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A STUDY ON A COUPLED SYSTEM OF QUADRATIC

VOLTERRA-STIELTJES INTEGRAL EQUATIONS

SH. M AL-ISSA

Abstract. The main purpose of this paper is to investigate some existence results for a coupled
system of nonlinear quadratic integral equations of Volterra-Stieltjes type in the space of contin-
uous functions defined on a closed bounded interval. Our proof depends on the Schauder fixed
point principle, such an approach allows us to obtain existence theorems under rather general

assumptions.

1. Introduction and Preliminaries

It is well known that integral equations have many useful applications in describing numerous
events and problems of real world, and the theory of integral equations is rapidly developing with the
help of several tools of functional analysis, topology and fixed point theory (see [1, 12, 13, 14, 15, 18]).
The interest in the study of quadratic Volterra-Stieltjes integral equations was initiated mainly by
the papers [7, 9, 19, 20, 21, 22].

The goal of the paper is to discuss the solvability of a certain class of coupled system of quadratic
Integral equations of Volterra-Stieltjes type. For the definition, background, and properties of the
Stieltjes integral, we refer to Banaś [6]. The interest in the study of such coupled system of integral
equations was initiated mainly by the papers (see [4, 3].

In this paper we prove some existence theorems for a coupled system of quadratic Volterra-
Stieltjes integral equations containing numerous types of Volterra integral equations as special cases.
We investigate solvability of those coupled system of integral equations in the space of continuous
functions defined on a closed bounded interval. The main tool used in our considerations is the
Schauder fixed point principle. Such a proof enables us to obtain our existence results under quite
general and convenient assumptions. Moreover, we generalize our results to the indicate existence
result of the coupled system of quadratic Hammerstien-Stieltjes integral equations.

The results proved in this paper generalize several ones obtained up to now for various types of
nonlinear Volterra integral equations like the coupled system of quadratic Volterra integral equa-
tions of fractional order, the coupled system of quadratic Volterra-Chandrasekhar type and nonlinear
equations of mixed type, also, we deduce existence theorems for coupled systems of Cauchy problems.

Throughout this paper, let I = [0, T ] and X be the Banach space of all ordered pairs (x, y) ∈
X = C(I)× C(I), with the norm

∥(x, y)∥X = max{∥x∥C , ∥y∥C},
where

∥x∥C = sup
t∈I

|x|, ∥y∥C = sup
t∈I

|y|.

It is clear that (X, ∥(x, y)∥X) is Banach space.
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Now, we shall present some auxiliary properties of fractional calculus that will be need in this
work.

Definition 1. The Riemann-Liouville of a fractional integral of the function f ∈ L1(I) of order
α ∈ R+ is defined by

Iαa f(t) =

∫ t

a

(t− s)α−1

Γ(α)
f(s) ds.

and when a = 0, we have Iα f(t) = Iα0 f(t).

Definition 2. The (Caputo) fractional order derivative Dα, α ∈ (0, 1] of the absolutely continuous
function g is defined as

Dα
a g(t) = I1−α

a

d

dt
g(t) , t ∈ [a, b].

For further properties of fractional calculus operator (See [26],[27],[28] and [29]).

2. Main results

The main object of the study in this paper is the solvability of the coupled system of nonlinear
quadratic integral equations of Volterra-Stieltjes type having the form:

x(t) = a1(t) + f1(t, y(t))

∫ t

0

v1(t, s, y(s)) dsg1(t, s), t ∈ I

y(t) = a2(t) + f2(t, x(t))

∫ t

0

v2(t, s, x(s)) dsg2(t, s). t ∈ I

(1)

Our goal is to show that system (1) has at least one solution in the space X. For our further
purposes we denote by △ the triangle △ = {(t, s) : 0 ≤ s ≤ t ≤ T}.
In our investigations, we assume that the following conditions are satisfied

(i) ai : I → R, (i = 1, 2) are continuous functions on I. There are constants ai,where ai =
supt∈I |ai(t)|.

(ii) fi : I × R → R, (i = 1, 2) are continuous functions and there exist continuous functions
mi(t) : I → I such that

|fi(t, x)− fi(t, y)| ≤ mi(t)|x− y|,

for all x, y ∈ R and t ∈ I. Moreover, we put mi = max{mi(t) t ∈ I, }.
(iii) vi(t, s, x) : △ × R → R,( i = 1, 2 ) are continuous functions and there exist continuous

functions ni(t, s) : △ → I, and continuous and nondecreasing functions φi : R+ → R+, such
that

|vi(t, s, x)| ≤ ni(t, s)ϕi(|x|),
for all (t, s) ∈ △ and x ∈ R. Moreover, we put ni = max{ni(t, s) t, s ∈ I}.

(iv) Functions s → gi(t, s) are of bounded variation on [0, t] for each t ∈ I, i = 1, 2.
(v) Functions gi are continuous on the triangle △ and gi(t, 0) = 0 for i = 1, 2.
(vi) gi(t, s) = gi : △i → R, i = 1, 2 and for all t1, t2 ∈ I with t1 < t2, the functions s →

gi(t2, s)− gi(t1, s) are nondecreasing on I.
(vii) For any ϵ > 0 there exists δ > 0 such that, for all t1; t2 ∈ I such that t1 < t2 and t2 − t1 ≤ δ

the following inequality holds

t1∨
s=0

[gi(t2, s)− gi(t1, s)] ≤ ϵ, i = 1, 2.

Obviously, we will assume that gi, (i = 1, 2) satisfy assumptions (iv) − (vii). For our purposes, we
will need the following lemmas.

Lemma 1. [8] Under assumptions (iv)-(vii), The functions z →
∨z

s=0 gi(t, s) are continuous on
[0, t] for any any t ∈ I (i=1,2).



JFCA-2022/13(2) ON THE FRACTIONAL-ORDER GAMES 225

Lemma 2. [8] Let assumptions (iv)-(vii) be satisfied. Then, for arbitrary fixed number 0 < t2 ∈ I
and for any ϵ > 0, there exists δ > 0 such that if t1 ∈ I; t1 < t2 and t2 − t1 ≤ δ then∨t2

s=t1
gi(t2, s) ≤ ϵ, (i=1,2).

Further, let us observe that based on Lemma 1 we infer that there exists finite positive constants
Ki, such that

Ki = sup

{
t∨

s=0

gi(t, s) : t ∈ [0, T ]

}
,

where T > 0 is arbitrarily fixed (i = 1, 2).
We now introduce some functions that will be useful in our further studies:

Wi(ϵ) = sup{
t2∨
s=0

(gi(t2, s)− gi(t1, s)) : t1, t2 ∈ I, t1 < t2; t1 − t2 ≤ ϵ, i = 1, 2}.

In what follows let us denote by Fi the constant defined by the formula:

Fi = sup{|fi(t, 0)| : t ∈ I, i = 1, 2}.
Now, we are in position to present tha main result of the paper.

Theorem 1. Let assumptions (i)- (vii) be satisfied. Then the coupled system of quadratic Volterra-
Stieltjes integral equations (1) has at least one solution (x, y) belonging to the space X.

Proof. Consider the operator A by putting

A(x, y)(t) = (A1y(t), A2x(t)),

where

A1y(t) = a1(t) + f1(t, y(t))

∫ t

0

v1(t, s, y(s) dsg1(t, s)

A2x(t) = a2(t) + f2(t, x(t))

∫ t

0

v2(t, s, x(s) dsg2(t, s).

(2)

We prove a few results concerning the continuity and compactness of these operators in the space
of continuous functions. We define the set U by

U = {u = (x(t), y(t)); (x(t), y(t)) ∈ X : ∥(x, y)∥X ≤ r}.
For (x, y) ∈ U, and define The operator A map U into U , we have

|A1y(t)| ≤ |a1(t)|+ |f1(t, y(t))|
∫ t

0

|v1(t, s, y(s)| |dsg1(t, s)|

≤ ∥a1∥+ [m1(t)|y(t)|+ |f1(t, 0)|]
∫ t

0

n1(t, s) φ1(|y(s)|) ds
( t∨
s=0

g1(t, p)
)

≤ ∥a1∥+
[
∥y∥m1 + F1

]
n1φ1(∥y∥)|

( t∨
s=0

g1(t, p)
)
,

∥A1y∥ ≤ ∥a1∥+
[
r1m1 + F1

]
n1φ1(r1) sup

t∈I

( t∨
s=0

g1(t, p)
)
.

Hence, we get
∥A1y∥ ≤ ∥a1∥+K1

[
m1r1 + F1

]
n1φ1(r1).

From the last estimate we deduce that r1 = ∥a1∥+F1K1n1φ1(r1)
1−m1n1K1φ1(r1)

.

By a similar way, we obtain

∥A2x∥ ≤ ∥a2∥+K2

[
m2r2 + F2

]
n2ϕ2(r2), r2 =

∥a2∥+ F2K2n2φ2(r2)

1−m2n2K2φ2(r2)
.

Therefore

||Au||X = ||A(x, y)||X = ||(A1y,A2x)||X
≤ max

t∈I
{||A1y||C , ||A2x||C} = r.
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Thus for every u = (x, y) ∈ U, we have Au ∈ U and hence AU ⊂ U, ( i.e A : U → U). This
means that the functions of AU are uniformly bounded on I, it is clear that the set U is nonempty,
bounded, closed and convex. Now, we need to show that the set AU is relatively compact.
For u = (x, y) ∈ U, for all ϵ > 0, δ > 0, and for each t1, t2 ∈ I( without loss of generality assume
that t1 < t2 ), such that |t2 − t1| < δ, we have:

|A1y(t2)−A1y(t1)|

= |a1(t2)− a1(t1) + f1(t2, y(t2))

∫ t2

0

v1(t2, s, y((s)) dsg1(t2, s)

− f1(t1, y(t1))

∫ t1

0

v1(t1, s, y(s)) dsg1(t1, s)|

≤ |a1(t2)− a1(t1)|+ |f1(t2, y(t2))− f1(t2, y(t1))|
∫ t2

0

|v1(t2, s, y(s)) |dsg1(t2, s)|

+ |f1(t2, y(t1))
∫ t2

0

v1(t2, s, y(s)) dsg1(t2, s)− f1(t1, y(t1))

∫ t2

0

v1(t2, s, y(s)) dsg1(t2, s)|

+ |f1(t1, y(t1))
∫ t2

0

v1(t2, s, y(s)) dsg1(t2, s)− f1(t1, y(t1))

∫ t2

0

v1(t2, s, y(s)) dsg1(t1, s)|

+ |f1(t1, y(t1))
∫ t2

0

v1(t2, s, y(s)) dsg1(t1, s)− f1(t1, y(t1))

∫ t2

0

v1(t1, s, y(s)) dsg1(t1, s)|

+ |f1(t1, y(t1))
∫ t2

0

v1(t1, s, y(s)) dsg1(t1, s)− f1(t1, y(t1))

∫ t1

0

v1(t1, s, y(s)) dsg1(t1, s)|

≤ ω(a1, ϵ) +m1(t2)|y(t2)− y(t1)|
∫ t2

0

|v1(t2, s, y(s))| ds
( s∨
p=0

g1(t2, p)
)

+ |f1(t2, y(t1))− f1(t1, y(t1))|
∫ t2

0

|v1(t2, s, y(s))| ds
( s∨
p=0

g1(t2, p)
)

+ |f1(t1, y(t1))|
∫ t2

0

|v1(t2, s, y(s))| ds
( s∨
p=0

[g1(t2, p)− g1(t1, p)]
)

+ |f1(t1, y(t1))|
∫ t2

0

|v1(t2, s, y(s))− v1(t1, s, y(s))| ds
( s∨
p=0

g1(t1, p)
)

+ |f1(t1, y(t1))|
∫ t2

t1

|v1(t1, s, y(s))| ds
( s∨
p=t1

g1(t1, p)
)

≤ ω(a1, ϵ) +m1(t2)ω(y, ϵ)

∫ t2

0

n1(t2, s) φ1(|y(s)|)ds(
s∨

p=0

g1(t2, p))

+ ωf1(ϵ)

∫ t2

0

n1(t2, s) φ1(|y(s)|)ds(
s∨

p=0

g1(t2, p))

+
[
m(t1)|y(t1)|+ |f1(t1, 0)|

] ∫ t2

0

n1(t2, s) φ(|y(s)|)ds(
s∨

p=0

[g1(t2, p)− g1(t1, p)]

+
[
m(t1)|y(t1)|+ |f1(t1, 0)|

] ∫ t2

0

ωv1(ϵ) ds(
s∨

p=0

g1(t1, p))

+
[
m(t1)|y(t1)|+ |f1(t1, 0)|

] ∫ t2

t1

n1(t1, s) φ(|y(s)|)ds(
s∨

p=0

g1(t1, p))



JFCA-2022/13(2) ON THE FRACTIONAL-ORDER GAMES 227

where

ω(ai, ϵ) = sup{|ai(t2)− ai(t1)| : t1, t2 ∈ I, |t1 − t2| ≤ ϵ, i = 1, 2},
ωfi(ϵ) = sup{|fi(t2, u)− fi(t1, u)| : t1, t2 ∈ I, |t1 − t2| ≤ ϵ, u ∈ R, i = 1, 2},
ωvi(ϵ) = sup{|vi(t2, s, u(s))− v1(t1, s, u(s))| : t1, t2 ∈ I, |t1 − t2| ≤ ϵ, u ∈ R, i = 1, 2}.

Then, form estimate we get

|A1y(t2)−A1y(t1)| ≤ ω(a1, ϵ) + [m1ω(y, ϵ) + ωf1(ϵ)]n1ϕ(∥y∥)
∫ t2

0

ds(
s∨

p=0

g1(t2, p))

+
[
m1∥y∥+ F1

] [
n1ϕ(∥y∥)

∫ t2

0

ds(
s∨

p=0

[g1(t2, p)− g1(t1, p)]

+ ωv1(ϵ)

∫ t2

0

ds(

s∨
p=0

g1(t1, p) + n1ϕ(∥y∥)
∫ t2

t1

ds(

s∨
p=0

g1(t1, p)

]

≤ ω(a1, ϵ) +
[
m1ω(y, ϵ) + ωf1(ϵ)

]
n1ϕ(∥y∥)

t2∨
s=0

g1(t2, p))

+
[
m1∥y∥+ F1

][
n1φ(∥y∥)

t2∨
s=0

[g1(t2, s)− g1(t1, s)]

+ ωv1(ϵ)

t2∨
s=0

g1(t1, s) + n1φ(∥y∥)
t2∨

s=t1

g1(t1, s)]

]
≤ ω(a1, ϵ) +K1

[
m1ω(y, ϵ) + ωf1(ϵ)

]
n1φ(r)

+
[
m1r + F1

][
n1φ(r)W1(ϵ) + ωv1(ϵ)[g1(t1, t2)− g1(t1, 0)]

+ n1ϕ(r)[g1(t1, t2)− g1(t1, t1)]

]

Hence, from the continuity of the functions g1 assumption (v), we deduce that A1 maps C(I) into
C(I). As done above we can obtain

∥A2x(t2)−A2x(t1)∥ ≤ ω(a2, ϵ) +K2

[
m2ω(x, ϵ) + ωf2(ϵ)

]
n2φ(r)

+
[
m2r + F2

][
n2φ(r)W2(ϵ) + ωv2(ϵ)[g2(t1, t2)− g2(t1, 0)]

+ n2φ(r)[g2(t1, t2)− g2(t1, t1)]

]

Also, by our assumption (v), we see that A2 maps C(I) into C(I).
Now, from the definition of the operator A we get

Au(t2)−Au(t1) = A(x, y)(t2)−A(x, y)(t1)

=
(
A1y(t2), A2x(t2))− (A1y(t1), A2x(t1)

)
=

(
A1y(t2)−A1y(t1), A2x(t2)−A2x(t1)

)
.
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Therefore,

∥Au(t2)−Au(t1)∥ = ∥(A1y(t2)−A1y(t1), A2x(t2)−A2x(t1))∥
= max

{
∥A1y(t2)−A1y(t1)∥, ∥A2x(t2)−A2x(t1)∥}

≤ max

{
ω(a1, ϵ) +K1

[
m1ω(y, ϵ) + ωf1(ϵ)

]
n1φ(r)

+
[
m1r + F1

][
n1φ(r)W1(ϵ) + ωv1(ϵ)[g1(t1, t2)− g1(t1, 0)]

+ n1ϕ(r)[g1(t1, t2)− g1(t1, t1)]

]
,

ω(a2, ϵ) +K2

[
m2ω(x, ϵ) + ωf2(ϵ)

]
n2φ(r)

+
[
m2r + F2

][
n2φ(r)W2(ϵ) + ωv2(ϵ)[g2(t1, t2)− g2(t1, 0)]

+ n2φ(r)[g2(t1, t2)− g2(t1, t1)]

]}
.

This means that the class of {Au(t)} is equi-continuous on I, then by Arzela-Ascoil theorem {Au(t)}
is relatively compact.
Now, we will show that the operator A : U → U is continuous.
Firstly, we prove that A1 is continuous. Let ϵ∗ > 0, the continuity of vi, i = 1, 2, yields, ∃ δ = δ(ϵ∗)
such that |vi(t, s, u(s)− vi(t, s, v(s)| < ϵ∗,whenever ∥u− v∥ ≤ δ, thus if ∥y − v∥ ≤ δ, we arrive at:

|(A1y)(t)− (A1v)(t)|

≤ |f1(t, y(t))
∫ t

0

v1(t, s, y(s) dsg1(t, s)− f1(t, v(t))

∫ t

0

v1(t, s, v(s)) dsg1(t, s)|

≤ |f1(t, y(t))
∫ t

0

v1(t, s, v(s) dsg1(t, s)− f1(t, v(t))

∫ t

0

v1(t, s, y(s) dsg1(t, s)|

+ f1(t, v(t))

∫ t

0

v1(t, s, y(s) dsg1(t, s)| − f1(t, v(t))

∫ t

0

v1(t, s, v(s) dsg1(t, s)|

≤ |f1(t, y(t))− f1(t, v(t))|
∫ t

0

|v1(t, s, y(s)| dsg1(t, s)

+ |f1(t, v(t))|
∫ t

0

|v1(t, s, y(s)− v1(t, s, v(s)| dsg1(t, s)|

≤ m1(t)|y(t)− v(t)|
∫ t

0

n1(t, s) φ1(|y(s)|) |dsg1(t, s)|

+ [m1(t)|v(t)|+ |f1(t, 0)|]
∫ t

0

|v1(t, s, y(s)− v1(t, s, v(s)| |dsg1(t, s)|

≤
(
δm1n1φ1(∥y∥) + [m1∥v∥+ F1]ϵ

∗) ∫ t

0

ds

s∨
p=0

g1(t, p)

≤
(
δm1n1φ1(r) + [m1r + F1]ϵ

∗) t∨
s=0

g1(t, s),

≤
(
δm1n1φ1(r) + [m1r + F1]ϵ

∗)K1,

where

ϵ =
(
δm1n1φ1(r) + [m1r + F1]ϵ

∗)K1.

Therefore,

|(A1y)(t)− (A1v)(t)| ≤ ϵ.
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This means that the operator A1 is continuous.
By a similar way as done above we can prove that for any x, u ∈ C[0, T ] and ∥x− u∥ < δ, we have

|(A2x)(t)− (A2u)(t)| ≤ ϵ.

Hence A2 is continuous operator. The operators Ai (i = 1, 2) are continuous operator this imply
that A is continuous operator. Since all conditions of Schauder fixed point theorem are satisfied,
then A has at least one fixed point u = (x, y) ∈ U, which completes the proof. �

Corollary 1. Let assumptions of Theorem 1 be satisfied. Then quadratic Volterra-Stieltjes func-
tional integral equation

x(t) = a(t) + f(t, y(t))

∫ t

0

v(t, s, y(s)) dsg(t, s), t ∈ I (3)

has at least one solution x ∈ C(I).

Proof. Let the assumptions of Theorem 1 be satisfied, with x = y, f1 = f2 = f , v1 = v2 = v, and
a1 = a2 = a. Then the coupled system (1) will be the Volterra-Stieltjes quadratic integral equation
(3) �

3. Existence of unique solution

In this section, we study the uniqueness of the solution (x, y) ∈ X of the coupled system of
quadratic Volterra-Stieltjes integral equations (1). Assume that functions φi : R+ → R+ have the
form φi(x) = 1 + |x|, and the functions ni(t, s) ∈ C(I) denoted by bi = ∥ni∥ = max{ni(t, s) t, s ∈
I, i = 1, 2} . Then

|vi(t, s, x)| ≤ ni(t, s) (1 + |x|).

Notice that this assumption is a special case of assumption (iii).
Consider now the assumptions (ii)∗, (iii)∗ having the form
(ii)∗ fi : I ×R → R are continuous functions and there exist constants numbers mi such that

|fi(t, x)− fi(t, y)| ≤ mi|x− y|, i = 1, 2.

for all x, y ∈ R and t ∈ I.
(iii)∗ vi(t, s, x) : vi = △i×R → R are continuous and satisfy the Lipschitz condition with Lipschitz
constant bi, such that

|vi(t, s, x)− vi(t, s, y)| ≤ bi |x− y|, i = 1, 2.

From this assumption, we can deduce that

|vi(t, s, x)| − |vi(t, s, 0)| ≤ |vi(t, s, x)− vi(t, s, 0)| ≤ bi |x|,

which implies that

|vi(t, s, x)| ≤ |vi(t, s, 0)|+ bi |x| ≤ ni(t, s) + bi |x|,

where ni(t, s) = sup
t∈I

|vi(t, s, 0)|.

Theorem 2. Let assumptions of Theorem 1 be satisfied with replace assumtions (ii),(iii) by (ii)∗,
(iii)∗, if the following condition hold

m(n+ br) + [mr + F ]K ≤ 1.

Then the coupled system (1) has an unique solution (x, y) ∈ X.

Proof. Let u1 = (x1, y1) and u2 = (x2, y2) be two solutions of the coupled system (1), we have

∥(x1, y1)− (x2, y2)∥X = ∥(x1 − x2, y1 − y2)∥X
= max

t∈I
{∥x1 − x2∥, ∥y1 − y2∥.}
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Now,

|x1(t)− x2(t)|

≤ |f1(t, y1(t))
∫ t

0

v1(t, s, y1(s) dsg1(t, s)− f1(t, y2(t))

∫ t

0

v1(t, s, y2(s)) dsg1(t, s)|

≤ |f1(t, y1(t))
∫ t

0

v1(t, s, y1(s)) dsg1(t, s)− f1(t, y2(t))

∫ t

0

v1(t, s, y1(s) dsg1(t, s)|

+ |f1(t, y2(t))
∫ t

0

v1(t, s, y1(s)) dsg1(t, s)− f1(t, y2(t))

∫ t

0

v1(t, s, y2(s) dsg1(t, s)|

≤ |f1(t, y1(t))− f1(t, y2(t))|
∫ t

0

|v1(t, s, y1(s)| |dsg1(t, s)|

+ |f1(t, y2(t))|
∫ t

0

|v1(t, s, y1(s)− v1(t, s, y2(s)| |dsg1(t, s)|

≤ m1|y1(t)− y2(t)|
∫ t

0

(n1(t, s) + b1 |y|)dsg1(t, s)

+ [m1|y2(t)|+ |f1(t, 0)|]b1
∫ t

0

|y1(s)− y2(s)| dsg1(t, s)

≤ [∥y1 − y2∥m1(n1 + b1∥y1∥) + [m1∥y2∥+ F1]∥y1 − y2∥]
∫ t

0

ds

(
s∨

p=0

g1(t, p)

)

≤ m1(n1 + b1∥y1∥) + [m1∥y2∥+ F1]∥y1 − y2∥

(
t∨

s=0

g1(t, s)

)
≤ m1(n1 + b1r1) + [m1r1 + F1]K1∥y1 − y2∥.

Therefore,

∥x1 − x2∥ ≤ m(n+ br|) + [mr + F ])K∥y1 − y2∥,
where

b = max{b1, b2}, m = max{m1,m2} , n = max{n1, n2}, F = max{F1, F2} and K = max{K1,K2}.

similarly

∥y1 − y2∥ ≤ m(n+ br) + [mr + F ])K∥x1 − x2∥.
Then

∥(x1, y1)− (x2, y2)∥X = ∥(x1 − x2, y1 − y2)∥X
= max

t∈I
{∥x1 − x2∥C , ∥y1 − y2∥C}

= max
t∈I

{[m(n+ br) + (mr + F )K] ∥y1 − y2∥, [m(n+ br) + (mr + F )K] ∥x1 − x2∥}

= [m(n+ br) + (mr + F )K] max
t∈I

{∥x1 − x2∥C , ∥y1 − y2∥C}

= [m(n+ br) + (mr + F )K] ∥(x1, y1)− (x2, y2)∥X .

Which implies that

[1−m(n+ br) + (mr + F )K] ∥(x1, y1)− (x2, y2)∥X ≤ 0.

Therefore

∥(x1, y1)− (x2, y2)∥X = 0.

This means that

(x1, y1) = (x2, y2) =⇒ x1 = x2, y1 = y2.

This proves the uniqueness of the soloution of the coupled system (1). �
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4. A Coupled system of the nonlinear quadratic Volterra-Hammerstein-Stieltjes
integral equations

This section, as an application, deals with the existence of continuous solution for the coupled
system of quadratic Hammerstein-Stieltjes functional integral equations

x(t) = a1(t) + f1(t, y(t))

∫ t

0

k1(t, s)h1(s, y(s)) dsg1(t, s), t ∈ I

y(t) = a2(t) + f2(t, x(t))

∫ t

0

k2(t, s)h2(s, y(s))) dsg2(t, s), t ∈ I

(4)

Consider the following assumption:
Assumption (1): Let hi : I × R → R and ki : I × I → R+ assume that hi, ki satisfy the following
assumptions:

(i) hi(t, y(t)) (i = 1, 2) are continuous functions.
(ii) There exist continuous functions m∗

i (t) and continuous and nondecreasing functions ϕi :
R+ → R+, such that

|hi(t, x)| ≤ m∗
i (t)φi(|x|),

for all t ∈ I and x ∈ R, i = 1, 2. Moreover, we put M∗
i = max{m∗

i (t), t ∈ I, i = 1, 2}.
(iii) Functions ki(t, s) = ki : △ → R are continuous on the triangle △, such that K∗

i =
supt{ki(t, s)} , where K∗

i are positive constants.

Definition 3. By a solution for the coupled system (4), we mean the pair of functions (x, y) ∈ X.

Being now for the existence of continuous solutions of (4), we have the following theorem.

Theorem 3. Let assumptions (1) and (i)-(vi) of Theorem 1 be satisfied. Then the coupled system of
quadratic Hammerstien-Stieltjes integral equations (4) has at least one continuous solution (x, y) ∈
X.

Proof. let vi(t, s, y(s))) = ki(t, s)hi(s, y(s)). Then from assumption (1), we find that assumptions
of Theorem 1 are satisfied and the result follows. �

5. A coupled systems of quadratic Volterra Integral Equations of fractional
order

In this section, we will consider a coupled systems of quadratic Volterra integral equations of
fractional order, which has the form

x(t) = a1(t) + f1(t, y(t))

∫ t

0

(t− s)α1−1

Γ(α1)
v1(t, s, y(s) ds, t ∈ I

y(t) = a2(t) + f2(t, x(t))

∫ t

0

(t− s)α2−1

Γ(α2)
v2(t, s, x(s) ds, t ∈ I

(5)

where t ∈ I = [0, T ] and αi ∈ (0, 1), and Γ(αi), i = 1, 2, refers to gamma functions. Let us
mention that (5) represents the so-called a coupled systems of Volterra quadratic integral equations
of fractional order. Recently, such a type this type has been widely investigated in some papers
[1, 12, 13, 15, 16, 17]
Here, we show that a coupled systems of fractional orders (5) can be treated as a special case of a
coupled systems of quadratic Volterra-Stieltjes integral equations (2) studied in Section 2.

In fact, we can consider functions gi(t, s) = gi : △ → R, i = 1, 2, defined by the formula

gi(t, s) =
tαi − (t− s)α

Γ(αi + 1)
.

We can see that functions gi, i = 1, 2, satisfy assumptions (iv)-(vii) in Theorem 1, see [8, 11].
Now, we state the following existence results for couple system of quadratic Volterra integral equa-
tions of fractional order (5).

Theorem 4. Let assumptions (i)-(vii) of Theorem 1 be satisfied. Then a coupled systems of frac-
tional orders (5) has at least one solution (x, y) ∈ X.
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Corollary 2. Let assumptions of Theorem 4 be satisfied (with x = y, v1 = v2 = v ,f1 = f2 = f ,
a1 = a2 = 0 and α1 = α2 = α). Then the fractional-order quadratic integral equation

x(t) = a(t) + f(t, y(t))

∫ t

0

(t− s)α−1

Γ(α)
v(t, s, y(s)) ds, t ∈ I

has at least one solution in x ∈ C(I) .

Corollary 3. Let assumptions of Theorem 4 be satisfied, with f1(t, y(t)) = f2(t, x(t)) = 1. Then a
coupled system of the fractional-order quadratic integral system

x(t) = a1(t) +

∫ t

0

(t− s)α−1

Γ(α)
v1(t, s, y(s))) ds, t ∈ I

y(t) = a2(t) +

∫ t

0

(t− s)β−1

Γ(β)
v2(t, s, x(s))) ds, t ∈ I

(6)

has at least one solution in (x, y) ∈ X.

Now, letting α1, α2 → 1, we obtain

Corollary 4. Let assumptions of Theorem 4 be satisfied. Then the coupled system of the initial
value problems

x(t)

dt
= v1(t, t, y(t)), t ∈ I, x(0) = x0,

y(t)

dt
= v2(t, t, x(t)), t ∈ I, y(0) = y0,

(7)

has at least one solution in (x, y) ∈ X.

Proof. Let assumptions of Theorem 4 be satisfied (with f1(t, y(t)) = f2(t, x(t)) = 1, a1(t) =
x0, a2(t) = y0 and letting α, β → 1. Then a coupled system of the fractional-order quadratic
integral equations

x(t) = x0 +

∫ t

0

v1(t, s, y(s)) ds, t ∈ I,

y(t) = y0 +

∫ t

0

v2(t, s, x(s)) ds, t ∈ I,

(8)

has at least one solution in X which is equivalent to the coupled system of the initial value problems
(7). �

Corollary 5. Let assumptions of Theorem 4 be satisfied. Then the coupled system of fractional-
order differential equations

Dα1x(t) = v1(t, t, y(t)), t ∈ I

Dα2y(t) = v2(t, t, x(t)), t ∈ I
(9)

with the initial conditions

I1−α1x(t)|t=0 = I1−α2y(t)|t=0 = 0, α1, α2 ∈ (0, 1], (10)

has at least one solution in (x, y) ∈ X.

Proof. let us proof the coupled system of the initial value problems (9) and (10) is equivalent to the
coupled system of quadratic integral system

x(t) =

∫ t

0

(t− s)α1−1

Γ(α1)
v1(t, s, y(s)) ds, t ∈ I, α1 ∈ (0, 1)

y(t) =

∫ t

0

(t− s)α2−1

Γ(α2)
v2(t, s, x(s)) ds, t ∈ I, α2 ∈ (0, 1)

(11)

By operating I1−α1 and I1−α2 respectively on each equation of coupled system (11), and applying
properties of fractional operator [29], we obtain

I1−α1x(t) = I1v1(t, s, y(s)), I1−α1x(t)|t=0 = 0

I1−α2y(t) = I1v2(t, s, x(s)), I1−α2y(t)|t=0 = 0.
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Also,
d

dt
I1−α1x(t) = v1(t, t, y(t)), t ∈ I, α1 ∈ (0, 1)

d

dt
I1−α2y(t) = v2(t, t, x(t)), t ∈ I, α2 ∈ (0, 1).

Conversely, by integrating the coupled system of initial value problems (9) and (10), we have

I1−α1x(t)− I1−α1x(t)|t=0 = I1v1(t, t, y(t))

I1−α2y(t)− I1−α2y(t)|t=0 = I1v2(t, t, x(t)).

Operating by Iα1 and Iα2 respectively on each equation and differentiating, we have (11). Thus,
the equivalence hold.
Let assumptions of Theorem 4 be satisfied (with f1(t, y(t)) = f2(t, x(t)) = 1, a1(t) = a2(t) = 0.
Then there exists at least one solution in X for the coupled system (9 and 10). �

6. Further discussions and example

This section is devoted to discuss some details appearing in our existence results proved in the
previous section. At the beginning we consider a few special cases of the system (1). First of all let
us notice that the classical nonlinear coupled systems of Volterra quadratic integral equations

x(t) = a1(t) +

∫ t

0

v1(t, s, y(s)) ds,

y(t) = a2(t) +

∫ t

0

v2(t, s, x(s)) ds,

(12)

is a special case of system (1) if we put fi(t, x) = 1 and gi(t, s) = s. This implies that equation
(12) can be investigated with help of Theorem 1. Observe that some assumptions of that Theorem
are automatically satisfied for system (12). Indeed, assumptions (iv)-(vii) are trivially satisfied.
Assumption with fi(t, 0) = 1, (i = 1.2). Thus we have to assume hypotheses (i)- (vii). Let us notice
that in the case of system (12) we have Fi = 1 where Fi is the constants defined in Section 3.

It is worthwhile mentioning that system (1) contains also other special cases which are important
in applications. For example, the following integral equation

x(t) = f(t, x(t))

∫ t

0

v(t, s, x(s)) ds (13)

plays a significant role in describing some problems connected with traffic theory and biology (see
[10]). Obviously this equation is a special case of system (1), if we put x = y, v1 = v2 = v
,f1 = f2 = f , a1 = a2 = 0 and gi(t, s) = s.

Next, let us consider the couple system of quadratic integral equations of Volterra type having
the form

x(t) = a1(t) + y(t)

∫ t

0

t

t+ s
v1(t, s, y(s))) ds

y(t) = a2(t) + x(t)

∫ t

0

t

t+ s
v2(t, s, x(s))) ds.

(14)

This system represents the couple system of Chandrasekhar’s quadratic integral equations.
We now show that couple system (14) is a special case of couple system (1). To do this let us
consider the function gi : △ → R (i = 1, 2), defined by the formula

gi(t, s) =

 t ln t+s
t , for t > 0 and s ≥ 0,

0 for t = 0 and s ≥ 0.
(15)

Then we see that system (14) can be written in the form (1).
In order to discuss the existence result for system (14), let us first notice that f1(t, y) = y and
f2(t, x) = x . This suggests that the existence result concerning couple system (14) is contained in
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Theorem 1, where we have to assume hypotheses (i) and (vii).
Using standard methods of mathematical analysis it can be seen that functions gi(t, s) defined
by (15) satisfies assumptions (iv)-(vii). Moreover, observe that assumption (ii) is satisfied with
mi(t) = 1 and fi(t, 0) = 0.
If we let x = y, v1 = v2 = v and a1 = a2 = a, then the coupled system (14) will be counterpart of
the famous Chandrasekhar quadratic integral equation of form

x(t) = a(t) + x(t)

∫ t

0

t

t+ s
v(t, s, x(s)) ds, (16)

which has numerous applications (cf. [2, 24]).
Further, let us recall that if the function gi(t, s) satisfies assumptions (iv)-(vii).Then it represents
the distribution function of a two dimensional random variable [5, 25]. The converse implication
is also almost valid [10, 25]. Particularly, we may consider the function as being the distribution
function of a two dimensional random variable of continuous type. Such functions has the form

gi(t, s) =

∫ t

0

(

∫ s

0

pi(z, y)dy) dz, i = 1, 2, (17)

where pi(z, y) are the so-called density functions [5]. Obviously this functions satisfy assumptions
(iv)-(vii). Moreover, we have

dsgi(t, s) =

∫ t

0

pi(s, y)dy, i = 1, 2, (18)

and in this case couple system (1) has the form

x(t) = a1(t) + f1(t, y(t))

∫ t

0

v1(t, s, y(s)) (

∫ t

0

p1(s, y)dy) ds

y(t) = a2(t) + f2(t, x(t))

∫ t

0

v2(t, s, x(s)) (

∫ t

0

p2(s, y)dy) ds.

(19)

If we let x = y, v1 = v2 = v ,f1 = f2 = f and a1 = a2 = a. Then the coupled system (19) will be

x(t) = a(t) + f(t, x(t))

∫ t

0

v(t, s, x(s)) (

∫ t

0

p1(s, y)dy) ds. (20)

Let us mention that this equation is the usual quadratic nonlinear Volterra integral equation.
In what follows, we provide example illustrating our obtained results.
Example 1. Consider the following couple system of quadratic integral Volterra type

x(t) =
et

e+ et+1
+

1

Γ(2/3)
sin(

t2 + y(t)

1 + t2
)

∫ t

0

√
|y(s)|

(4 + t2 + s2)(t− s)1/3
ds,

y(t) = t2 exp(−t) +
exp(−t) + x(t)

Γ(1/2)

∫ t

0

sin(s2 + t) + 3
√
x2(s)

(t− s)1/2
ds.

(21)

Observe that the above system is a special case of (5). Indeed, we put α1 = 2/3, α2 = 1/2 and

a1(t) =
et

e+ et+1
, a2(t) = t2 exp(−t),

f1(t, y) = sin(
t2 + y(t)

1 + t2
), f2(t, x) = exp(−t) + x(t),

v1(t, s, y) =

√
|y(s)|

4 +2 t+ s2
, v2(t, s, x) = sin(s2 + t) + 3

√
x2(s).

Assume that functions fi(t, s), i = 1, 2 satisfy (5) and Ki =
1

Γ(αi+1) . Then we can easily verify that

the assumptions of Theorem 1 are satisfied.
In fact, functions ai, (i = 1, 2) are continuous on I, with ∥a1∥ = 1/e and ∥a2∥ = e. Thus assumption
(i) is satisfied. Further, notice that fi are continuous on I ×R and satisfies the Lipschitz condition
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with the constants mi = 1. Moreover, F1 = sin(1) and F2 = 1. Next, let us note that functions
v1 = v1(t, s, y) and v2 = v2(t, s, x) are continuous on the set △×R and the following inequality hold

|v1(t, s, y)| ≤
√
|y(s)|

4 + t2 + s2
≤ 1

4

√
|y|,

|v2(t, s, y)| ≤
tx2/3(s)

1 + t+ s2
≤ x2/3.

This yields that the estimate from assumption (iii) is satisfied with ϕ1(r1) =
1
4

√
r1 and ϕ2(r2) = r

2/3
2 .

Finally, let us pay attention to the fact that inequalities from of Theorem 1 has the form

1/e+
1

Γ(5/3)
[r1 + sin(1)]

1

4

√
r1 ≤ r1, (22)

4/e2 + (1/
√
π)(r1 + 1)r

2/3
2 ≤ r2. (23)

Keeping in mind that Γ(5/3) > 0.8856, Γ(1/2) =
√
π [23] and sin1 = 0.8415 . . . , it is easily seen

that the number r0 = 1 satisfies inequality (22) and (23) Thus, based on Theorem 4 we deduce that
the couple system of quadratic integral Volterra type (5) has at least one solution belonging the
space X.
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