ QUL dT
0 0

L L L
fk/ qu(—u + v + ywg)dx = p1hy / qufaodr — 01hy / qU fdz.
0 0 0

Then integrating by parts and using the fact Re(®®,) = %%@P we have

L L
/ [2Q1h1q|U|2—|—2E1h1q|u$|2—Elhlqm|u|2] dx :2k:Re/ qu(—u+ v + yw, )dx
0 0

+ 2E1h1qﬂux ’(l)/
— @ul? |§ + Ry, (108)

where

L L
Ry = 291/11/ qRe(ufs)dx — 2thl/ qRe(U f1)dz. (109)
0 0

Performing similar calculation to (108) we obtain

L L
/ [203h3q|V |*+2E3h3q|v,|> — Esh3ques|v|*] dv = — 2kRe /q@(—u + v + yw, )dx
0 0

+ 2E3hsqov, |§
— @ |v|* |§ + Ra, (110)

where

L L
Ry = 293h3/ qRe(vfs5)dx — 293h3/ qRe(V f,)dz. (111)
0 0

On the other hand, multiplying (90)s by pw,, integrating over x € (0, L) we have
L L
— Qh/ p(i)\wx)de—t—EI/ DWW AT
0 0

L L
— Im/ PWL(—u + v + ywy ) dx = gh/ PW, fsdx.
0 0

Performing similar calculations to what was done previously

L

L
d
| (oW + 3B Ipafunsf?] do — 281 [ pos J P
0 0

L
— 2k’yRe/ PW(—u+ v+ ywy)zdx = —2EIpRe(Wy Wy pz ) ‘OL
0
+ EIpW? [§ + EIplwea|* [§ + Rs, (112)
where
L L
Ry = QQhRe/ qu, fedx + ZQhRe/ qW o f7pd. (113)
0 0

The lemma follows. O



140 O. P. V. VILLAGRAN, C. A. RAPOSO, C. A. NONATO, A. J. A. RAMOS  JFCA-2022/13(2)

Returning to the proof of the Theorem 5.2 taking ¢(z) = 1 into (101) and (103)
we have

L L
/ 20171 |U|? + 2E1h |u, ] dz=2kRe /ﬂ(—u + 0+ yw,)dz + 2E1hyu, |§ 4+ Ry,
0 0
(114)
and
L L
/ [2@3h3|V|2 + 2E3h3|1}$|2] drx=—2kRe /5(-“ + v+ wa)dx + 2FE3h3tv, }6‘ + Ro.
0 0
(115)

Adding (114) with (115) we obtain

L L
/ 20171 |U* + 2E1 b |ug |*] dz + / [203h3|V|* + 2E3hs3|v, %] da
0 0

L L
= Zk;Re/ u(—u + v + yw,)dx — 2k‘Re/ U(—u + v+ yw,)dx
0 0
+ 2E1h1ﬁ(L)uz (L) + 2E3h3@(L)’l}z (L) + Rl + R2.

Using the Young and Cauchy-Schwartz inequalities and (93)1, 2 we have

L L
2/ [0171|U? 4+ Evhi|ug|?] dz + 2/ [03hs|V|? + Eshs|v,|?] da
0 0

L L L
<k(3+7) / luf2dz + k(3 + 7) / (o dz + 4k’y/ (o, [2dz
0 0 0
+ Evh|u(L)? + Bvhy|ug (L)[* 4 Eshs|v(L)|* + Eshs|v, (L) + Cl[Ul3 | Flln
<E1hy|u(L)? + Eshs|o(L)[* + C|lU|l% | Fln

for a positive constant C. Moreover, taking p(x) = x into (105) we have
L L
/ [oh|W|? + 3ET|wye |]dx = QImRe/ TWe (—u + v + Ywy ) pdx
0 0
— 2EIzRe(WoWase) |§ + EIz|W|* |§ + Elz|w,s|? |§ + Rs. (116)
Performing similar estimate those given above together with (93); we obtain
L
| WP + 3BT Pldo < Bllwsn(DF + Ol |17l (117)
0

Now, using (90)1,4, 7 in the sense that

U+h Ul + |£1] 2 o 2UP +21A
=2 Ty < L < S Al
YN < Y
Then,
21U (L)|? + 2| f1(L)|?
Similarly,
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and

AW (L) + 21 (L)

2 <
(L) < P

(120)

Now, from (99) with straightforward estimates we obtain for A # 0,
L
/ [o1h U + Evhaug ?] da
0
L
+ / [03hs|V? + Eshs|w,|?] dx
0

L
+ / [oh|W > + EI|w,|?] dx
0
< CIAP* 2 Ul 1F N2+ C U3 1F N1
C
+ C|IFI3 + e 2413,

c. ., C
+ e 175 + e U3¢ (| F ||

Moreover, for we have that

/ p(©)Pde < © / (€ +)lp(©)2de, for A0,
R R
/ B(©)Pde < C / (€ + )|o(e)2de, for A0,
R R
/ hi(€)2de < © / (€ + ) [B(E)Pde, for A0,
R R

If |A] > 1 we get
3, < MO ONFNE, = Ul < AP [ F

It follows that

1 ) B

[A[2-a) [GAT = A) gy <C, VAER,
for a positive constant C. The conclusion then follows by applying the Theorem
5.1. -

Conclusion and open problem: In this manuscript, we prove the existence,
uniqueness, and smoothness theorem for Rao-Nakra sandwich beam with boundary
dissipation of fractional derivative type. Furthermore, we establish strong stability
and polynomial stability results. Since the approach for Rao-Nakra model with
boundary dissipation of fractional derivative type is new, it is an interesting open
problem to study the lack of exponential stability of the system, that the question:
the system is not exponentially stable?
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