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LIE SYMMETRY ANALYSIS OF FORTH-ORDER TIME

FRACTIONAL KDV EQUATION

YOUWEI ZHANG

Abstract. In present paper, Lie group analysis is applied to consider vector

field and symmetry reduction on forth-order time fractional KdV equation,
power series solution and the convergence are investigated. Stability analysis of
trivial solution to the reduction differential equation is showed by constructing
appropriate Lyapunov function. Conservation laws of the equation are well

constructed with a detailed derivation making use of Noether’s operator.

1. Introduction

Conservative or non-conservative form of differential equation most applies to
fluid dynamics (including continuity equation, momentum equation, energy equa-
tion), from the view of micro body, the conservative control equation is equivalent
to non-conservative equation, satisfactory results can be obtained by using both
conservative and non-conservative shock assembly method. Theoretical fluid me-
chanics and mathematical derivations pay little attention to this, the people who
care about is computational fluid dynamics, in the process of research the people
found that there are great differences between conservative and non-conservative
fluid control equation in calculating some special flow fields, since it is proved by
practice that the equation in conservative form is more convenient and stable than
that of non-conservative form in numerical calculation; the control equation in con-
servation form can be expressed by same general equation, this will help to the
application of simplified and program structure of the organization. More precisely
for calculating shock wave, experience shows that the control equation in conserva-
tion form should be used, the calculated flow fields are usually smooth and stable.
If the non-conservation form is used, the obtained results of the calculated flow
fields could usually show unsatisfactory spatial oscillation in upstream and down-
stream of the shock wave, the shock wave may appear in improper position, even
the calculation results may become unstable [26]. In view of these, we tend to study
some problems for the conservative form of differential equation.

2010 Mathematics Subject Classification. 26A33, 35K55, 35L65.
Key words and phrases. Time fractional KdV equation, symmetry reduction, exact solution,

Lyapunov function, conservation laws.
Submitted Jan. 25, 2022. Revised March 10, 2022.

172



JFCA-2022/13(2) LIE SYMMETRY ANALYSIS OF KDV EQUATION 173

Time fractional KdV equation in conservative form has been applied to describe a
wide range of physics phenomena of the evolution and interaction to nonlinear wave,
it possesses infinitely symmetry and bi-Hamiltonian formulation. Since KdV equa-
tion in sense of the fractional derivative holds advantage not only on the time instant
but on the previous history, and so it has obtained popularity and importance as
generalizations of integer order calculus, which could be successfully modeled in
aerodynamics, continuum mechanics, solitons and turbulence et al [2, 17, 18, 23].
Many known nonlinear analysis methods have been successfully used to study the
number of properties for time fractional KdV equation, for instance, the symme-
try group of scaling transformations are determined, containing among particular
cases the diffusion wave equation, for its group invariant solution, a fractional or-
dinary differential equation (FODE) with the new independent variable is derived
[4]. Sahadevan and Bakkyaraj [25] derived Lie point symmetries to time fractional
generalized Burgers and KdV equations, each of equation has been transformed
into nonlinear FODE with new independent variable. Wang et al [28] studied the
invariance properties of the time fractional generalized KdV equation using Lie
group analysis. Djordjevic and Atanackovic [7] analyzed self-similar solutions to
a nonlinear fractional diffusion equation and fractional Burgers/KdV equation by
using Lie-group scaling transformation, both equations are reduced to nonlinear
FODE, and solved the resulting ordinary differential equations numerically. Liu
[16] made complete group classifications on the fractional KdV type of equation,
investigated the symmetry reduction and exact solutions, and so forth. Taking the
advantage of modified Riemann-Liouville calculus approach that the initial condi-
tion for fractional differential equation takes on the traditional form as for integer
order differential equation, fractional partial differential equation (FPDE) could
extent Lie symmetry analysis to derive it infinitesimals. Stability and boundedness
of solution are also very important in the theory and applications of differential
equation, such as the well-posedness of the problem for determining solution, even
the regularity of a weak solution. Although the stability of solution for nonlinear
differential equation of higher order with multiple deviating arguments have not
been widely discussed, the basic reason is the difficulty for constructing the appro-
priate Liapunov function, see [5, 6, 10, 14, 27] and the references therein. From
the above studying results, we know that Lie symmetry analysis [19, 29, 3, 11] can
provide an effective procedure for explicit solution of a wide and general class of
differential equation representing real physical problems, and it helps to study the
group theoretical property. Accompanying, conservation laws of the equation are
important for investigating integrability and linearization mappings, establishing
group invariant solution of existence and uniqueness. The purpose of this article
is further present Lie symmetry analysis to investigate the existence of nontrivial
solution, stability of trivial solution and conservative laws of the time fractional
KdV equation.

Depending on the complexity and application of fractional calculus, many schol-
ars have pushed forward and developed fractional calculus, various definitions of
fractional differentiation [12, 21]. Now we state the modified Riemann-Liouville
fractional calculus of order α as follows.

Definition 1. A function f(x, t), (x, t) ∈ Ω × T ⊂ R × R+, is said to be in the
space Cγ , γ ∈ R with respect to t if there exists a real number p (> γ), such that
f(x, t) = tpf1(x, t), where f1 ∈ C(Ω× T ). Obviously, Cγ ⊂ Cδ if δ ≤ γ.
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Definition 2. Assume that f ∈ Cγ(Ω × T ) (γ ≥ −1), we use the equality for the
integral with respect to (dt)α

Iαt f(x, t) =
1

Γ(α+ 1)

∫ t

0

f(x, τ)(dτ)α, 0 < α < 1.

Definition 3. Jumarie’s α-order derivative for f ∈ Cγ(Ω×T ) (γ ≥ −1) is defined
as

∂α
t f(x, t) =


1

Γ(−α)
∂
∂t

∫ t

0
(t− τ)−α−1(f(x, τ)− f(x, 0))dτ, α < 0,

1
Γ(1−α)

∂
∂t

∫ t

0
(t− τ)−α(f(x, τ)− f(x, 0))dτ, 0 < α < 1,(

∂α−n

∂tα−n f(x, t)
)(n)

, n ≤ α < n+ 1, n ≥ 1.

Leibnitz’ formula of the fractional differential takes the form

∂α
t

(
f(x, t)g(x, t)

)
=

∞∑
n=0

( α
n

)
∂α−n
t f(x, t)∂n

t g(x, t),

where
( α
n

)
= (−1)n−1αΓ(n−α)

Γ(1−α)Γ(n+1) . Faà di Bruno formula is given as

∂m
t f(g(x, t)) =

m∑
k=0

k∑
r=0

( k
r

) 1
k!
(−g)r

∂mgk−r

∂tm
dkf(g)

dgk
.

This paper is organized as follows: In Section 2, the vector field of forth-order
time fractional KdV equation is presented by using Lie symmetry analysis, based on
optimal dynamical system, all of similarity reductions to the equation are obtained.
Exact series solution and convergence of the reduction equation are investigated in
3. Stability analysis of the equilibrium for reduction differential equation system
is discussed in 4. Section 5 local conservation laws for the proposed equation are
constructed. Finally, conclusions will be given in Section 6.

2. Symmetry analysis and similarity reduction

We consider FPDE

∂α
t u+ F (u, ux, u2x, u3x, u4x, . . .) = 0, α > 0, (1)

where unx ∈ Cγ(Ω × T ) (γ ≥ −1), subscripts denote partial derivatives. Let us
assume that Eq. (1) is invariant under one parameter ϵ continuous transformation

t̄ = t+ ϵτ(x, t, u) +O(ϵ2), x̄ = x+ ϵξ(x, t, u) +O(ϵ2),

ū = u+ ϵη(x, t, u) +O(ϵ2), ∂α
t̄ ū = ∂α

t u+ ϵζ0α +O(ϵ2),

∂x̄ū = ∂xu+ ϵζ11 +O(ϵ2), ∂2x̄ū = ∂2xu+ ϵζ12 +O(ϵ2),

∂3x̄ū = ∂3xu+ ϵζ13 +O(ϵ2), . . . ,

(2)

where τ , ξ and η are the infinitesimals, ζ0α, ζ
1
1 , ζ

1
2 , . . . are the extended infinitesimals

of orders α, 1, 2, . . ., respectively

ζ11 = Dx(η)− uxDx(ξ)− utDx(τ), ζ12 = Dx(ζ
1
1 )− u2xDx(ξ)− uxtDx(τ),

ζ13 = Dx(ζ
1
2 )− u3xDx(ξ)− u2xtDx(τ), . . . ,

where Dx denotes the total derivative operator, is defined as Dx = ∂x + ux∂u +
u2x∂ux + · · · with infinitesimal generator X = τ∂t + ξ∂x + η∂u. Since the lower
terminal of the integral in time fractional modified Riemann-Liouville derivative is
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fixed and, therefore it should be invariant with respect to the transformation (2),
such invariance condition yields

τ(x, t, u)|t=0 = 0. (3)

α-th extended infinitesimal related to the modified Riemann-Liouville derivative
with (3) reads

ζ0α = Dα
t (η) + ξDα

t ux −Dα
t (ξux) +Dα

t

(
Dt(τ)u

)
−Dα+1

t (τu) + τDα+1
t u, (4)

in which total fractional derivative operator Dα
t is given as

Dα
t = ∂α

t + (∂α
t u)∂u + (∂α

t ut)∂ut + (∂α
t ux)∂ux + (∂α

t u2x)∂u2x + . . . .

Using Leibnitz’ formula, (4) can be presented by

ζ0α = Dα
t η − αDtτ∂

α
t u−

∞∑
n=1

( α
n

)
Dn

t ξD
α−n
t ux −

∞∑
n=1

( α
n+ 1

)
Dn+1

t τDα−n
t u.

(5)

Making use of Faà di Bruno formula along Leibnitz formula for the modified
Riemann-Liouville derivative with φ(x, t) = 1, then could be read the first term
Dα

t η in (5) as

Dα
t η = ∂α

t η + ηu∂
α
t u− u∂α

t ηu +
∞∑

n=1

( α
n

)
∂n
t ηuD

α−n
t u+ ω,

where ω =
∞∑

n=2

n∑
m=2

m∑
k=2

k−1∑
r=0

( α
n

)( n
m

)( k
r

)
1
k!

tn−α

Γ(n+1−α) (−u)r∂m
t uk−r∂n−m

t (∂k
uη).

As a consequence the α-th extended infinitesimal presented in (5) becomes

ζ0α = ∂α
t η + (ηu − ατt)∂

α
t u− u∂α

t ηu +
∞∑

n=1

(( α
n

)
∂n
t ηu −

( α
n+ 1

)
Dn+1

t τ
)

×Dα−n
t u−

∞∑
n=1

( α
n

)
Dn

t (ξ)D
α−n
t ux + ω.

(6)

For invariance of (1) under the transformation (2), we obtain that

∂α
t̄ ū+ F (x̄, t̄, ū, ūx̄, ū2x̄, ū3x̄, ū4x̄, . . .) = 0, (7)

for any solution ū = u(x̄, t̄) of (1). Taking into account the higher order of (1), ex-
panding (7) about ϵ = 0, using the infinitesimals and their extensions (2), equating
the coefficients of ϵ, neglecting the higher powers of ϵ, we give a revised invariant
equation of (1)

ζ0α + ξ∂xF + τ∂α
t F + η∂uF + ζ11∂uxF + ζ12∂u2xF + ζ13∂u3xF + ζ14∂u4xF

+ · · · = 0.
(8)

For solving (8) with (1), we could explicitly determine the infinitesimals τ, ξ and η,
we notice that ω given in (7) vanishes when the infinitesimal η is linear about u.

Definition 4. A solution u = υ(x, t) is said to be invariant solution of Eq. (1) if
and only if

(i) u = υ(x, t) is invariant surface, i.e. Xυ = 0,
(ii) u = υ(x, t) satisfies (1).



176 YOUWEI ZHANG JFCA-2022/13(2)

Forth-order time fractional KdV equation in conservative form is

∂α
t u+ au5 + bu3ux + cuu2

x + du2u2x + euxu2x + fuu3x + u4x = 0, (9)

with 0 < α < 1, a, b, c, d, e, f are invariant under the transformation (2), and so a
transformed equation is read

∂α
t̄ ū+ aū5 + bū3ūx̄ + cūū2

x̄ + dū2ū2x̄ + eūx̄ū2x̄ + fūū3x̄ + ū4x̄ = 0. (10)

Making use of the transformation (2) in (10), we obtain invariant equation of (9)

ζ0α + (bu3 + 2cuux + eu2x)ζ
1
1 + (du2 + eux)ζ

1
2 + fuζ13 + ζ14

+ η(5au4 + 3bu2ux + cu2
x + 2duu2x + fu3x) = 0,

(11)

which depend on variables ux, ut, u2x, uxt, u2xt, u3x, u4x . . ., and Dα−n
t u, Dα−n

t ux

for n = 1, 2, . . . are considered to be independent. Such structure of (11) allows
one to reduce it into a system. Substituting ζ1k (k = 1, 2, . . . , 4) and ζ0α into (11),
equating various powers of derivatives of u to zero, then we obtain over determined
system

ξu = ξt = τu = τx = ηuu = 0,
4ξx − ατt = 0,( α
n

)
∂n
t ηu −

( α
n+ 1

)
Dn+1

t τ = 0 for n = 1, 2, . . . ,

∂α
t η − u∂α

t ηu + bu3ηx + du2η2x + fuη3x + η4x + 5aηu4 = 0,
bu3(ατt − ξx) + 2cuηx + du2(2ηxu − ξ2x) + eη2x + fu(3η2xu − ξ3x)
+(4η3xu − ξ4x) + 3bηu2 = 0.

(12)

Solving the system (12) consistently, we get the explicit forms of infinitesimals
ξ = a1x+ b1, τ = 4a1

α t, η = −a1u, where a1 ̸= 0, b1 are constants, and infinitesimal

operatorsX1 = x∂x+
4t
α ∂t−u∂u, X2 = ∂α

t , X3 = ∂x, then the underlying Lie algebra

of (9) is two dimensional with the extended basis
{
X1, X2, X3, X3 − v

Γ(1+α)X2

}
, v

is nonzero constant coefficient, it is easy to check that the symmetry generator
founds the closed Lie algebra. Further, we deal with the symmetry reduction and
exact solution of (9), consider the similarity reduction and group-invariant solution
based on an optimal dynamical system. From the optimal system of group-invariant
solution of the equation, other such solution to the equation can be derived.

For the generator X1, similarity transformation could be obtained by solving an
associated characteristic equation dx

x = αdt
4t = −du

u .

Theorem 1. The similarity transformation u = t−
α
4 φ(z) along with similarity

variable z = xt−
α
4 reduces (9) into nonlinear differential equation with variable z

P
1− 5α

4 ,α
4
α

φ+ aφ5 + bφ3φ′ + cφφ′2 + dφ2φ′′ + eφ′φ′′ + fφφ(3) + φ(4) = 0. (13)

Proof. Consider the first term ∂α
t u of (9), others are easy to be obtained by the

similarity transformation. For u ∈ Cγ(Ω × T ) (γ ≥ −1), φ ∈ C(Ω × T ), we could
choose appropriate γ such that −α

4 > γ by Definition 1. Let n − 1 ≤ α ≤ n, n =
1, 2, . . ., thus the time fractional derivative term for the similarity transformation
is become as

∂α
t u = ∂n

t

( 1

Γ(n− α)

∫ t

0

(t− s)n−α−1s−
α
4 φ(xs−

α
4 )ds

)
.
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Set v = t
s , there is ds = − t

v2 dv, we have

∂α
t u = ∂n

t

(
tn−

5α
4

1

Γ(n− α)

∫ ∞

1

(v − 1)n−α−1v−(n+1− 5α
4 )φ(zv

α
4 )dv

)
,

following the definition of Erdélyi-Kober fractional integral operator, we present

∂α
t u = ∂n

t

(
tn−

5α
4

(
K

1−α
4 ,n−α

4
α

φ
)
(z)

)
. (14)

In order to simplify (14), there could consider t∂tϕ(z) = tx(−α
4 )t

−α
4 −1 d

dzϕ(z) =

−α
4 z

d
dzϕ(z), (ϕ ∈ C1(0,∞)), and so

∂n
t

(
tn−

5α
4

(
K

1−α
4 ,n−α

4
α

φ
)
(z)

)
= ∂n−1

t

(
∂t

(
tn−

5α
4

(
K

1−α
4 ,n−α

4
α

φ
)
(z)

))
= ∂n−1

t

(
tn−

5α
4 −1

(
n− 5α

4
− α

4
z
d

dz

)(
K

1−α
4 ,n−α

4
α

φ
)
(z)

)
.

Repeating on similar procedure for n− 1 times, yields

∂n
t

(
tn−

5α
4

(
K

1−α
4 ,n−α

4
α

φ
)
(z)

)
= t−

5α
4

n−1∏
j=0

(
1− 5α

4
+ j − α

4
z
d

dz

)(
K

1−α
4 ,n−α

4
α

φ
)
(z),

there can be written as

∂n
t

(
tn−

5α
4

(
K

1−α
4 ,n−α

4
α

φ
)
(z)

)
= t−

5α
4

(
P

1− 5α
4 ,α

4
α

φ
)
(z).

Hence, we obtain

∂α
t u = t−

5α
4

(
P

1− 5α
4 ,α

4
α

φ
)
(z).

�

For the generator X2, we get constant solution of (9) is u(x, t) = k.
For the generator X3, we present stationary solution u = φ(z), where z = x. (9)

is translated into the conservation form differential equation

aφ5 + bφ3φ′ + cφφ′2 + dφ2φ′′ + eφ′φ′′ + fφφ(3) + φ(4) = 0.

For the generator X3 − v
Γ(1+α)X2, we obtain travelling wave solution u = φ(z),

where z = x − v
Γ(1+α) t

α, v > 0 is regarded as the wave velocity. (9) is translated

into

aφ5 + bφ3φ′ + cφφ′2 + dφ2φ′′ + eφ′φ′′ + fφφ(3) + φ(4) − vφ′ = 0. (15)

3. Power series solution

For the conservation form FPDE, to seek the exact solution, we mean there
that could be obtained from the corresponding FODE, exact solution of Eq. (9)
is obtained actually in preceding Section 2, we want to detect explicit solution
expressed in terms of elementary or, at least, known functions of mathematical
physics, in terms of quadratures, and so on. The existing research results tell
that power series can be used to solve differential equation [1, 22, 15], we will
apply power series to consider the solution of the reduction FODE. Once we obtain
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solution of the reduction FODE, solution of (9) is successfully obtained. Now we

set φ(z) =
∞∑

n=0
cnz

n, substituting φ(z) into (13), it yields

∞∑
n=0

Γ(1− α
4 − nα

4 )

Γ(1− 5α
4 − nα

4 )
cnz

n + a
∞∑

n=0

n∑
m=0

m∑
l=0

l∑
j=0

j∑
i=0

cicj−icl−jcm−lcn−mzn

+ b
∞∑

n=0

n∑
m=0

m∑
l=0

l∑
j=0

(n+ 1−m)cjcl−jcm−lcn+1−mzn

+ c

∞∑
n=0

n∑
m=0

m∑
l=0

(m+ 1)(n+ 1−m)clcm+1cn+1−mzn

+ d
∞∑

n=0

n∑
m=0

m∑
l=0

(n+ 1−m)(n+ 2−m)clcm−lcn+2−mzn

+ e
∞∑

n=0

n∑
m=0

(m+ 1)(n+ 1−m)(n+ 2−m)cm+1cn+2−mzn

+ f

∞∑
n=0

n∑
m=0

(n+ 1−m)(n+ 2−m)(n+ 3−m)cmcn+3−mzn

+

∞∑
n=0

(n+ 1)(n+ 2)(n+ 3)(n+ 4)cn+4z
n = 0,

by comparing coefficients, for n = 0, one has that c4 = − 1
24

( Γ(1−α
4 )

Γ(1− 5α
4 )

c0 + ac50 +

bc30c1 + cc0c
2
1 + 2dc20c2 + 2ec1c2 + 6fc0c3

)
. For n ≥ 1, we could provide recursion

formula

cn+4 = − 1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)

( Γ(1− α
4 − nα

4 )

Γ(1− 5α
4 − nα

4 )
cn

+ a

n∑
m=0

m∑
l=0

l∑
j=0

j∑
i=0

cicj−icl−jcm−lcn−m

+ b
n∑

m=0

m∑
l=0

l∑
j=0

(n+ 1−m)cjcl−jcm−lcn+1−m

+ c

n∑
m=0

m∑
l=0

(m+ 1)(n+ 1−m)clcm+1cn+1−m

+ d
n∑

m=0

m∑
l=0

(n+ 1−m)(n+ 2−m)clcm−lcn+2−m

+ e
n∑

m=0

(m+ 1)(n+ 1−m)(n+ 2−m)cm+1cn+2−m

+ f

n∑
m=0

(n+ 1−m)(n+ 2−m)(n+ 3−m)cmcn+3−m

)
,

(16)
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for the chosen constants ci (i = 0, 1, 2, 3), others of the sequence {cn}∞n=0 can be
determined successively from (16) in unique manner. This implies that for (13),
there exists power series solution φ(z) with the coefficients given by (16), it is easy
to check that the obtained series solution φ(z) of Eq. (13) is analytic, so series
solution of (13) can be written as

φ(z) = c0 + c1z + c2z
2 + c3z

3 + c4z
4 +

∞∑
n=1

cn+4z
n+4

= c0 + c1z + c2z
2 + c3z

3

− 1

24

( Γ(1− α
4 )

Γ(1− 5α
4 )

c0 + ac50 + bc30c1 + cc0c
2
1 + 2dc20c2 + 2ec1c2 + 6fc0c3

)
z4

−
∞∑

n=1

1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)

( Γ(1− α
4 − nα

4 )

Γ(1− 5α
4 − nα

4 )
cn

+ a
n∑

m=0

m∑
l=0

l∑
j=0

j∑
i=0

cicj−icl−jcm−lcn−m

+ b
n∑

m=0

m∑
l=0

l∑
j=0

(n+ 1−m)cjcl−jcm−lcn+1−m

+ c
n∑

m=0

m∑
l=0

(m+ 1)(n+ 1−m)clcm+1cn+1−m

+ d
n∑

m=0

m∑
l=0

(n+ 1−m)(n+ 2−m)clcm−lcn+2−m

+ e
n∑

m=0

(m+ 1)(n+ 1−m)(n+ 2−m)cm+1cn+2−m

+ f
n∑

m=0

(n+ 1−m)(n+ 2−m)(n+ 3−m)cmcn+3−m

)
zn+4.

Then series solution of (9) is given as

u(x, t) = c0t
−α

4 + c1xt
−α

2 + c2x
2t−

3α
4 + c3x

3t−α

− 1

24

( Γ(1− α
4 )

Γ(1− 5α
4 )

c0 + ac50 + bc30c1 + cc0c
2
1 + 2dc20c2 + 2ec1c2 + 6fc0c3

)
x4t−

5α
4

−
∞∑

n=1

1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)

( Γ(1− α
4 − nα

4 )

Γ(1− 5α
4 − nα

4 )
cn

+ a

n∑
m=0

m∑
l=0

l∑
j=0

j∑
i=0

cicj−icl−jcm−lcn−m

+ b
n∑

m=0

m∑
l=0

l∑
j=0

(n+ 1−m)cjcl−jcm−lcn+1−m
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+ c
n∑

m=0

m∑
l=0

(m+ 1)(n+ 1−m)clcm+1cn+1−m

+ d
n∑

m=0

m∑
l=0

(n+ 1−m)(n+ 2−m)clcm−lcn+2−m

+ e
n∑

m=0

(m+ 1)(n+ 1−m)(n+ 2−m)cm+1cn+2−m

+ f
n∑

m=0

(n+ 1−m)(n+ 2−m)(n+ 3−m)cmcn+3−m

)
xn+4t−

(n+5)α
4 .

From the preceding discussion, we could provide the convergence of series solution
φ(z) of (13), in fact, from (16), it has

|cn+4| ≤
( |Γ(1− α

4 − nα
4 )|

|Γ(1− 5α
4 − nα

4 )|
|cn|+ |a|

n∑
m=0

m∑
l=0

l∑
j=0

j∑
i=0

|ci||cj−i||cl−j ||cm−l||cn−m|

+ |b|
n∑

m=0

m∑
l=0

l∑
j=0

|cj ||cl−j ||cm−l||cn+1−m|+ |c|
n∑

m=0

m∑
l=0

|cl||cm+1||cn+1−m|

+ |d|
n∑

m=0

m∑
l=0

|cl||cm−l||cn+2−m|+ |e|
n∑

m=0

|cm+1||cn+2−m|

+ |f |
n∑

m=0

|cm||cn+3−m|
)
, (n = 1, 2, . . .).

(17)

Taking into account the property of Γ function, it is no difficulty to find that
|Γ(1−α

4 −nα
4 )|

|Γ(1− 5α
4 −nα

4 )| < 1 for n. Hence (17) is written as

|cn+4| ≤ M
(
|cn|+

n∑
m=0

m∑
l=0

l∑
j=0

j∑
i=0

|ci||cj−i||cl−j ||cm−l||cn−m|

+
n∑

m=0

m∑
l=0

l∑
j=0

|cj ||cl−j ||cm−l||cn+1−m|+
n∑

m=0

m∑
l=0

|cl||cm+1||cn+1−m|

+

n∑
m=0

m∑
l=0

|cl||cm−l||cn+2−m|+
n∑

m=0

|cm+1||cn+2−m|+
n∑

m=0

|cm||cn+3−m|
)
,

whereM = max{1, |a|, |b|, |c|, |d|, |e|, |f |}. Introduce a power seriesA(z) =
∞∑

n=0
anz

n,

set ai = |ci|, (i = 0, 1, . . . , 4) and

an+4 = M
(
an +

n∑
m=0

m∑
l=0

l∑
j=0

j∑
i=0

aiaj−ial−jam−lan−m

+

n∑
m=0

m∑
l=0

l∑
j=0

ajal−jam−lan+1−m +

n∑
m=0

m∑
l=0

alam+1an+1−m
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+
n∑

m=0

m∑
l=0

alam−lan+2−m +
n∑

m=0

am+1an+2−m +
n∑

m=0

aman+3−m

)
,

it is easily see that |cn| ≤ an, (n = 0, 1, . . .), A(z) is the majorant series of (17).
Further, we show that series A(z) exists positive convergence radius, note that by
formal calculation, it yields

A(z) = a0 + a1z + a2z
2 + a3z

3 +M
∞∑

n=0

anz
n+4

+M
∞∑

n=0

n∑
m=0

m∑
l=0

l∑
j=0

j∑
i=0

aiaj−ial−jam−lan−mzn+4

+M

∞∑
n=0

n∑
m=0

m∑
l=0

l∑
j=0

ajal−jam−lan+1−mzn+4

+M
∞∑

n=0

n∑
m=0

m∑
l=0

alam+1an+1−mzn+4

+M

∞∑
n=0

n∑
m=0

m∑
l=0

alam−lan+2−mzn+4

+M
∞∑

n=0

n∑
m=0

am+1an+2−mzn+4

+M
∞∑

n=0

n∑
m=0

aman+3−mzn+4.

Consider the implicit functional system with respect to the independent variable z

A(z,A) = A− a0 − a1z − a2z
2 − a3z

3 −Mz4A−Mz4(A5 − a0A
4)

−Mz3(A4 − a0A
3)−Mz2(A3 − a0A

2)−Mz(A2 − 2a0A

− a1zA+ a0a1z + a20)−Mz(A2 − a0A− a1A− a22z
2A

− a1a2z
3 + a1a2z

2 − a0a1z + a0a1) + · · · .

It is easy to check that A(z,A) is analytic in a neighborhood of (0, a0), A(0, a0) = 0
and ∂

∂AA(0, a0) ̸= 0, by the implicit function theorem [24], we could obtain that
the series A(z) is analytic in the neighborhood of the point (0, a0) and with the
positive convergence radius, this implies that the power series (17) converge in the
neighborhood of the point (0, a0).

Remark 1. Since

c̄n+4 = − 1

(n+ 1)(n+ 2)(n+ 3)

( Γ(1− α
4 − nα

4 )

Γ(1− 5α
4 − nα

4 )
cn

+ a

n∑
m=0

m∑
l=0

l∑
j=0

j∑
i=0

cicj−icl−jcm−lcn−m
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+ b
n∑

m=0

m∑
l=0

l∑
j=0

(n+ 1−m)cjcl−jcm−lcn+1−m

+ c

n∑
m=0

m∑
l=0

(m+ 1)(n+ 1−m)clcm+1cn+1−m

+ d
n∑

m=0

m∑
l=0

(n+ 1−m)(n+ 2−m)clcm−lcn+2−m

+ e
n∑

m=0

(m+ 1)(n+ 1−m)(n+ 2−m)cm+1cn+2−m

+ f

n∑
m=0

(n+ 1−m)(n+ 2−m)(n+ 3−m)cmcn+3−m

)
,

where c̄n+4 is the coefficient of ∂xu, we can also obtain the convergence of series
solution ∂xu via the above similar argument.

Substituting φ(z) into (15), it yields

a

∞∑
n=0

n∑
m=0

m∑
l=0

l∑
j=0

j∑
i=0

cicj−icl−jcm−lcn−mzn

+ b
∞∑

n=0

n∑
m=0

m∑
l=0

l∑
j=0

(n+ 1−m)cjcl−jcm−lcn+1−mzn

+ c
∞∑

n=0

n∑
m=0

m∑
l=0

(m+ 1)(n+ 1−m)clcm+1cn+1−mzn

+ d
∞∑

n=0

n∑
m=0

m∑
l=0

(n+ 1−m)(n+ 2−m)clcm−lcn+2−mzn

+ e

∞∑
n=0

n∑
m=0

(m+ 1)(n+ 1−m)(n+ 2−m)cm+1cn+2−mzn

+ f

∞∑
n=0

n∑
m=0

(n+ 1−m)(n+ 2−m)(n+ 3−m)cmcn+3−mzn

+
∞∑

n=0

(n+ 1)(n+ 2)(n+ 3)(n+ 4)cn+4z
n − v

∞∑
n=0

(n+ 1)cn+1z
n = 0,

also for n ≥ 1, we obtain recursion formula

cn+4 = − 1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)

(
a

n∑
m=0

m∑
l=0

l∑
j=0

j∑
i=0

cicj−icl−jcm−lcn−m

+ b

n∑
m=0

m∑
l=0

l∑
j=0

(n+ 1−m)cjcl−jcm−lcn+1−m
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+ c
n∑

m=0

m∑
l=0

(m+ 1)(n+ 1−m)clcm+1cn+1−m

+ d
n∑

m=0

m∑
l=0

(n+ 1−m)(n+ 2−m)clcm−lcn+2−m

+ e
n∑

m=0

(m+ 1)(n+ 1−m)(n+ 2−m)cm+1cn+2−m

+ f
n∑

m=0

(n+ 1−m)(n+ 2−m)(n+ 3−m)cmcn+3−m

− v(n+ 1)cn+1

)
,

for the chosen constants ci (i = 0, 1, 2, 3), others of the sequence {cn}∞n=0 can be
determined successively from cn+4. This implies that for (15), there exists power
series wave solution φ(z) with the coefficient given by cn+4, the series wave solution
of (9) is successfully obtained

u(x, t)

= c0 + c1
(
x− v

Γ(1 + α)
tα
)
+ c2

(
x− v

Γ(1 + α)
tα
)2

+ c3
(
x− v

Γ(1 + α)
tα
)3

− 1

24

(
ac50 + bc30c1 + cc0c

2
1 + 2dc20c2 + 2ec1c2 + 6fc0c3 − vc1

)(
x− v

Γ(1 + α)
tα
)4

−
∞∑

n=1

1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)

(
a

n∑
m=0

m∑
l=0

l∑
j=0

j∑
i=0

cicj−icl−jcm−lcn−m

+ b
n∑

m=0

m∑
l=0

l∑
j=0

(n+ 1−m)cjcl−jcm−lcn+1−m

+ c
n∑

m=0

m∑
l=0

(m+ 1)(n+ 1−m)clcm+1cn+1−m

+ d
n∑

m=0

m∑
l=0

(n+ 1−m)(n+ 2−m)clcm−lcn+2−m

+ e

n∑
m=0

(m+ 1)(n+ 1−m)(n+ 2−m)cm+1cn+2−m

+ f
n∑

m=0

(n+ 1−m)(n+ 2−m)(n+ 3−m)cmcn+3−m

)
(x− v

Γ(1 + α)
tα)n+4.

Also the above obtained series wave solution of (15) is convergence on the variable
z, it can be tackled in similar way of (13).

4. Stability analysis

In this section, we will discuss stability of trivial solution of (9) by constructing
appropriate Lyapunov function, the stability analysis of solution reflects in well-
posedness of the problem for determining solution, even the regularity of weak
solution.
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Definition 5. An equilibrium point x̄ of ẋ = f(x) (i.e. f(x̄) = 0), · = d
dt , is

local stable, if for every R > 0 there exists r > 0, such that ∥x(0) − x̄∥ < r yields
∥x(t)−x̄∥ < R, t ≥ 0. If local stable and ∥x(0)−x̄∥ < r yield limt→∞ x(t) = x̄, then
called local asymptotic stable. If asymptotic stable for all x(0) ∈ Rn, then called
global asymptotic stable.

Lemma 1. [13] Let ẋ = f(x) and f(0) = 0. If there exists C1 function V : Rn → R,
such that

(1) V (0) = 0, V (x) > 0, for all x ̸= 0,

(2) V̇ (x) ≤ 0, for all x,
(3) V (x) → ∞ as ∥x∥ → ∞,

(4) The only solution of ẋ = f(x), V̇ (x) = 0 is x(t) = 0.
Then x = 0 is global asymptotic stable.

X3− v
Γ(1+α)X2 in Section 2 has been obtained the travelling wave solution, then

(9) is translated as

φ(4) + φφ(3) + (φ2 + φ′)φ′′ + (φ3 + φφ′ − 1)φ′ + φ5 = 0, (18)

it could be equivalent to the following system
φ′ = λ,
λ′ = µ,
µ′ = ν,
ν′ = −f(φ, λ, µ)ν − g(φ, λ)µ− h(φ, λ)λ− k(φ).

(19)

Theorem 2. If the functions f(φ, λ, µ) (f(φ, λ, µ) > 0), g(φ, λ) are continuous and
continuous first order partial derivatives, the functions h(φ, λ), k(φ) are continuous,
there exist the constants a > 0, b > 0, c > 0 such that a2 − 4c > 0 and satisfy

(1) k(0) = 0, k1(φ) =
k(φ)
φ > c > 0 (φ ̸= 0), g(φ, λ)− a > 0;

(2) abf(φ, λ, µ)− b2 − cf2(φ, λ, µ) > 0;
(3)

(
ab− 2cf(φ, λ, µ)

)
ν + b2µ > (h(φ, λ)− b)λ > 0;

(4)
(
k(φ)− cφ+ µ(g(φ, λ)− a)(bµ+ aν) > 0;

(5) g′φ(φ, λ)λ ≤ 0;
(6) f ′

φ(φ, λ, µ)λ+ f ′
λ(φ, λ, µ)µ ≤ 0.

Then a trivial solution of (18) satisfies the system (19) is the global asymptotic
stable.

Proof. Set f(φ, λ, µ) = φ, g(φ, λ) = φ2 + λ, h(φ, λ) = φ3 + φλ − 1, k(φ) = φ5,
the functions f, g, h, k satisfy the conditions of theorem, we structure Lyapunov
function V for the system (19) by analogy

V (φ, λ, µ, ν) =
1

4
a2(2cφ+ bλ+ aµ)2 +

1

2
c
(
(a2 − 4c)a+ 2b2

)
λ2 +

1

4
(a2 − 4c)

× (bλ+ aµ)2 +
1

2
a(2cλ+ bµ+ aν)2 + 2a2c

∫ φ

0

(k(ξ)− cξ)dξ

+ 2a2c

∫ λ

0

(g(φ, η)− a)λdη + ab

∫ µ

0

(af(φ, λ, ζ)− b)ζdζ.



JFCA-2022/13(2) LIE SYMMETRY ANALYSIS OF KDV EQUATION 185

Further,

dV

dz
= −a2

b

(
abf(φ, λ, µ)− b2 − cf2(φ, λ, µ)

)
ν2 − a2c

b

(
h(φ, λ)λ+ f(φ, λ, µ)ν

)2
− a2

b
λ(h(φ, λ)− b)

(
(ab− 2cf(φ, λ, µ))ν + b2µ− c(h(φ, λ)− b)λ

)
− a2

(
k(φ)− cφ+ µ(g(φ, λ)− a)

)
(bµ+ aν) + 2a2c

∫ λ

0

g′φ(φ, η)ληdη

+ a2b

∫ µ

0

(
f ′
φ(φ, λ, ζ)λ+ f ′

λ(φ, λ, ζ)ζ
)
ζdζ

≤ −a2

b

(
abf(φ, λ, µ)− b2 − cf2(φ, λ, µ)

)
ν2 − a2c

b

(
h(φ, λ)λ+ f(φ, λ, µ)ν

)2
− a2

b
λ(h(φ, λ)− b)

(
(ab− 2cf(φ, λ, µ))ν + b2µ− c(h(φ, λ)− b)λ

)
− a2

(
k(φ)− cφ+ µ(g(φ, λ)− a)

)
(bµ+ aν) ≤ 0,

and Ω , {(φ, λ, µ, ν) : dV
dz = 0} do not include other trajectories except the trivial

solution. In fact, assume that there exist the trajectories φ = φ(z), λ = λ(z),
µ = µ(z), ν = ν(z), by the system and the set Ω, we obtain that φ = λ = µ = ν = 0.
Moreover, it is not difficult to get that V (x) → ∞ as ∥x∥ → ∞ holds. So, by Lemma
1 the trivial solution of (9) is global asymptotic stable.

In view of the function k1(φ) =
k(φ)
φ > c > 0 and abf(φ, λ, µ)−b2−cf2(φ, λ, µ) >

0, we get that the Liapunov function V is positive definite and has infinite lower
bound. �

5. Local conservation laws

In this section, we will construct local conservation laws on the basis of the
vector field for the given equation, the locality means that the left-hand side of (9)
depends locally on u with respect to x, t, i.e., any value is completely determined
by the value of u in sufficiently small region of x, t. Since the local conservation
laws usually express mathematically as a partial differential equation which gives
the relation between quantity and “transport” of that quantity. It states that the
conserved quantity at a point or within a volume can only change by quantity which
flows in or out of the volume [8]. Moreover, Noether’s theorem states that there
is a one-to-one correspondence between each one of them and the differentiable
symmetry of nature. For example, the conservation of energy follows from the
time-invariance of physical systems, and the conservation of angular momentum
arises from the fact that physical systems behave the same regardless of how they
are oriented in space. The vector C = (Ct, Cx) is called conserved vector [20] for
(9) satisfies

∂t(C
t) + ∂x(C

x)|(9) = 0, (20)

where Ct and Cx are named the conserved density and conserved flux, respectively,
and neither one involves derivatives with respect to t, called conservation laws.
The density-flux pairs are polynomials in u and derivatives of u with respect to
x, i.e. Ct = Ct(u, ux, . . .), C

x = Cx(u, ux, . . .). For polynomial form Ct and Cx,
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integration of (20) yields ∫ ∞

−∞
Ctdx = constant

provided that Cx vanishes at ∞ [9]. Formal Lagrangian for (9) can be written the
form

H = v(x, t)
(
∂α
t u+ au5 + bu3ux + cuu2

x + du2u2x + euxu2x + fuu3x + u4x

)
, (21)

where v(x, t) is new dependent variable. Due to the formal Lagrangian, action
integral is given as∫∫

Ω×[0,T ]

H(x, t, v, u, ∂α
t u, ux, u2x, . . .)dxdt, H ∈ L1(Ω× Rm;R).

The adjoint equation of (9) is defined by F = δuH, where

δu = ∂u − (∂α
t )

∗ ∂

∂(∂α
t u)

− ∂x
∂

∂ux
+ ∂2x

∂

∂u2x
− ∂3x

∂

∂u3x
+ ∂4x

∂

∂u4x
+ · · · ,

in which (∂α
t )

∗ is adjoint operator of ∂α
t . Taking into consideration the fractional

derivative, we have

(∂α
t u)

∗ = (−1)nJn−α
T (∂n

t u) =
C(∂α

Tu),

where C(∂α
T ) is right-hand side multivariate Caputo derivative operator, Jn−α

T u(x, t)

= 1
Γ(n−α)×

∫ T

t
u(x, µ)(µ−t)n−α−1dµ, n = [α]+1, u ∈ L1(Ω×[0, T ];R). Substituting

(21) into F , the adjoint equation of (9) is

(∂α
t v)

∗ + au5 − bu3vx − 2cuuxvx + du2v2x − evxu2x + euxv2x − fuv3x + v4x = 0.

So we have the adjoint equation of (9) as Euler-Lagrange equation

δuH = 0.

In view of the time fractional derivative, we introduce Nother operators N t and Nx

as follows

N t := τI +
n−1∑
k=0

(−1)k∂α−1−k
t (W )∂k

t

∂

∂(∂α
t u)

− (−1)nJ
(
W,∂n

t

∂

∂(∂α
t u)

)
,

where I is identity operator, Lie characteristic functionW = η−τut−ξux, J(u, v) =
1

Γ(n−α)

∫∫
[0,t]×[t,T ]

u(x,µ)v(x,ν)
(µ−ν)α+1−n dµdν, u, v ∈ L1(Ω× [0, T ];R),

Nx : = ξI +W
( ∂

∂ux
− ∂x

∂

∂u2x
+ ∂2x

∂

∂u3x
− ∂3x

∂

∂u4x

)
+ ∂x(W )

( ∂

∂u2x
− ∂x

∂

∂u3x
+ ∂2x

∂

∂u4x

)
+ ∂2x(W )

( ∂

∂u3x
− ∂x

∂

∂u4x

)
+ ∂3x(W )

∂

∂u4x
.

Acting Nother operators N t and Nx on H, (20) becomes

∂t(N
tH) + ∂x(N

xH)|(9) = 0. (22)
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By the extended vector field, (9) yield local conservation laws (22) with the row
conserved vector

Ct = v∂α−1
t (W ) + J(W,∂tv),

Cx = W
(
bu3v + 2(c− d)uuxv − du2vx − (e+ 2f)uxvx − fu2xv − fuv2x − v3x

)
+Wx

(
du2v + (e− f)uxv − fuvx + v2x

)
+W2x(fuv − vx) +W3xv.

(23)

Based on Lie point extended symmetry generator, we obtain the conserved vector
of (9).

Lie characteristic function W1 = −x∂xu− 4t
α ∂tu−u is obtained by the generator

X1, substituting W1 into (23), the first row conserved vector (Ct, Cx) is presented,
where

Ct = −v∂α−1
t (x∂xu)−

4vt

α
∂α
t u− 4vt2−α

αΓ(3− α)
∂tu− v∂α−1

t u− J
(
x∂xu+

4t

α
∂tu+ u,

∂tv
)
,

Cx = −
(
x∂xu+

4t

α
∂tu+ u

)(
bu3v + 2(c− d)uuxv − du2vx − (e+ 2f)uxvx − fu2xv

− fuv2x − v3x
)
−

(
2∂xu+ x∂2xu+

4t

α
∂xtu

)(
du2v + (e− f)uxv − fuvx + v2x

)
−
(
3∂2xu+ x∂3xu+

4t

α
∂2xtu

)
(fuv − vx)−

(
4∂3xu+ x∂4xu+

4t

α
∂3xtu

)
v.

Lie characteristic function W2 = −∂α
t u is obtained by the generator X2, substi-

tuting W2 into (23), the second row conserved vector (Ct, Cx) is given, where

Ct = −v∂2α−1
t u− J(∂α

t u, ∂tv),

Cx = −∂α
t u

(
bu3v + 2(c− d)uuxv − du2vx − (e+ 2f)uxvx − fu2xv − fuv2x − v3x

)
− ∂α

xtu
(
du2v + (e− f)uxv − fuvx + v2x

)
− ∂α

2xtu(fuv − vx)− (∂α
3xtu)v.

Lie characteristic function W3 = −∂xu is obtained by the generator X3, substi-
tuting W3 into (23), the third row conserved vector (Ct, Cx) is provided, where

Ct = −v∂α−1
t (∂xu)− J(∂xu, ∂tv),

Cx = −∂xu
(
bu3v + 2(c− d)uuxv − du2vx − (e+ 2f)uxvx − fu2xv − fuv2x − v3x

)
− ∂2xu

(
du2v + (e− f)uxv − fuvx + v2x

)
− ∂3xu(fuv − vx)− (∂4xu)v.

Lie characteristic function W4 = −∂xu+
v

Γ(1+α)∂
α
t u is obtained by the generator

X3 − v
Γ(1+α)X2, substituting W3 into (23), the forth row conserved vector (Ct, Cx)

is given, where

Ct = −v∂α−1
t (∂xu) +

v2

Γ(1 + α)
∂2α−1
t u− J

(
∂xu− v

Γ(1 + α)
∂α
t u, ∂tv

)
,

Cx = −
(
∂xu− v

Γ(1 + α)
∂α
t u

)(
bu3v + 2(c− d)uuxv − du2vx − (e+ 2f)uxvx − fu2xv

− fuv2x − v3x
)
−

(
∂2xu− v

Γ(1 + α)
∂α
xtu

)(
du2v + (e− f)uxv − fuvx + v2x

)
−
(
∂3xu− v

Γ(1 + α)
∂α
2xtu)(fuv − vx)−

(
∂4xu− v

Γ(1 + α)
∂α
3xtu)v.
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Remark 2. In view of the obtained solution of (9) in Section 3, we note that u
and ∂xu are convergence by Remark 1, respectively, the integral

∫∞
−∞ Ctdx provides

local conserved quantity, this state that local conservation laws are important for
investigating integrability mapping and establishing existence of the KdV equation.

6. Conclusions

The presented analysis illustrates Lie symmetry approach to study forth-order
time fractional KdV equation in conservative form, and the geometric vector field to
equation is presented, Lie symmetry analysis shows that the underlying symmetry
algebra of each of the equation is two dimensional, the reduction of dimension in
the symmetry algebra is due to the fact that KdV equation is not invariant under
the translation symmetry. We have shown that the equation can be transformed
into differential equation with independent variable, then the series solution is ob-
tained, the global asymptotical stability of trivial solution for forth order nonlinear
differential equation is considered by constructing appropriate Lyapunov function,
conservation laws of the equation are constructed making use of Noether’s operator.
Our results witness that the symmetry analysis is very efficient and powerful way
in finding the nature properties (i.e. the existence of nontrivial solution, stability
of trivial solution, and conservative laws of the system) of solution for the proposed
equation.
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[27] C. Tunç, On the stability of solutions of nonlinear differential equations of fifth order with

delay, Math. Commun., 15, 261-272, 2010.
[28] G. Wang, X. Liu, Y. Zhang, Lie symmetry analysis to the time fractional generalized fifth-

order KdV equation, Commun. Nonlinear Sci. Numer. Simul., 18, 2321-2326, 2013.
[29] P. Winternitz, Lie groups and solutions of nonlinear partial differential equations, Lecture

Notes in Physics, CRM-1841, Canada, 1993.

Youwei Zhang
School of Mathematics and Statistics, Hexi University, 734000 Zhangye, China

E-mail address: ywzhang0288@163.com


