Q-SHIFT DIFFERENCE-DIFFERENTIAL POLYNOMIALS OF MEROMORPHIC FUNCTIONS SHARING A SMALL FUNCTION

HARINA P. WAGHAMORE, MANJUNATH B. E.

Abstract

In this paper, we deal with the uniqueness problem of q-shift difference-differential polynomials $F=\left(P(f) \prod_{j=1}^{d}\left(f\left(q_{j} z+c_{j}\right)^{v_{j}}\right)\right)^{k}$ and $G=$ $\left(P(g) \prod_{j=1}^{d}\left(g\left(q_{j} z+c_{j}\right)^{v_{j}}\right)\right)^{k}$ where $P(z)$ is a polynomial with constant coefficients of degree n sharing small function. The results of this paper are an extension of the previous theorems given by N. V. Thin[7].

1. Introduction and main results

In what follows by a meromorphic function we mean that the function has poles as its singularities only in the complex plane \mathbb{C}, we assume that the reader is familier with standard notations such as $T(r, f), m(r, f), N(r, f)([4],[10],[9])$ and $S(r, f)$ denotes any quantity that satisfies the condition $S(r, f)=o(T(r, f))$ as $r \rightarrow \infty$ outside of a possible exceptional set of finite linear measure. A meromorphic function $a(z)(\not \equiv 0, \infty)$ de?ned in \mathbb{C} is called a small function with respect to f if $T(r, a(z))=S(r, f)$. Let f and g be two non-constant meromorphic functions in the complex plane \mathbb{C}. We say that f, g share a counted multiplicities (CM) if $f-a, g-a$ have the same zeros with the same multiplicities and we say that f, g share a ignoring multiplicities (IM) if we do not consider the multiplicities, where a is a small function of f and g. Let a be a finite complex number, and k a positive integer. We denote by $N_{(k}(r, a, f)$ the counting function for zeros of $f-a$ with multiplicities atleast k, and by $\bar{N}_{(k}(r, a, f)$ the one for which multiplicity is not counted. Similarly, we denote by $N_{k)}(r, a, f)$ the counting function for zeros of $f-a$ with multiplicities atmost k, and by $N_{k)}(r, a, f)$ the one for which multiplicity is not counted. Then

$$
N_{(k}(r, a, f)=\bar{N}_{(1}(r, a, f)+\bar{N}_{(2}(r, a, f)+\ldots+\bar{N}_{(k}(r, a, f) .
$$

We denote and define order of $f(z)$ by

$$
\rho(f)=\lim _{r \rightarrow \infty} \sup \frac{\log T(r, f)}{\log r}
$$

[^0]If a non-constant meromorphic function $f(z)$ is of zero order, then $\rho(f)=0$.

In 2015, Zhao and Zhang[12] proved the following results.

Theorem A. [12] Let $f(z)$ and $g(z)$ be transcendental entire functions of zero order and let n, k be positive integers. If $n>2 k+5$, then $\left(f^{n} f(q z+c)\right)^{(k)}$ and $\left(g^{n} g(q z+c)\right)^{(k)}$ share z or $1 C M$, then $f=t g$ for a constant t with $t^{n+1}=1$.

Theorem B. [12] Let $f(z)$ and $g(z)$ be transcendental entire functions of zero order and let n, k be positive integers. If $n>5 k+11$, then $\left(f^{n} f(q z+c)\right)^{(k)}$ and $\left(g^{n} g(q z+c)\right)^{(k)}$ share z or 1 IM, then $f=t g$ for a constant t with $t^{n+1}=1$.

In 2017, Thin[7] proved the following theorems for meromorphic functions.

Theorem C. [7] Let $f(z)$ and $g(z)$ be transcendental meromorphic (resp. entire) functions of zero order, q and c be a complex constants, $q \neq 0, k$ be a positive integer, $a(z) \not \equiv 0$ be a meromorphic (resp. entire) small function and let $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1} \ldots+a_{1} z+a_{0}$ be a nonconstant polynomial with constant coefficients $a_{0}, a_{1}, . ., a_{n-1}, a_{n}(\neq 0)$ and m be the number of the distinct zeros of $P(z)$. If $n \geq 2 m(K+1)+2 k+6$ (resp. $n \geq 2 m(k+1)+4)$ and $(P(f(z)) f(q z+c))^{(k)}$ and $(P(g(z)) g(q z+c))^{(k)}$ share $a(z), \infty-C M$, then one of the following two results holds:
(1) $f(z)=t g(z)$ for a constant t such that $t^{d}=1$, where $d=L C M\left(\lambda_{j}, j=\right.$ $0,1,2, . ., n)$ denotes the lowest common multiple of $\lambda_{j}(j=0,1,2, . ., n)$, and

$$
\lambda_{j}=\left\{\begin{array}{l}
j+1 \quad \text { if } \quad a_{j} \neq 0 \\
n+1 \quad \text { if } \quad a_{j}=0
\end{array}\right.
$$

(2) $f(z)$ and $g(z)$ satisfy the algebraic equation $R(f(z), g(z))=0$, where

$$
R\left(w_{1}, w_{2}\right)=P\left(w_{1}\right) w_{1}(q z+c)-P\left(w_{2}\right) w_{2}(q z+c)
$$

Theorem D. [7] Let $f(z)$ and $g(z)$ be transcendental meromorphic functions of zero order, q and c be a complex constants, $q \neq 0, k$ be a positive integer, $a(z) \not \equiv 0$ be a meromorphic (resp. entire) small function and let $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1} \ldots+a_{1} z+$ a_{0} be a nonconstant polynomial with constant coefficients $a_{0}, a_{1}, . ., a_{n-1}, a_{n}(\neq 0)$ and m be the distinct zeros of $P(z)$. If $n \geq 2 m(K+2)+3 m(k+1)+8 k+21$ and $(P(f(z)) f(q z+c))^{(k)}$ and $(P(g(z)) g(q z+c))^{(k)}$ share $a(z)-I M$, then one of the following two results holds:
(1) $(P(f) f(q z+c))^{(k)}(P(g) g(q z+c))^{(k)} \equiv a^{2}$,
(2) $f(z)=t g(z)$ for a constant t such that $t^{d}=1$, where $d=\operatorname{LCM}\left(\lambda_{j}, \quad j=\right.$ $0,1,2, . ., n)$ denotes the lowest common multiple of $\lambda_{j}(j=0,1,2, . ., n)$, and

$$
\lambda_{j}=\left\{\begin{array}{l}
j+1 \quad \text { if } a_{j} \neq 0 \\
n+1 \quad \text { if } \quad a_{j}=0
\end{array}\right.
$$

(3) $f(z)$ and $g(z)$ satisfy the algebraic equation $R(f, g)=0$, where

$$
R\left(w_{1}, w_{2}\right)=P\left(w_{1}\right) w_{1}(q z+c)-P\left(w_{2}\right) w_{2}(q z+c)
$$

In this paper, we replace the term $f(q z+c)$ and $g(q z+c)$ in Theorem C and Theorem D and obtained the following results.

Theorem 1.1. Let $f(z)$ and $g(z)$ be two transcendental meromorphic(resp. entire) functions of zero order, q_{j} and c_{j} are complex constants, $q_{j} \neq 0(j=1$ to $d)$, k, n, m are positive integers. Let $a(z)(\not \equiv 0)$ be a small function, let $P(z)=a_{n} z^{n}+$ $a_{n-1} z^{n-1} \ldots+a_{1} z+a_{0}$ be a non-constant polynomial with constant coefficient $a_{0}, a_{1}, .$. , $a_{n-1}, a_{n}(\neq 0)$ and m is the number of distinct zeros of $P(z)$. If $n>2 m(k+1)+2 \lambda+$ $(k+1)(d+1)+d($ resp. $n \geq 2 m(k+1)+4 \lambda)$ and $\left(P(f(z)) \prod_{j=1}^{d}\left(f\left(q_{j} z+c_{j}\right)^{v_{j}}\right)\right)^{(k)}$ and $\left(P(g(z)) \prod_{j=1}^{d}\left(g\left(q_{j} z+c_{j}\right)^{v_{j}}\right)\right)^{(k)}$ share $a(z), \infty C M$ then one of the following two cases holds:
(1) $f(z)=t g(z)$ for a constant t such that $t^{l}=1$, where $l=G C D\left(\lambda+\gamma_{0}, \lambda+\gamma_{1}, . ., \lambda+\gamma_{n}\right)$, and

$$
\gamma_{j}=\left\{\begin{array}{lc}
j+1 \quad \text { if } \quad a_{j} \neq 0 \\
n+1 & \text { if } \quad a_{j}=0
\end{array}\right.
$$

(2) $f(z)$ and $g(z)$ satisfy the algebraic equation $R(f(z), g(z))=0$, where

$$
R\left(w_{1}, w_{2}\right)=P\left(w_{1}\right) \prod_{j=1}^{d} w_{1}\left(q_{j} z+c_{j}\right)^{v_{j}}-P\left(w_{2}\right) \prod_{j=1}^{d} w_{2}\left(q_{j} z+c_{j}\right)^{v_{j}}
$$

Remark 1.1. In Theorem 1.1, if we take $\lambda=d=1$ then $\prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{v_{j}}=$ $f(q z+c)$ and we get $n>2 m(k+1)+2 k+5$ (resp. $n \geq 2 m(k+1)+4$) and hence Theorem 1.1 reduces to Theorem C.

Example 1.1. Let $P(z)=(z-1)^{6}(z+1)^{6} z^{11}, f(z)=\sin (z), g(z)=\cos (z)$. Take $d=1=q, c=2 \pi, k=0$ then it is easy to verify that, $\left(P(f(z)) \prod_{j=1}^{d}\left(f\left(q_{j} z+c_{j}\right)^{v_{j}}\right)\right)^{(k)}$ and $\left(P(g(z)) \prod_{j=1}^{d}\left(g\left(q_{j} z+c_{j}\right)^{v_{j}}\right)\right)^{(k)}$ share $a(z), \infty$ CM. Here f and g satisify the algebraic equation $R(f, g)=0$,

$$
\text { i.e., } P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{v_{j}}-P(g) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{v_{j}}=0
$$

Theorem 1.2. Let $f(z)$ and $g(z)$ be two transcendental meromorphic functions of zero order, q_{j} and c_{j} are complex constants, $q_{j} \neq 0$ for all $j=1$ to d, k, n, m are positive integers. Let $a(z)(\not \equiv 0)$ be a small function, let $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1} \ldots+$ $a_{1} z+a_{0}$ be a non-constant polynomial with constant coefficient $a_{0}, a_{1}, . ., a_{n-1}, a_{n}(\neq$ $0)$ and m is the number of distinct zeros of $P(z)$.
If $n>2 m(k+2)+3 m(k+1)+4 k(d+1)+8 d+5 \lambda+7$ and $\left(P(f(z)) \prod_{j=1}^{d}\left(f\left(q_{j} z+c_{j}\right)^{v_{j}}\right)\right)^{(k)}$ and $\left(P(g(z)) \prod_{j=1}^{d}\left(g\left(q_{j} z+c_{j}\right)^{v_{j}}\right)\right)^{(k)}$ share $a(z)$ IM then one of the following two cases holds:
(1) $\left(P(f(z)) \prod_{j=1}^{d}\left(f\left(q_{j} z+c_{j}\right)^{v_{j}}\right)\right)^{(k)} \cdot\left(P(g(z)) \prod_{j=1}^{d}\left(g\left(q_{j} z+c_{j}\right)^{v_{j}}\right)\right)^{(k)} \equiv a(z)^{2}$,
(2) $f(z)=\operatorname{tg}(z)$ for a constant t such that $t^{l}=1$, where $l=G C D\left(\lambda+\gamma_{0}, \lambda+\right.$ $\left.\gamma_{1}, . ., \lambda+\gamma_{n}\right)$, and

$$
\gamma_{j}=\left\{\begin{array}{lc}
j+1 & \text { if } a_{j} \neq 0 \\
n+1 & \text { if } a_{j}=0
\end{array}\right.
$$

(3) $f(z)$ and $g(z)$ satisfy the algebraic equation $R(f(z), g(z))=0$, where

$$
R\left(w_{1}, w_{2}\right)=P\left(w_{1}\right) \prod_{j=1}^{d} w_{1}\left(q_{j} z+c_{j}\right)^{v_{j}}-P\left(w_{2}\right) \prod_{j=1}^{d} w_{2}\left(q_{j} z+c_{j}\right)^{v_{j}}
$$

Remark 1.2. In Theorem 1.2, if we take $\lambda=d=1$ then $\prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{v_{j}}=$ $f(q z+c)$, and we get $n>2 m(k+2)+3 m(k+1)+8 k+20$, our results coincides with Theorem D.

As a particular case of the above theorems, we deduce the following corollaries.

Corollary 1.1. Let $f(z)$ and $g(z)$ be two transcendental meromorphic functions of zero order such that $q_{j} \neq 0$ for all $j=1$ to d, where q_{j} and c_{j} are distinct nonzero complex constants. Let $\lambda=\sum_{j=1}^{d} v_{j}, k, n$ are positive integers, $a(z)(\not \equiv 0)$ be a small function of $f(z)$ and $g(z)$, and α a complex constant. If $n>3 k+d(k+2)+2 \lambda+3$ and $\left((f-\alpha)^{n} \prod_{j=1}^{d}\left(f\left(q_{j} z+c_{j}\right)^{v_{j}}\right)\right)^{(k)}$ and $\left((g-\alpha)^{n} \prod_{j=1}^{d}\left(g\left(q_{j} z+c_{j}\right)^{v_{j}}\right)\right)^{(k)}$ share $a(z), \infty C M$ then one of the following two cases holds:
(1) $f(z)=t g(z)$ for a constant t with $t^{n+\lambda}=1$,
(2) $f(z)$ and $g(z)$ satisfy the algebraic equation $R(f(z), g(z))=0$, where

$$
R\left(w_{1}, w_{2}\right)=\left(w_{1}-\alpha\right)^{n} \prod_{j=1}^{d} w_{1}\left(q_{j} z+c_{j}\right)^{v_{j}}-\left(w_{2}-\alpha\right)^{n} \prod_{j=1}^{d} w_{2}\left(q_{j} z+c_{j}\right)^{v_{j}}
$$

Corollary 1.2. Let $f(z)$ and $g(z)$ be two transcendental meromorphic functions of zero order such that $q_{j} \neq 0$ for all $j=1$ to d, where q_{j} and c_{j} are distinct non zero complex constants. Let $\lambda=\sum_{j=1}^{d} v_{j}, k, n$ are positive integers, $a(z)(\not \equiv 0)$ be a small function of $f(z)$ and $g(z)$, and α a complex constant. If $n>9 k+4 d(k+2)+5 \lambda+11$ and $\left((f-\alpha)^{n} \prod_{j=1}^{d}\left(f\left(q_{j} z+c_{j}\right)^{v_{j}}\right)\right)^{(k)}$ and $\left((g-\alpha)^{n} \prod_{j=1}^{d}\left(g\left(q_{j} z+c_{j}\right)^{v_{j}}\right)\right)^{(k)}$ share $a(z)$ IM then one of the following two cases holds:
(1) $\left((f-\alpha)^{n} \prod_{j=1}^{d}\left(f\left(q_{j} z+c_{j}\right)^{v_{j}}\right)\right)^{(k)} \cdot\left((g-\alpha)^{n} \prod_{j=1}^{d}\left(g\left(q_{j} z+c_{j}\right)^{v_{j}}\right)\right)^{(k)} \equiv a^{2}$,
(2) $f(z)=t g(z)$ for a constant t with $t^{n+\lambda}=1$,
(3) $f(z)$ and $g(z)$ satisfy the algebraic equation $R(f(z), g(z))=0$, where

$$
R\left(w_{1}, w_{2}\right)=\left(w_{1}-\alpha\right)^{n} \prod_{j=1}^{d} w_{1}\left(q_{j} z+c_{j}\right)^{v_{j}}-\left(w_{2}-\alpha\right)^{n} \prod_{j=1}^{d} w_{2}\left(q_{j} z+c_{j}\right)^{v_{j}}
$$

2. Some Preliminary Results

To prove our theorems we require the following lemmas.

Lemma 2.1. [5]. Let $f(z)$ be a nonconstant zero order meromorphic function and let q, c be a nonzero complex number. Then on a set of logarithmic density 1 , we have

$$
m\left(r, \frac{f(q z+c)}{f(z)}\right)=S(r, f)
$$

Lemma 2.2. [8]. Let $f(z)$ be a nonconstant meromorphic function of zero order and let q, c be two nonzero complex constants. Then on a set of logarithmic density 1, we have

$$
\begin{aligned}
N(r, f(q z+c)) & =N(r, f)+S(r, f) \\
N\left(r, \frac{1}{f(q z+c)}\right) & =N\left(r, \frac{1}{f}\right)+S(r, f)
\end{aligned}
$$

Lemma 2.3. [8]. Let $f(z)$ be a nonconstant meromorphic function of zero order and let q, c be two nonzero complex constants. Then on a set of logarithmic density 1, we have

$$
T(r, f(q z+c))=T(r, f)+S(r, f)
$$

Lemma 2.4. [10]. Let $f(z)$ be a nonconstant meromorphic function, then

$$
T\left(r, P_{n}(f)\right)=T(r, f)+S(r, f)
$$

Lemma 2.5. [6]. Let $f(z)$ be a nonconstant meromorphic function, and let p, k be a positive integers. Then

$$
\begin{gathered}
N_{p}\left(r, \frac{1}{f^{(k)}}\right) \leq T\left(r, f^{(k)}\right)-T(r, f)+N_{p+k}\left(r, \frac{1}{f}\right)+S(r, f), \\
N_{p}\left(r, \frac{1}{f^{(k)}}\right) \leq N_{p+k}\left(r, \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f)
\end{gathered}
$$

Lemma 2.6. [11]. Let $f(z)$ and $g(z)$ be a nonconstant meromorphic functions and let $a(z)(\not \equiv 0, \infty)$ be a small function of $f(z)$ and $g(z)$. If $f(z)$ and $g(z)$ share $a(z)$ IM, then one of the following three cases holds:
(1) $T(r, f) \leq N_{2}\left(r, \frac{1}{f}\right)+N_{2}(r, f)+N_{2}\left(r, \frac{1}{g}\right)+N_{2}(r, g)+2\left(\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}(r, f)\right)+$ $\left(\bar{N}\left(r, \frac{1}{g}\right)+\bar{N}(r, g)\right)+S(r, f)+S(r, g)$, and similar inequality holds for $T(r, g)$,
(2) $f g \equiv 1$,
(3) $f \equiv g$.

Lemma 2.7. Let $f(z)$ be a transcendental meromorphic function of zero order and $F=P(z) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{v_{j}}, q_{j}(\not \equiv 0), c_{j}(j=1$ to $d)$ are complex constants, n, d be a positive integers. Then

$$
(n-d) T(r, f)+S(r, f) \leq T(r, F)
$$

Proof. From first fundamental theorem, lemma 2.4 and lemma 2.1, we obtain

$$
\begin{aligned}
&(n+1) T(r, f)=T(r, f(z) P(f))+S(r, f) \leq T\left(r, \frac{f(z) F}{\prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{v_{j}}}\right)+S(r, f) \\
& \leq T(r, F)+T\left(r, \frac{\prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{v_{j}}}{f(z)}\right)+S(r, f) \\
& \leq T(r, F)+m\left(r, \frac{\prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{v_{j}}}{f(z)}\right)+N\left(r, \frac{\prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{v_{j}}}{f(z)}\right)+S(r, f), \\
& \leq T(r, F)+(d+1) T(r, f)+S(r, f) \\
& \therefore(n-d) T(r, f)+s(r, f) \leq T(r, F) \text { on a set of logarithmic density 1. }
\end{aligned}
$$

Lemma 2.8. Let $f(z)$ be a transcendental entire function of zero order and $F(z)=$ $P(z) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{v_{j}}$, where $P(z)$ is polynomial of degree n and $q_{j}(\not \equiv 0)$, c_{j} $(j=1$ to $d)$ are complex constants, n, d be a positive integers. Then

$$
n T(r, f)+S(r, f) \leq T(r, F)
$$

Proof. From first fundamental theorem, lemma 2.4 and lemma2.1, we obtain

$$
\begin{aligned}
(n+1) T(r, f) & =T(r, f(z) P(f))+S(r, f) \leq T\left(r, \frac{f(z) F}{\prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{v_{j}}}\right)+S(r, f) \\
& \leq T(r, F)+T\left(r, \frac{\prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{v_{j}}}{f(z)}\right)+S(r, f) \\
& \leq T(r, F)+m\left(r, \frac{\prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{v_{j}}}{f(z)}\right)+S(r, f) \\
& \leq T(r, F)+T(r, f)+S(r, f)
\end{aligned}
$$

$\therefore n T(r, f)+S(r, f) \leq T(r, F)$ on a set of logarithmic density 1 .

3. Proof Of The Theorems

3.1. Proof of Theorem 1.1.

Proof. Let $F(z)=P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{v_{j}}$ and $F(z)^{(k)}=\left(P(f) \prod_{j=1}^{d} f\left(q_{j} z+\right.\right.$ $\left.\left.c_{j}\right)^{v_{j}}\right)^{(k)}$ and $G(z)=P(g) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{v_{j}}$ and $G(z)^{(k)}=\left(P(g) \prod_{j=1}^{d} g\left(q_{j} z+\right.\right.$ $\left.\left.c_{j}\right)^{v_{j}}\right)^{(k)}$. Since $F^{k}(z)$ and $G^{(k)}(z)$ share $a(z), \infty$ CM, there exist a nonzero constant A such that

$$
\begin{equation*}
\frac{\left(P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{v_{j}}\right)^{(k)} / a(z)-1}{\left(P(g) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{v_{j}}\right)^{(k)} / a(z)-1}=A \tag{1}
\end{equation*}
$$

and we get

$$
\left(P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{v_{j}}\right)^{(k)}-a(z)(1-A)=A\left(P(g) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{v_{j}}\right)^{(k)}
$$

Now, we prove that $A=1$, let on contrary $A=1$.
Using the Second fundamental theorem and by Lemma 2.5, we get

$$
\begin{aligned}
T\left(r, F^{(k)}\right) & \leq \bar{N}\left(r, F^{(k)}\right)+\bar{N}\left(r, \frac{1}{F^{(k)}}\right)+\bar{N}\left(r, \frac{1}{F^{(k)}-\frac{a}{1-A}}\right)+S(r, f) \\
& \leq \bar{N}(r, F)+\bar{N}\left(r, \frac{1}{F^{(k)}}\right)+\bar{N}\left(r, \frac{1}{G^{(k)}}\right)+S(r, f) \\
& \leq \bar{N}(r, F)+T\left(r, F^{(k)}\right)-T(r, F)+N_{k+1}\left(r, \frac{1}{F}\right)+k \bar{N}(r, G)+N_{k+1}\left(r, \frac{1}{G}\right) \\
& +S(r, f)+S(r, g)
\end{aligned}
$$

which implies

$$
\begin{aligned}
T(r, F) & \leq \bar{N}(r, F)+N_{k+1}\left(r, \frac{1}{F}\right)+k \bar{N}(r, G)+N_{k+1}\left(r, \frac{1}{G}\right)+S(r, f)+S(r, g) \\
& \leq[m(k+1)+\lambda+d+1] T(r, f)+[m(k+1)+k(1+d)+\lambda] T(r, g)+S(r, f)+S(r, g)
\end{aligned}
$$

$$
\begin{align*}
(n-d) T(r, f) & \leq[m(k+1)+\lambda+d+1] T(r, f)+[k(d+1)+m(k+1)+\lambda] T(r, g) \\
& +S(r, f)+S(r, g) \tag{2}
\end{align*}
$$

Similarly, we get

$$
\begin{align*}
(n-d) T(r, g) & \leq[m(k+1)+\lambda+d+1] T(r, g)+[k(d+1)+m(k+1)+\lambda] T(r, f) \\
& +S(r, f)+S(r, g) \tag{3}
\end{align*}
$$

From 2 and 3, we get

$$
\begin{aligned}
(n-d)[T(r, f)+T(r, g)] & \leq[2 m(k+1)+2 \lambda+(d+1)(k+1)](T(r, f)+T(r, g)) \\
& +S(r, f)+S(r, g)
\end{aligned}
$$

i.e., $[n-2 m(k+1)+2 \lambda+(d+1)(k+1)+d](T(r, f)+T(r, g)) \leq S(r, f)+S(r, g)$,
this is contradiction to $n>2 m(k+1)+2 \lambda+(d+1)(k+1)+d$. Thus, we get $A=1$. Hence from 1, we have

$$
\left(P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{v_{j}}\right)^{(k)}=\left(P(g) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{v_{j}}\right)^{(k)}
$$

and we get

$$
\begin{equation*}
P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{v_{j}}=P(g) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{v_{j}}+\beta(z) \tag{4}
\end{equation*}
$$

where $\beta(z)$ is a polynomial of degree atmost $k-1$. Suppose $\beta(z) \not \equiv 0$, then we get

$$
\frac{P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{v_{j}}}{\beta(z)}=\frac{P(g) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{v_{j}}}{\beta(z)}+1
$$

Therefore from Lemma 2.7, and the second fundamental theorem, we have

$$
\begin{align*}
&(n-d) T(r, f) \leq T\left(r, \frac{P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{v_{j}}}{\beta(z)}\right)+S(r, f) \\
& \leq \bar{N}\left(r, \frac{P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{v_{j}}}{\beta(z)}\right)+\bar{N}\left(r, \frac{\beta(z)}{P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{v_{j}}}\right) \\
&+\bar{N}\left(r, \frac{\beta(z)}{P(g) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{v_{j}}}\right)+S(r, f) \\
& \leq \bar{N}(r, f)+d T(r, f)+m T(r, f)+\lambda T(r, f)+m T(r, g)+\lambda T(r, g)+S(r, f), \\
&(n-d) T(r, f) \leq[m+\lambda+d+1] T(r, f)+[m+\lambda] T(r, g)+S(r, f) \tag{5}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
(n-d) T(r, g) \leq[m+\lambda+d+1] T(r, g)+[m+\lambda] T(r, f)+S(r, f) \tag{6}
\end{equation*}
$$

From 5 and 6, we obtain

$$
[n-2(m+\lambda)-2 d-1](T(r, f)+T(r, g)) \leq S(r, f)+S(r, g .)
$$

This is a contradiction to $n>2 m(k+1)+2 \lambda+(k+1)(1+d)+d$. Therefore $\beta(z) \equiv 0$.
Hence 4 becomes

$$
\begin{equation*}
P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{v_{j}}=P(g) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{v_{j}} \tag{7}
\end{equation*}
$$

That is
$\left(a_{n} f^{n}+a_{n-1} f^{n-1}+. .+a_{1} f+a_{0}\right)\left(\prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{v_{j}}\right)=\left(a_{n} g^{n}+a_{n-1} g^{n-1}+. .+\right.$ $\left.a_{1} g+a_{0}\right)\left(\prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{v_{j}}\right)$,
let $h=\frac{f}{g}$, we consider the following cases
Case 1. If $h(z)$ is a constant then substituting $f(z)=h(z) g(z)$ in 7, we have $\left(a_{n}(g h)^{n}+a_{n-1}(g h)^{n-1}+. .+a_{1}(g h)+a_{0}\right)\left(\prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{v_{j}} g\left(q_{j} z+c_{j}\right)^{v_{j}}\right)=$ $\left(a_{n} g^{n}+a_{n-1} g^{n-1}+. .+a_{1} g+a_{0}\right)\left(\prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{v_{j}}\right)$,

$$
\begin{equation*}
\prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{v_{j}}\left[a_{n} g^{n}\left(h^{n+\lambda}-1\right)+a_{n-1} g^{n-1}\left(h^{n+\lambda-1}-1\right)+\ldots+a_{0}\left(h^{\lambda}-1\right)\right]=0 \tag{8}
\end{equation*}
$$

Where a_{n} is a non-zero complex constant and $\prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{v_{j}} \not \equiv 0$, Since $g(z)$ is non-constant meromorphic function, then from 8

$$
\begin{equation*}
a_{n} g^{n}\left(h^{n+\lambda}-1\right)+a_{n-1} g^{n-1}\left(h^{n+\lambda-1}-1\right)+\ldots+a_{0}\left(h^{\lambda}-1\right)=0 \tag{9}
\end{equation*}
$$

If $a_{n}(\not \equiv 0)$ and $a_{n-1}=a_{n-2}=\ldots=a_{1}=a_{0}=0$ then from 9 and g is non-constant meromorphic function, we get $h^{n+\lambda}-1=0$ implies $h^{n+\lambda}=1$ If $a_{n}(\not \equiv 0)$ and there exist $a_{i} \neq 0[i \in\{0,1,2, \ldots n-1\}]$. Supose that $h^{n+\lambda} \neq 1$, from 9 , we have $T(r, g)=S(r, g)$.
Which is contradiction with transcendental function g.
Then $h^{n+\lambda}=1$, similar to this discussion we can see that $h^{n+\lambda}=1$, where $a_{j} \not \equiv 0$, for some $j=0,1,2 \ldots n$.
Thus we have $f(z)=\operatorname{tg}(z)$, for a constant t such that $t^{l}=1$, where $l=G C D(\lambda+$ $\left.\gamma_{0}, \lambda+\gamma_{1}, . ., \lambda+\gamma_{n}\right)$

$$
\gamma_{j}=\left\{\begin{array}{lc}
j+1 & \text { if } \quad a_{j} \neq 0 \\
n+1 & \text { if } \quad a_{j}=0
\end{array}\right.
$$

Case 2. Suppose $h(z)$ is not constant, then $f(z)$ and $g(z)$ satisifies the algebraic equation $R(f(z), g(z))=0$, where

$$
R\left(w_{1}, w_{2}\right)=P\left(w_{1}\right) \prod_{j=1}^{d} w_{1}\left(q_{j} z+c_{j}\right)^{v_{j}}-P\left(w_{2}\right) \prod_{j=1}^{d} w_{2}\left(q_{j} z+c_{j}\right)^{v_{j}}
$$

Note that, when $f(z)$ and $g(z)$ are transcendental entire functions, we have $N(r, F)=0=N(r, G)$. By computing similarly to the case of meromorphic functions, we easily obtain the conclusion of Theorem 1.1 with $n \geq 2 m(k+1)+4 \lambda$.

3.2. Proof of Corollary 1.1.

Proof. By considering $P(f)=(f-\alpha)^{n}$ and proceeding as in the lines of proof of Theorem 1.1 we get the proof of Corollary.

3.3. Proof of the Theorem 1.2.

Proof. Let $F(z)=P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{v_{j}}$ and $F(z)^{(k)}=\left(P(f) \prod_{j=1}^{d} f\left(q_{j} z+\right.\right.$ $\left.\left.c_{j}\right)^{v_{j}}\right)^{(k)}$ and $G(z)=P(g) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{v_{j}}$ and $G(z)^{(k)}=\left(P(g) \prod_{j=1}^{d} g\left(q_{j} z+\right.\right.$ $\left.\left.c_{j}\right)^{v_{j}}\right)^{(k)}$. Since $F^{k}(z)$ and $G^{(k)}(z)$ share $a(z)$ IM. If (1) of lemma 2.6 holds, then using the lemma 2.7, we obtain

$$
\begin{aligned}
T\left(r, F^{(k)}\right) & \leq N_{2}\left(r, \frac{1}{F^{(k)}}\right)+N_{2}\left(r, F^{(k)}\right)+N_{2}\left(r, \frac{1}{G^{(k)}}\right)+N_{2}\left(r, G^{(k)}\right) \\
& +2\left(\bar{N}\left(r, \frac{1}{F^{(k)}}\right)+\bar{N}\left(r, F^{(k)}\right)\right)+\left(\bar{N}\left(r, \frac{1}{G^{(k)}}\right)+\bar{N}\left(r, G^{(k)}\right)\right) \\
& +S(r, G)+S(r, F), \\
& \leq N_{2}\left(r, F^{(k)}\right)+T\left(r, F^{(k)}\right)-T(r, F)+N_{k+2}\left(r, \frac{1}{F}\right)+N_{k+2}\left(r, \frac{1}{G}\right) \\
& +k \bar{N}(r, G)+N_{2}\left(r, G^{(k)}\right)+2\left(N_{k+1}\left(r, \frac{1}{F}\right)+k \bar{N}(r, F)+\bar{N}\left(r, F^{(k)}\right)\right) \\
& +N_{k+1}\left(r, \frac{1}{G}\right)+k \bar{N}(r, G)+\bar{N}\left(r, G^{(k)}\right)+S(r, f)+S(r, g),
\end{aligned}
$$

Therefore,

$$
\begin{align*}
T(r, F) & \leq 2 \bar{N}(r, F)+N_{k+2}\left(r, \frac{1}{G}\right)+N_{k+2}\left(r, \frac{1}{F}\right)+(2 k+3) \bar{N}(r, G) \\
& +2 N_{k+1}\left(r, \frac{1}{F}\right)+(2 k+2) \bar{N}(r, F)+N_{k+1}\left(r, \frac{1}{G}\right)+S(r, f)+S(r, g) \\
T(r, F) & \leq(2 k+4) \bar{N}(r, F)+N_{k+2}\left(r, \frac{1}{F}\right)+2 N_{k+1}\left(r, \frac{1}{F}\right)+(2 k+3) \bar{N}(r, G) \\
& N_{k+2}\left(r, \frac{1}{G}\right)+N_{k+1}\left(r, \frac{1}{G}\right)+S(r, f)+S(r, g) \tag{10}
\end{align*}
$$

Similarly,

$$
\begin{align*}
T(r, G) & \leq(2 k+4) \bar{N}(r, G)+N_{k+2}\left(r, \frac{1}{G}\right)+2 N_{k+1}\left(r, \frac{1}{G}\right)+(2 k+3) \bar{N}(r, F) \\
& N_{k+2}\left(r, \frac{1}{F}\right)+N_{k+1}\left(r, \frac{1}{F}\right)+S(r, f)+S(r, g) \tag{11}
\end{align*}
$$

We have

$$
\begin{gather*}
\bar{N}(r, F) \leq(1+d) T(r, f)+S(r, f) \tag{12}\\
N_{k+2}\left(r, \frac{1}{F}\right) \leq[m(k+2)+\lambda] T(r, f)+S(r, f) \tag{13}\\
N_{k+1}\left(r, \frac{1}{F}\right) \leq[m(k+1)+\lambda] T(r, f)+S(r, f) \tag{14}
\end{gather*}
$$

Similarly,

$$
\begin{gather*}
\bar{N}(r, G) \leq(1+d) T(r, g)+S(r, g) . \tag{15}\\
N_{k+2}\left(r, \frac{1}{G}\right) \leq[m(k+2)+\lambda] T(r, g)+S(r, g) . \tag{16}\\
N_{k+1}\left(r, \frac{1}{G}\right) \leq[m(k+1)+\lambda] T(r, g)+S(r, g) . \tag{17}
\end{gather*}
$$

Substituting 12-17 in 10, we get

$$
\begin{align*}
& T(r, F) \leq(2 k+4)(1+d) T(r, f)+(m(k+2)+\lambda) T(r, f)+2(m(k+1)+\lambda) T(r, f) \\
&+(2 k+3)(1+d) T(r, g)+(m(k+2)+\lambda) T(r, g)+(m(k+1)+\lambda) T(r, g) \\
&+S(r, f)+ S(r, g) \\
&(n-d) T(r, f) \leq[(2 k+4)(1+d)+m(k+2)+2 m(k+1)+3 \lambda] T(r, f) \\
&+[(2 k+3)(1+d)+m(k+2)+m(k+1)+2 \lambda] T(r, g) \tag{18}\\
&+S(r, f)+S(r, g)
\end{align*}
$$

Similarly,

$$
\begin{align*}
(n-d) T(r, g) & \leq[(2 k+4)(1+d)+m(k+2)+2 m(k+1)+3 \lambda] T(r, g) \\
& +[(2 k+3)(1+d)+m(k+2)+m(k+1)+2 \lambda] T(r, f) \tag{19}\\
& +S(r, f)+S(r, g)
\end{align*}
$$

From 18 and 19, we obtain

$$
\begin{aligned}
(n-d)[T(r, f)+T(r, g)] & \leq[(4 k+7)(1+d)+2 m(k+2)+3 m(k+1)+5 \lambda](T(r, f)+T(r, g)) \\
& +S(r, f)+S(r, g)
\end{aligned}
$$

Which is contradiction to

$$
n>2 m(k+2)+3 m(k+1)+4 k(1+d)+8 d+5 \lambda+7 .
$$

Thus by Lemma 2.6, we have $F^{(k)}(z) \cdot G^{(k)}(z) \equiv a^{2}(z)$ or $F^{(k)}(z) \equiv G^{(k)}(z)$

Case 1. Suppose $F^{(k)}(z) \cdot G^{(k)}(z) \equiv a^{2}(z)$, that is $\left(P(f(z)) \prod_{j=1}^{d}\left(f\left(q_{j} z+c_{j}\right)^{v_{j}}\right)\right)^{(k)} \cdot\left(P(g(z)) \prod_{j=1}^{d}\left(g\left(q_{j} z+c_{j}\right)^{v_{j}}\right)\right)^{(k)} \equiv a(z)^{2}$.

This is one of the conclusion of Theorem.
Case 2. Now we consider $F^{(k)}(z) \equiv G^{(k)}(z)$. By an argument as in theorem 1.1, we obtain that $f(z)$ and $g(z)$ satisify one of the following two statement:
(1) $f(z)=t g(z)$ for a constant t with $t^{l}=1$, where $l=G C D\left(\lambda+\gamma_{0}, \lambda+\gamma_{1}, . ., \lambda+\right.$ $\left.\gamma_{n}\right)$, and

$$
\gamma_{j}= \begin{cases}j+1 & \text { if } \quad a_{j} \neq 0 \\ n+1 & \text { if } \quad a_{j}=0\end{cases}
$$

(2) $f(z)$ and $g(z)$ satisfy the algebraic equation $R(f(z), g(z))=0$, where

$$
R\left(w_{1}, w_{2}\right)=P\left(w_{1}\right) \prod_{j=1}^{d} w_{1}\left(q_{j} z+c_{j}\right)^{v_{j}}-P\left(w_{2}\right) \prod_{j=1}^{d} w_{2}\left(q_{j} z+c_{j}\right)^{v_{j}}
$$

3.4. Proof of Corollary 1.2.

Proof. By considering $P(f)=(f-\alpha)^{n}$ and proceeding as in the lines of proof of Theorem 1.2 we get the proof of Corollary.

References

[1] Y.-M. Chiang and S.-J. Feng, On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane, Ramanujan J. 16 (2008), no. 1, 105-129.
[2] R. G. Halburd and R. J. Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl. 314 (2006), no. 2, 477-487
[3] R. G. Halburd and R. J. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 2, 463-478.
[4] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
[5] K. Liu and X.-G. Qi, Meromorphic solutions of q-shift difference equations, Ann. Polon. Math. 101 (2011), no. 3, 215-225.
[6] W.-C. Lin and H.-X. Yi, Uniqueness theorems for meromorphic function, Indian J. Pure Appl. Math. 35 (2004), no. 2, 121-132.
[7] N. V. Thin, Uniqueness of meromorphic functions and Q-difference polynomials sharing small functions, Bull. Iranian Math. Soc. 43 (2017), no. 3, 629-647.
[8] J. Xu and X. Zhang, The zeros of q-shift difference polynomials of meromorphic functions, Adv. Difference Equ. 2012, 2012:200, 10 pp.
[9] L. Yang, Value distribution theory, translated and revised from the 1982 Chinese original, Springer-Verlag, Berlin, 1993.
[10] C.-C. Yang and H.-X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557, Kluwer Academic Publishers Group, Dordrecht, 2003.
[11] X. Zhang, Value sharing of meromorphic functions and some questions of Dyavanal, Front. Math. China 7 (2012), no. 1, 161-176.
[12] Q. Zhao and J. Zhang, J. Contemp. Math. Anal. 50 (2015), no. 2, 63-69; translated from Izv. Nats. Akad. Nauk Armenii Mat. 50 (2015), no. 2, 69-79.

HARINA P. WAGHAMORE
Department of Mathematics, Jnanabharathi Campus, Bangalore University, Bangalore, IndiA - 560056

E-mail address: harinapw@gmail.com, harina@bub.ernet.in
Manjunath B. E.
Department of Mathematics, Jnanabharathi Campus, Bangalore University, Bangalore, IndiA - 560056

E-mail address: manjunath.bebub@gmail.com

[^0]: 2010 Mathematics Subject Classification. 30D35.
 Key words and phrases. Meromorphic(Entire) function, Differential-difference polynomial, sharing value, weighted sharing.

 Submitted Jan. 31, 2022. Revised March 10, 2022.

