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ASYMPTOTIC CONVERGENCE CRITERIA FOR

NONHOMOGENEOUS LINEAR FRACTIONAL ORDER

SYSTEMS

B. K. LENKA, S. N. BORA

Abstract. This paper investigates the asymptotic convergence analysis of
the nonhomogeneous systems that involve Caputo derivative operator of real

order. By making the use of comparison methodology, some new asymptotic
convergence results are proposed and it is shown that the responses of such
time-varying systems converge to the point 0. Finally, an incommensurate or-
der electrical circuit system that involves time-varying coefficients is considered

to demonstrate the applicability of some developed results.

1. Introduction

Fractional calculus is an important branch of mathematics that deals with the
descriptions of the possibility of computation of unknown functions via suitable
derivative and integral operators of real order and studies the relationships between
them [1, 2, 3, 4]. A fractional order system is a system that is described by a
set of equations where the unknown variables are associated with some derivative
operators of real order in these equations. Such a system is called a commensurate
system if all variables are associated with the same real order otherwise it is called
an incommensurate order system.

The issue of asymptotic convergence of response analysis of linear systems that
involve real order (fractional order) derivatives, e.g., Caputo derivative, Hadamard
derivative, Caputo-Hadamard derivative, etc. plays an important role and are
useful in various areas of system design, modeling, and engineering applications
[5, 6, 7, 8, 9, 10, 11]. It allows to predict the local behaviours of simple dynamics of
nonlinear fractional order systems as well as provides a platform for controlling the
complicated dynamics of various systems. In the literature, the asymptotic stabil-
ity and control problems of linear systems receive significant research importance
of various researchers (see, e.g., [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]). In
these works, they showed that, with the introduction of various control methods,
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the unstable responses to systems can be effectively stabilized under some rea-
sonable analytic conditions. The introduction of control inputs to such systems in
many situations automatically gives rise to the representation of a nonhomogeneous
fractional order system.

Most of all these existing works in the literature only focused on the stability
and stabilization problem of the commensurate fractional linear time-invariant (au-
tonomous) system. Recently, in the work in [24], an asymptotic convergence result
has been established for a scalar nonhomogeneous commensurate linear fractional
differential equation with constant coefficient. In [25], an asymptotic boundedness
result has been derived for a nonhomogeneous commensurate linear fractional or-
der time-varying system using quadratic Lyapunov function. In [26], an asymptotic
convergence criterion has been proposed for the delayed nonhomogeneous incom-
mensurate linear fractional order system with constant coefficients.

However, we observe that the response behaviour of the nonhomogeneous in-
commensurate linear fractional system with time-varying coefficient has not been
investigated yet. This may be due to the fact that incommensurate order sys-
tems are not easier than that of their commensurate counterpart, and hence the
system analysis is difficult. On the other hand, finding the closed form solutions
to such systems seems very difficult in contrast to its time-invariant ones. For
the analytic solutions to autonomous nonhomogeneous/homogeneous Caputo frac-
tional order systems with constant coefficients, we refer the readers to the works in
[27, 28, 29, 30]. Consequently, we are often interested in reasonable mathematical
conditions, as well as a new theory, to draw some conclusions about the responses
of such time-varying systems without having the knowledge of its exact solutions.
It should be pointed out that most of the existing research so far dealt with the
case of fractional order systems that involved zero initial time instant, i.e, the lower
limit associated with the derivative operator is set at 0. This could be perhaps
due to the lack of advanced mathematical tools available in the current literature
to tackle issues of non-zero initial time instant. Recently, in [11], a new modified
Laplace integral transform and a new modified Mellin transform have been intro-
duced that allows one to specify the initial conditions at a non-zero time instant for
Caputo derivative case. But for its applications to incommensurate order systems
that involve nonzero time instant, some advanced properties of such transforms are
often required for obtaining reasonable asymptotic stability criteria.

Recently, in [31], the authors have developed a few asymptotic stability results for
homogeneous incommensurate fractional nonautonomous (time-varying) systems
using the methodology of fractional comparison method [32]. In that work, many
different analytic criteria for such systems have been established for the asymptotic
analysis of the responses to such systems. But the results of the existing works
cannot be applied directly to the incommensurate nonhomogeneous time-varying
systems. The purpose of this work is to develop some asymptotic convergence
criteria for nonhomogeneous incommensurate linear time-varying fractional order
system

CDα̂
0,tx(t) = A(t)x(t) + f(t), (1.1)

subject to the initial condition x(0) = x0, where x(t) = (x1(t), · · · , xn(t))
T ∈ Rn,

CDα̂
0,tx(t) = (CDα1

0,tx1(t), · · · ,CDαn
0,txn(t))

T , fractional orders α1, α2, · · · , αn ∈ (0, 1],
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the continuous matrix A(t) = (aij(t)) ∈ Rn×n and some suitable function f(t) =

(f1(t), · · · , fn(t))T ∈ Rn.
First, we develop a new lemma that deals with the nonnegativity of fractional

differential inequality. Then by making the use of Laplace transform, we develop a
new convergence theorem for autonomous incommensurate fractional systems along
with a forcing term. Using these results along with the comparison methodology
[32], new asymptotic convergence theorems are established for nonhomogeneous in-
commensurate order linear time-varying systems whenever the coefficient matrix is
in both standard form and block matrix form. Based on these theorems, various
simplified analytic conditions are proposed and it is shown that the responses of
such time-varying systems converge to the point 0. Finally, we consider an elec-
trical time-varying circuit system to demonstrate the potential application of some
proposed theoretical results.

This paper is organized as follows. In Section 2, some known definitions and
a few new results are introduced. In Section 3, the main asymptotic convergence
results are proposed. In Section 4, an electrical circuit system is considered and a
few results are demonstrated. In Section 5, the conclusions are drawn.

2. Preliminary definitions and new results

The following standard notations are used in this work.
R+ is the set of positive real numbers, Q+ the set of positive rational numbers,
Z+ the set of positive integers, arg(z) the argument of a complex number z ∈ C
and Y T is the transpose of the vector or matrix Y . The symbol i = 1(1)n means
i = 1, 2, · · · , n. Given a vector x ∈ Rn, x ≥ 0 means its components are non-
negative. Given two vectors x, y ∈ Rn, x ≤ y means the inequality xi ≤ yi holds for
i = 1(1)n. gcd and lcm, respectively, mean the greatest common divisor and least
common multiple. For a vector x ∈ Rn, ∥x∥ denotes the Euclidean norm. Given a
real symmetric matrix M ∈ Rn×n, λmax(M) and λmin(M), respectively, mean its
maximal and minimal eigenvalues.

Definition 2.1. [1, 2, 3] The α-order Riemann-Liouville integral of ξ : [0,∞) → R
is defined by

RLD−α
0,t ξ(t) =

1

Γ(α)

∫ t

0

(t− τ)
α−1

ξ(τ)dτ, t > 0, (2.1)

where α ∈ R+ and Γ(α) =
∫∞
0

e−ttα−1dt is the Gamma function.

Definition 2.2. [1, 2, 3] The α-order, with α ∈ R+, Caputo derivative of ξ :
[0,∞) → R is defined by

CDα
0,tξ(t) =

{
RLD

−(n−α)
0,t

(
dnξ(t)
dtn

)
, if α ∈ (n− 1, n) ,

dnξ(t)
dtn , if α = n,

(2.2)

where n ∈ Z+.

Definition 2.3. [1] The Laplace transform of a function ξ : [0,∞) → R is defined
as

L(ξ(t)) =
∫ ∞

0

e−stξ(t)dt. (2.3)

Here, we introduce the following new definition.
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Definition 2.4. A function g = (g1, · · · , gn)T : R × Rn → Rn is of class W ∗ if,
for every fixed t ∈ R, there exist some h = (h1, · · · , hn)

T : R × Rn → Rn with
gi(t, u) ≤ hi(t, û), i = 1(1)n, for all u, û ∈ Rn such that uj ≤ ûj, ui = ûi,
j = 1(1)n, i ̸= j, where ui denotes the i-th component of u.

When we consider g = h : R× Rn → Rn, Definition 2.4 reduces to the class W
function (see [33]).

Definition 2.5. [34] A matrix A ∈ Rn×n is called a Metzler matrix if its off
diagonal elements are non-negative.

We introduce here a new comparison lemma.

Lemma 2.1. Let ξ(t) be the solution to the inequality

CDα̂
0,tξ(t) ≤ Aξ(t) + g1(t), ξ(0) = ξ0 ≥ 0, (2.4)

where CDα̂
0,tξ(t) = (CDα1

0,tξ1(t), · · · ,CD
αn
0,t ξn(t))

T , αi ∈ (0, 1] for i = 1(1)n, A =

(kij) ∈ Rn×n is a Metzler matrix with negative diagonal elements and g1 : [0,∞) →
Rn is a nonnegative continuous function. Let η(t) be the solution to the system

CDα̂
0,tη(t) = Aη(t) + g2(t), η(0) ≥ ξ(0), (2.5)

where g2 : [0,∞) → Rn is a nonnegative continuous function. If the inequality
g1(t) ≤ g2(t) holds for all t ≥ 0, then the inequality 0 ≤ ξ(t) ≤ η(t) holds for all
t ≥ 0.

Proof. 1) Set W (t) = CDα̂
0,tξ(t) − Aξ(t) − g1(t). Define Z(t) = η(t) − ξ(t). Then,

by using (2.5), one gets a new system

CDα̂
0,tZ(t) = AZ(t) + g2(t)− g1(t)−W (t), (2.6)

with initial condition Z(0) = η(0) − ξ(0) ≥ 0. If the inequality g1(t) ≤ g2(t)
holds, then the solution Z(t) to the system (2.6) is non-negative [26, 34], since the
matrix A is Metzler and W (t) ≤ 0. As a result, the solution y(t) to system (2.5) is
nonnegative. Hence, the inequality 0 ≤ ξ(t) ≤ η(t) holds for all t ≥ 0. �
Proof. 2) Consider the inequality (2.4) with the equality (2.5). Since the matrix
A is Metzler with negative diagonal elements and if the inequality g1(t) ≤ g2(t)
holds for all t ≥ 0, the function g(u) = Au+ g1(t) is clearly of class W ∗. Thus, it
follows from fractional comparison principle [32] that 0 ≤ ξ(t) ≤ η(t), ∀t ≥ 0. This
completes the proof. �

Next, we introduce the following definition.

Definition 2.6. The system (1.1) is said to globally asymptotically converge (GAC)
to 0 if ∥x(t)∥ → 0 as t tends to ∞ for any value of x(0).

Then, we introduce the following new result.

Theorem 2.1. Consider the nonhomogeneous fractional order system
CDα̂

0,ty(t) = Ay(t) + g3(t), y(0) = y0, (2.7)

where y(t) = (y1(t), · · · , yn(t))T ∈ Rn, CDα̂
0,ty(t) = (CDα1

0,ty1(t), · · · ,CD
αn
0,t yn(t))

T ,

fractional orders α1, α2, · · · , αn ∈ (0, 1], the matrix A = (aij) ∈ Rn×n is constant
and the known function g3 : [0,∞) → Rn is continuous, differentiable and bounded.
If the conditions
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C1) all the roots of characteristic equation

det
[
diag

(
sα1 , sα2 , · · · , sαn

)
−A

]
= 0 (2.8)

satisfy |arg(s)| > π
2 ,

C2) lim
t→∞

g3(t) = 0,

are satisfied, then the system (2.7) is GAC to 0.

Proof. Taking Laplace transform on system (2.7), one gets[
diag

(
sα1 , sα2 , · · · , sαn

)
−A

]
Y (s) = G3(s)−

[
diag

(
sα1−1, sα2−1, · · · , sαn−1

)]
y(0)

(2.9)

where L(y(t)) = Y (s) and L(g3(t)) = G3(s). Then, multiplying both sides of (2.9)
by s gives[
diag

(
sα1 , sα2 , · · · , sαn

)
−A

]
· sY (s) = sG3(s)−

[
diag

(
sα1 , sα2 , · · · , sαn

)]
y(0).
(2.10)

Now if condition C1) holds, then one can consider the system (2.10) in Re(s) ≥ 0
and get

sY (s) =
[
diag

(
sα1 , sα2 , · · · , sαn

)
−A

]−1 (
sG3(s)−

[
diag

(
sα1 , sα2 , · · · , sαn

)]
y(0)

)
.

(2.11)

Further, if condition C2) holds, then by using the Laplace final value theorem
[28, 35] in (2.11), one obtains

lim
t→∞

y(t) = 0. (2.12)

�
Corollary 2.1. Consider the nonohomogeneous system (2.7) with αk = ℓkα ∈
(0, 1], k = 1(1)n, where ℓk = uk

vk
∈ Q+ with gcd(uk, vk) = 1, k = 1(1)n, and

α ∈ R+. Let M = lcm(v1, v2, · · · , vn). Under the assumptions of Theorem 2.1, if
the conditions

C1) all the roots of

det
[
diag

(
λMℓ1 , λMℓ2 , · · · , λMℓn

)
−A

]
= 0 (2.13)

satisfy |arg(λ)| > π
2M α,

C2) lim
t→∞

g3(t) = 0,

are satisfied, then the system (2.7) is GAC to 0.

Proof. Take s
α
M = λ. Then, condition (2.8) gets changed to (2.13). Consequently,

the result follows from Theorem 2.1. �
The following results are consequences of Corollary 2.1.

Corollary 2.2. Consider the system (2.7) with α1 = 1
nα, α2 = 2

nα, · · · , αn = n
nα,

and α ∈ (0, 1]. Under the assumptions of Theorem 2.1, if the conditions

C1) all the roots of

det
[
diag

(
λ, λ2, · · · , λn

)
−A

]
= 0 (2.14)

satisfy |arg(λ)| > π
2nα,

C2) lim
t→∞

g3(t) = 0,

are satisfied, then the system (2.7) is GAC to 0.
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Corollary 2.3. Consider the system (2.7) with α1 = n
nα, α2 = n−1

n α, · · · , αn =
1
nα, and α ∈ (0, 1]. Under the assumptions of Theorem 2.1, if the conditions

C1) all the roots of

det
[
diag

(
λn, λn−1, · · · , λ

)
−A

]
= 0 (2.15)

satisfy |arg(λ)| > π
2nα,

C2) lim
t→∞

g3(t) = 0,

are satisfied, then the system (2.7) is GAC to 0.

3. Main asymptotic theory

In this section, we develop the main theory of nonhomogeneous time-varying
system (1.1) by considering two of its generic forms. Here we consider the system
(1.1) when the coefficient matrix takes

(i) the standard form, i.e., the entries of the coefficient matrix can be viewed
as scalar functions,

(ii) the block matrix form, i.e., the entries of the coefficient matrix can be
viewed as block matrices.

Next, the asymptotic convergence conditions to such forms are presented in
different subsections.

3.1. Standard form. Let the system (1.1) be of the form
CDα1

0,tx1(t)
...

CDαn
0,txn(t)

 =

a11(t) · · · a1n(t)
...

. . .
...

an1(t) · · · ann(t)


x1(t)

...
xn(t)

+

f1(t)
...

fn(t)

 (3.1)

with respect to the initial values

xi(0) = xi0, i = 1(1)n. (3.2)

Assumption 3.1. Assume the following for the system (3.1):

A1) aii(t) ≤ −δii, δii > 0, ∀t ≥ 0, i = 1(1)n,
A2) |aij(t)| ≤ δij, δij ≥ 0, ∀t ≥ 0, i ̸= j ∈ {1, 2, · · · , n}.

Assumption 3.2. The vector function f of system (3.1) satisfies the following:

A1) f is continuous, differentiable and bounded.
A2) lim

t→∞
f(t) = 0.

Now we define the following:

(i) the constants:

cii = 2δii −
n∑

j=1, j ̸=i

δij + 1 for i = 1, 2, · · · , n, (3.3)

(ii) the matrix:

∆ =


−c11 δ12 · · · δ1n
δ21 −c22 · · · δ2n
... · · ·

. . .
...

δn1 δn2 · · · −cnn

 . (3.4)
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We introduce the main asymptotic convergence theorem for (3.1).

Theorem 3.1. Consider the nonhomogeneous system (3.1) with α1, α2, · · · , αn ∈
(0, 1]. Let Assumptions 3.1 and 3.2 hold. Consider the constants and the matrix
given by (3.3) and (3.4), respectively. If the conditions

C1) cii > 0 for i = 1(1)n,
C2) all the roots of

det
[
diag

(
sα1 , sα2 , · · · , sαn

)
−∆

]
= 0 (3.5)

lie in the sector |arg(s)| > π
2 ,

are true, then the system (3.1)-(3.2) is GAC to 0.

Proof. Take V (t) =
n∑

i=1

Vi(t), where Vi(t) = x2
i (t) for i = 1, 2, · · · , n. Then, by

using Lemma 1 of [36] for the system (3.1), one gets
CDαi

0,tVi(t) ≤ 2 (ai1(t)xi(t)x1(t) + · · ·+ ain(t)xi(t)xn(t)) + 2xi(t)fi(t)

≤ 2aii(t)x
2
i (t) + 2

n∑
j=1, j ̸=i

|aij(t)||xi(t)||xj(t)|+ 2|xi(t)||fi(t)|

≤ 2aii(t)x
2
i (t) +

n∑
j=1, j ̸=i

|aij(t)|
(
x2
i (t) + x2

j (t)
)
+ x2

i (t) + f2
i (t)

≤ −

2δii −
n∑

j=1, j ̸=i

δij + 1

x2
i (t) +

n∑
j=1, j ̸=i

δijx
2
j (t) + f2

i (t) (3.6)

= −ciix
2
i (t) +

n∑
j=1, j ̸=i

δijx
2
j (t) + f2

i (t), i = 1(1)n, (3.7)

where the Assumption 3.1 and values of cii’s are, respectively, used in (3.6) and

(3.7). Set V̄ (t) = (V1(t), · · · , Vn(t))
T

and h(t) =
(
f2
1 (t), · · · , f2

n(t)
)T

. Conse-
quently, one gets the vector-matrix fractional differential inequality

CDα̂
0,tV̄ (t) ≤ ∆V̄ (t) + h(t) (3.8)

with V̄ (0) =
(
x2
1(0), · · · , x2

n(0)
)T

. Consider a new vector-matrix fractional com-
parison system

CDα̂
0,tŪ(t) = ∆Ū(t) + h(t) (3.9)

with Ū(0) = V̄ (0). In view of condition C1), by Lemma 2.1, it follows that

0 ≤ V̄ (t) ≤ Ū(t). (3.10)

Under Assumption 3.2, if condition C2) is satisfied, then by Theorem 2.1, one can
conclude from (3.9) that lim

t→∞
Ū(t) = 0. As a result, one can get from (3.10) that

lim
t→∞

V̄ (t) = 0. Thus, it is established that lim
t→∞

∥x(t)∥ = 0. Hence the result is

proved. �
Corollary 3.1. Consider the nonhomogeneous system (3.1) with αk = ℓkα ∈ (0, 1]
for k = 1(1)n, where ℓk = uk

vk
∈ Q+. Set M = lcm(v1, v2, · · · , vn). Under Assump-

tions 3.1 and 3.2 along with the constants and the matrix given by (3.3) and (3.4),
respectively, if the conditions
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C1) cii > 0 for i = 1(1)n,
C2) all the roots of

det
[
diag

(
λMℓ1 , λMℓ2 , · · · , λMℓn

)
−∆

]
= 0 (3.11)

lie in the sector |arg(λ)| > π
2M α,

hold, then the system (3.1)-(3.2) is GAC to 0.

Corollary 3.2. Consider (3.1) with α1 = 1
nα, α2 = 2

nα, · · · , αn = n
nα, where

α ∈ (0, 1]. Under Assumptions 3.1 and 3.2 along with the constants and the matrix
given by (3.3) and (3.4), respectively, if the following conditions hold:

C1) cii > 0, i = 1(1)n,
C2) all the characteristic roots of polynomial

det
[
diag

(
λ, λ2, · · · , λn

)
−∆

]
= 0 (3.12)

lie in the sector |arg(λ)| > π
2nα,

then the system (3.1)-(3.2) is GAC to 0.

Corollary 3.3. Consider the system (3.1) with α1 = n
nα, α2 = n−1

n α, · · · , αn =
1
nα, where α ∈ (0, 1]. Under Assumptions 3.1–3.2 along with the constants in (3.3)
and matrix (3.4), if the conditions

C1) cii > 0, i = 1(1)n,
C2) all the characteristic roots of polynomial

det
[
diag

(
λn, λn−1, · · · , λ

)
−∆

]
= 0 (3.13)

lie in the sector |arg(λ)| > π
2nα,

hold, then the system (3.1)-(3.2) is GAC to 0.

3.2. Block matrix form. Suppose the system (1.1) is represented in the form
CDα1

0,tx1(t)
...

CDαd
0,txd(t)

 =

A11(t) · · · A1d(t)
...

. . .
...

Ad1(t) · · · Add(t)


x1(t)

...
xd(t)

+

f1(t)
...

fd(t)

 , (3.14)

x1(0) = x0
1, · · · , xd(0) = x0

d, (3.15)

where xi(t) = (xi1(t), xi2(t), · · · , xini
(t))

T ∈ Rni , the matrices Aij(t) ∈ Rni×nj are
continuous on [0,∞) for i, j ∈ {1, 2, · · · , d}, α1, α2, · · · , αd ∈ (0, 1], fi ∈ Rni and
d∑

i=1

ni = n.

Assumption 3.3. Assume that there exist symmetric and positive definite matrices
Pi ∈ Rni×ni such that

A1) the diagonal blocks of (3.14) satisfy

PiAii(t) +AT
ii(t)Pi = Qii(t), λmax (Qii(t)) ≤ −δii, δii > 0, ∀t ≥ 0, i = j, (3.16)

A2) the following relations hold for (3.14):

AT
ij(t)Aij(t) = Qij(t), λmax (Qij(t)) ≤ δij , δij ≥ 0, ∀t ≥ 0, i ̸= j, (3.17)

with i, j ∈ {1, 2, · · · , d}.

Assumption 3.4. The components of vector function f of system (3.14) satisfy
the following:
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A1) f1, · · · , fd are continuous, differentiable and bounded.
A2) lim

t→∞
fi(t) = 0, where i = 1(1)d.

Next, we set up the following:

(i) Define

cij =

{
δii−dλmax(P

T
i Pi)

λmax(Pi)
, for i = j,

δij
λmin(Pj)

, for i ̸= j,
(3.18)

where i = 1(1)d and j = 1(1)d.
(ii) Define

∆C =


−c11 c12 · · · c1d
c21 −c22 · · · c2d
...

...
. . .

...
cd1 cd2 · · · −cdd

 . (3.19)

Here, we introduce the main asymptotic convergence theorem for the system
(3.14).

Theorem 3.2. Consider the nonhomogeneous system (3.14) with α1, · · · , αd ∈
(0, 1]. Under Assumptions 3.3–3.4 along with the constants (3.18) and the matrix
(3.19), if the conditions

C1) cii > 0 for i = 1(1)d,
C2) all the characteristic roots of

det
[
diag

(
sα1 , · · · , sαd

)
−∆C

]
= 0 (3.20)

lie in the sector |arg(s)| > π
2 ,

hold, then the system (3.14)-(3.15) is GAC to 0.

Proof. Let V (t) =
d∑

i=1

Vi(t) =
d∑

i=1

xT
i (t)Pixi(t), where Pi ∈ Rni×ni ’s are symmetric

positive definite matrices for i = 1(1)d. Using Lemma 4 of [37] for the system
(3.14), one can get

CDαi
0,tVi(t) ≤ xT

i (t)Pi
CDαi

0,txi(t) +
(
CDαi

0,txi(t)
)T

Pixi(t)

= xT
i (t)Pi [Ai1(t)x1(t) + · · ·+Aid(t)xd(t)]

+ [Ai1(t)x1(t) + · · ·+Aid(t)xd(t)]
T
Pixi(t) + 2xT

i (t)Pifi(t)

= xT
i (t)

[
PiAii(t) +AT

ii(t)Pi

]
xi(t) + 2xT

i (t)Pi

 d∑
j=1,j ̸=i

Aij(t)xj(t)


+ 2xT

i (t)Pifi(t)

≤ xT
i (t)Qii(t)xi(t) + dxT

i (t)P
T
i Pixi(t) +

 d∑
j=1,j ̸=i

xj(t)
T
Qij(t)xj(t)


+ fT

i (t)fi(t)

≤ −
[
δii − dλmax(P

T
i Pi)

]
xT
i (t)xi(t) +

 d∑
j=1,j ̸=i

δijxj(t)
T
xj(t)


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+ fT
i (t)fi(t) (3.21)

≤ −
[
δii − dλmax(P

T
i Pi)

]
λmax(Pi)

Vi(t) +
d∑

j=1,j ̸=i

δij
λmin(Pj)

Vj(t) + fT
i (t)fi(t)

= −ciiVi(t) +

d∑
j=1,j ̸=i

cijVj(t) + fT
i (t)fi(t), (3.22)

for i = 1(1)d, where Assumption 3.3 and cij from (3.18) are used in (3.21) and

(3.22). Set V̄ (t) = (V1(t), · · · , Vd(t))
T

and h̄(t) =
(
fT
1 (t)f1(t), · · · , fT

d (t)fd(t)
)T

.
Then, one gets the vector-matrix fractional differential inequality

CDα̂
0,tV̄ (t) ≤ ∆C V̄ (t) + h̄(t) (3.23)

with initial conditions

V̄ (0) =
(
xT
1 (0)P1x1(0), · · · , xT

d (0)Pdxd(0)
)T

. (3.24)

Now, consider its vector-matrix comparison system
CDα̂

0,tŪ(t) = ∆CŪ(t) + h̄(t), Ū(0) = V̄ (0). (3.25)

If condition C1) is satisfied, then Lemma 2.1 gives

0 ≤ V̄ (t) ≤ Ū(t). (3.26)

Now under Assumption 3.4, if condition C2) holds, then by Theorem 2.1, one can
conclude from (3.25) that limt→∞ Ū(t) = 0. Consequently, it follows from (3.26)
that limt→∞ V̄ (t) = 0. It implies that limt→∞ ∥x(t)∥ = 0. This completes the
proof. �
Corollary 3.4. Consider the nonhomogeneous system (3.14) with αk = ℓkα ∈ (0, 1]
for k = 1(1)d, where ℓk = uk

vk
∈ Q+ with gcd(uk, vk) = 1, and α ∈ R+. Set

M = lcm(v1, v2, · · · , vd). Let Assumptions 3.3 and 3.4 hold. Moreover, consider
the constants defined by (3.18) and the matrix given by (3.19). If the conditions

C1) cii > 0 for i = 1(1)d,
C2) all the characteristic roots of

det
[
diag

(
λMℓ1 , λMℓ2 , · · · , λMℓd

)
−∆C

]
= 0 (3.27)

lie in the sector |arg(λ)| > π
2M α,

are satisfied, then the system (3.14)-(3.15) is GAC to 0.

Corollary 3.5. Consider (3.14) with α1 = 1
dα, α2 = 2

dα, · · · , αd = d
dα where

α ∈ (0, 1]. Under Assumptions 3.3 and 3.4 along with the constants (3.18) and the
matrix (3.19), if the conditions

C1) cii > 0 for i = 1(1)d,
C2) all the roots of polynomial equation

det
[
diag

(
λ, λ2, · · · , λd

)
−∆C

]
= 0 (3.28)

lie in the sector |arg(λ)| > π
2dα,

are satisfied, then the system (3.14)-(3.15) is GAC to 0.

Corollary 3.6. Consider the system (3.14) with α1 = d
dα, α2 = d−1

d α, · · · , αd =
1
dα, where α ∈ (0, 1]. Under Assumptions 3.3 and 3.4 along with the constants
(3.18) and the matrix (3.19), if the conditions
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C1) cii for i = 1(1)d,
C2) all the characteristic roots of polynomial

det
[
diag

(
λd, λd−1, · · · , λ

)
−∆C

]
= 0 (3.29)

lie in the sector |arg(λ)| > π
2dα,

are true, then the system (3.14)-(3.15) is GAC to 0.

4. An illustrative example

This section demonstrates some proposed theoretical results on an electrical
time-varying circuit system. The standard time-varying circuit system that involves
integer derivatives was addressed in the work in [38]. An extension to the standard
commensurate fractional order time-varying circuit system was proposed in [39].
Now we consider the modified standard incommensurate version of electrical circuit
system (

CDα1
0,ti1(t)

CDα2
0,ti2(t)

)
= A(t)

(
i1(t)
i2(t)

)
+B(t)

(
e1(t)
e2(t)

)
(4.1)

with respect to the initial conditions ik(0) = ik0 for k = 1, 2, where fractional orders
α1, α2 ∈ (0, 1], currents ik(t) for k = 1, 2, source voltages ek(t) ≥ 0 for k = 1, 2, the
coefficient matrices

A(t) =

(
−R1(t)+R3(t)

L1(t)
R3(t)
L1(t)

R3(t)
L2(t)

−R2(t)+R3(t)
L2(t)

)
and B(t) =

(
1

L1(t)
0

0 1
L2(t)

)
with resistance

Rk(t) ≥ 0 for k = 1, 2, 3 and inductance Lk(t) ≥ 0 for k = 1, 2.

Here we set up the following circuit system parameters:

R1(t) = 5 + e−t + 2et, R2(t) = 3 + sin(t) + 2e2t, R3(t) = 1 + e−t,

L1(t) = et, L2(t) = e2t,

e1(t) = sin(t) + 2, e2(t) = sin(2t) + 3.

Clearly, the system (4.1) is of the form (3.1). We now demonstrate the following
two fractional order cases for the system (4.1).

Case (i): Let α1 =
√
7
5 and α2 =

√
7
3 . Here the application of Corollary 3.1 is

applied to the system (4.1). Take δ11 = 2, δ12 = 2, δ21 = 2 and δ22 = 2. Observe
that Assumptions 3.1 and 3.2 are satisfied. Consider the constants (see (3.3)) as

c11 = 2δ11 − δ12 + 1 = 3,

c22 = 2δ22 − δ21 + 1 = 3.

It shows that condition C1) holds. Set ℓ1 = 1
5 , ℓ2 = 1

3 , α =
√
7 and M = 15. Then,

equation (3.11) becomes

λ8 + 3λ5 + 3λ3 + 5 = 0. (4.2)

Consequently, one gets

min
i
{|arg(λi)|} ≈ 0.7146, (4.3)

where λi’s are the roots of (4.2) for i = 1(1)8. Observe that the estimate (4.3)

is greater than π
2M α = π

30

√
7 ≈ 0.2771. Thus, condition C2) of Corollary 3.1 also

holds. As a result, by Corollary 3.1, one ensures that the system (4.1) should be
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GAC to 0. Consequently, the responses i1(t) and i2(t) to the system (4.1) must
approach to 0 as time increases to ∞.

Case (ii): Let α1 = 9
20 and α2 = 9

10 . Here we apply Corollary 3.2 to system (4.1)
to examine the state response. In this case, the following parameters are chosen:
δ11 = 2, δ12 = 2, δ21 = 2, δ22 = 2. Clearly, Assumptions 3.1 and 3.2 are satisfied.
Observe that condition C1) of Corollary 3.2 is satisfied, since c11 = 3 > 0 and
c22 = 3 > 0 (see (3.3)). Set α = 9

10 and n = 2. Then, equation (3.12) becomes

λ3 + 3λ2 + 3λ+ 5 = 0. (4.4)

Solving equation (4.4), one gets

min
i
{|arg(λi)|} ≈ 1.7198, (4.5)

where λi’s are the roots of (4.4) for i = 1, 2, 3. Clearly, the obtained estimate in
(4.5) is greater than π

2nα = π
4 × 9

10 ≈ 0.7069. Thus, condition C2) of Corollary 3.2
is also satisfied. As a result, by Corollary 3.2, the system (4.1) should be GAC to
0. Hence, the responses i1(t) and i2(t) to the system (4.1) must approach 0 as time
approaches ∞.

5. Conclusions

This work proposes some theoretical asymptotic convergence criteria for the anal-
ysis of the nonhomogeneous incommensurate fractional order linear time-varying
system. It is shown that, whenever the coefficient matrix of such a system and
the forcing function satisfy some prior assumptions, then the conditions of the pro-
posed results guarantee the convergence of the responses to such systems to 0. The
assumption of coefficient matrix enables the construction of a suitable constant
Metzler matrix and while the conditions of proposed results guarantee the limiting
behavior of state responses to such systems. Some asymptotic convergence results
of the proposed theory are successively demonstrated on an electrical time-varying
circuit system to show the effectiveness.
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