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MULTIPLE POSITIVE SOLUTIONS FOR BOUNDARY VALUE

PROBLEMS WITH FRACTIONAL ORDER

MOUFFAK BENCHOHRA, BENAOUDA HEDIA

Abstract. In this paper we investigate the existence of multiple solutions for
nonlinear boundary value problems with fractional order differential equations.
We shall rely on the Leggett-Williams fixed point theorem.

1. Introduction

This paper is concerned with the existence of three nonnegative solutions for
boundary value problems (BVP for short) of fractional order functional differential
equations. We consider the BVP of the form :

cDαy(t) + f(t, y(t)) = 0, for each, t ∈ J = [0, T ], 1 < α ≤ 2, (1)

y(0)− y′(0) =

∫ T

0

g(s, y(s))ds, (2)

y(T ) + y′(T ) =

∫ T

0

h(s, y(s))ds, (3)

where cDα is the Caputo fractional derivative, f, g, h : J × R → [0,+∞) are con-
tinuous functions.

Differential equations of fractional order have recently proved to be valuable
tools in the modeling of many phenomena in various fields of science and engineer-
ing. Indeed, we can find numerous applications in viscoelasticity, electrochemistry,
control, porous media, electromagnetic [6, 17, 27, 28]. The existence of positive
solutions for kinds of boundary-value problems (BVPs) of fractional differential
equations has been studied recently by many authors, and lot of excellent results
have been obtained for both two-point BVPs and nonlocal BVPs by means of fixed
point index theory, see [11, 12, 15, 17, 18, 30]. For three noteworthy papers dealing
with the integral operator and the arbitrary fractional order differential operator,
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see [22]. There has been a significant development in fractional differential equa-
tions in recent years see the books by Abbas et al. [1], Lakshmikantham et al. [23],
and the papers by [5, 24], and the references therein.

Boundary value problems with integral boundary conditions constitute a very
interesting and important class of problems. These include two-point, three-point,
multipoint and nonlocal boundary value problems as special cases. Integral bound-
ary conditions appear in population dynamics [9] and cellular systems [2]. Moreover
boundary value problems with integral boundary conditions have been studied by a
number of authors such as, for instance Benchohra et al. [8, 7], Denche and Kourta
[10], Infante [18], Jankowskii [19], Karakostas and Tsamatos [20], and Khan [21].
Agarwal and O’Regan [3] considered the existence of three nonnegative solutions
to a class of impulsive differential equations and they established existence of three
solutions to integral and discrete equations. Positive solutions of differential, dif-
ference and integral equations have considered in [4]. Some existence results were
given for the problem (1)-(2) with α = 1 by Tisdell in [29]. The existence of multi-
ple solutions for differential, difference and integral equations has been investigated
by several authors (see, for instance [3] and the references cited therein).

This paper is organized as follows. In Section 2, we will recall briefly some
basic definitions and preliminary facts which will be used throughout the following
sections. In Section 3, we shall provide sufficient conditions ensuring the existence of
three nonnegative solutions for problem (1)− (3) via an application of the Leggett-
Williams fixed point theorem in cones [25]. Finally in Section 4 we give an example
to illustrate the theory presented in the previous sections.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which
are used throughout this paper. By C(J,R) we denote the Banach space of all
continuous functions from J into R with the norm

∥y∥∞ := sup{|y(t)| : t ∈ J}.

L∞(J,R) denotes the Banach space of measurable and essentially bounded functions
with norm

∥y∥L∞ = inf{d > 0 : |y(t)| ≤ d, a.e. t ∈ J}.
Let (E, ∥.∥) be a Banach space and C ⊂ E be a cone in E. by a concave, nonnegative
and continuous functional ψ on C, we mean a continuous mapping

ψ : C → [0,∞)

with

ψ(λx+ (1− λ)y) ≥ λψ(x) + (1− λ)ψ(y) for all x, y ∈ C and λ ∈ [0, T ]

For K,L, r ≥ 0 constants with C and ψ as above, let

CK = {y ∈ C : ∥y∥ < K}

and

C(ψ,L,K) = {y ∈ C : ψ(y) ≥ L and ∥y∥ ≤ K}.
Our consideration is based on the following fixed point theorem given by Leggett

and Williams in 1979 [25] (see also Guo and Lakshmikantham [16]).
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Theorem 2.1. Let E be a Banach space, C ⊂ E a cone in E and R > 0 a
constant. Suppose there exists a concave nonnegative continuous functional on C
with ψ(y) ≤ ∥y∥ for all y ∈ CR and let N : CR → CR be a continuous compact
map. Assume that there are numbers r, L and K with 0 < r < L < K ≤ R such
that

(A1) {y ∈ C(ψ,L,K) : ψ(y) > L} ̸= ∅ and ψ(N(y)) > L for all y ∈
C(ψ,L,K);

(A2) ∥N(y)∥ < r for all y ∈ Cr;
(A3) ψ(N(y)) > L for all y ∈ C(ψ,L,R) with ∥N(y)∥ > K.

Then N has at least three fixed points y1, y2, y3 in CR. Furthermore, we have

y1 ∈ Cr, y2 ∈ {y ∈ C(ψ,L,R) : ψ(y) > L}

and

y3 ∈ CR − {C(ψ,L,R) ∪ Cr}.

Definition 2.2. ([13]-[14]). The fractional (arbitrary) order integral of the function
h ∈ L1([a, b],R+) of order α ∈ R+ is defined by

Iαa h(t) =

∫ t

a

(t− s)α−1

Γ(α)
h(s)ds,

where Γ is the gamma function. When a = 0, we write Iαh(t) = h(t)∗φα(t), where

φα(t) =
tα−1

Γ(α)
for t > 0, and φα(t) = 0 for t ≤ 0, and φα → δ(t) as α → 0, where

δ is the delta function.

Definition 2.3. ([13]-[14]). For a function h given on the interval [a, b], the αth
Riemann-Liouville fractional-order derivative of h, α ∈ (0, 1), is defined by

(Dα
a+h)(t) =

dαh(t)

dtα

=
1

Γ(1− α)

d

dt

∫ t

a

(t− s)−αh(s)ds

=
d

dt
I1−α
a h(t).

Definition 2.4. For a function h given on the interval [a, b], the Caputo fractional-
order derivative of h, α ∈ (0, 1), is defined by

(cDα
a+h)(t) =

(
Dα

a+[h(x)− h(a)])
(
t).

3. Existence of Solutions

Let us start by defining what we mean by a solution of the problem (1)–(3).

Definition 3.1. A function y ∈ C2(J,R) is said to be a solution of (1)-(3) if
y satisfies the equation cDαy(t) = f(t, y(t)) on J , and conditions y(0) − y′(0) =∫ T

0

g(s, y(s))ds and y(T ) + y′(T ) =

∫ T

0

h(s, y(s))ds.

For the existence of solutions for the problem (1)-(3), we need the following
auxiliary lemma:
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Lemma 3.2. [30] Let α > 0, then the differential equation

cDαh(t) = 0

has solutions h(t) = c0+c1t+c2t
2+. . .+cn−1t

n−1, ci ∈ R, i = 0, 1, 2, . . . , n−1, n =
[α] + 1.

Lemma 3.3. [30] Let α > 0, then

IαcDαh(t) = h(t) + c0 + c1t+ c2t
2 + . . .+ cn−1t

n−1

for some ci ∈ R, i = 0, 1, 2, . . . , n− 1, n = [α] + 1.

Let σ be a continuous function and consider the linear problem

cDαy(t) = σ(t), t ∈ J, (4)

y(0)− y′(0) =

∫ T

0

ρ1(s)ds (5)

y(T ) + y′(T ) =

∫ T

0

ρ2(s)ds, (6)

then

Lemma 3.4. [7] The problem (9)-(10) has a unique solution given by:

y(t) = P (t) +

∫ T

0

G(t, s)σ(s)ds, (7)

where

P (t) =
(T + 1− t)

T + 2

∫ T

0

ρ1(s)ds+
(t+ 1)

T + 2

∫ T

0

ρ2(s)ds (8)

and

G(t, s) =


(1 + t)(T − s)α−1

(T + 2)Γ(α)
+

(1 + t)(T − s)α−2

(T + 2)Γ(α− 1)
− (t− s)α−1

Γ(α)
, 0 ≤ s ≤ t

(1 + t)(T − s)α−1

(T + 2)Γ(α)
+

(1 + t)(T − s)α−2

(T + 2)Γ(α− 1)
, t ≤ s < T.

(9)

Let us now introduce additional conditions that will be used our existence result.

(H1) There exist functions ν : [0,∞) → [0,∞) continuous, nondecreasing and
q ∈ L∞(J,R+) such that

|f(t, u)| ≤ q(t)ν(|u|) for each t ∈ J and all u ∈ R.

(H2) There exist functions µ, µ1, µ2 : [0,∞) → [0,∞) continuous, nondecreasing
and p, p1, p2 ∈ L∞(J,R+) such that

f(t, u) ≥ p(t)µ(u) for each t ∈ J and all u ∈ R with u ≥ 0,

g(t, u) ≤ p1(t)µ1(u) for each t ∈ J and all u ∈ R with u ≥ 0,

h(t, u) ≤ p2(t)µ2(u) for each t ∈ J and all u ∈ R with u ≥ 0.
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(H3) There exists a constant r > 0 such that

Pr + µ(r)∥p∥∞ sup
t∈J

{∫ T

0

G(t, s)ds

}
< r,

where

Pr =
(T + 1)

T + 2
µ1(r)∥p1∥∞ +

(T + 1)

T + 2
µ2(r)∥p2∥∞.

(H4) There exists a constant L > r and an interval [a, b] ⊂ (0, T ) such that

µ(L) min
t∈[a,b]

(∫ T

0

G(t, s)p(s)ds

)
≥ L.

(H5) There exist constants c0, c1 such that

P (t) ≥ c0PR, G(t, s) ≥ c1G(s, s).

(H6) There exist, 0 < r < L < K < R with M−1L ≤ K such that

PR + µ(R)∥p∥∞ sup

{∫ T

0

G(t, s)ds, t ∈ J

}
≤ R,

where
M = min(c0, c1).

Theorem 3.5. Suppose that hypotheses (H1)−(H6) are satisfied. Then the bound-
ary value problem (1)−(3) has at least three positive solutions.

Proof. Our result is based on Legett-Williams fixed point theorem. Transform
the problem (1)-(3) into a fixed point problem. Consider the operator

N : C(J,R) → C(J,R)
defined by

(Ny)(t) = P (t) +

∫ T

0

G(t, s)f(s, y(s))ds,

where

P (t) =
(T + 1− t)

T + 2

∫ T

0

g(s, y(s))ds+
(t+ 1)

T + 2

∫ T

0

h(s, y(s))ds,

and the function G(t, s) is given by (9). Clearly, the fixed points of the operator N
are solution of the problem (1)-(3). We shall show that N satisfies the assumptions
of Leggett-Williams fixed point theorem. The proof will be given in several steps.

Step 1: N is continuous.

Let {yn} be a sequence such that yn → y in C(J,R) Then for each t ∈ [0, T ] we
have

|N(yn)(t)−N(y)(t)| ≤ T + 1

T + 2

∫ T

0

|g(s, yn(s))− g(s, y(s))|ds

+
T + 1

T + 2

∫ T

0

|h(s, yn(s))− h(s, y(s))|ds

+

∫ T

0

G(s, t)|f(s, yn(s))− f(s, y(s))|ds
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≤ T (T + 1)

T + 2
∥g(·, yn(·))− g(·, y(·))∥∞

+
T (T + 1)

T + 2
∥h(·, yn(·))− h(·, y(·))∥∞

+ TG̃∥f(·, yn(·))− f(·, y(·))∥∞,

where

G̃ = sup

{∫ T

0

|G(t, s)|ds, t ∈ J

}
.

Since f, h, g are continuous functions, we have

∥N(yn)−N(y)∥∞ → 0 as n→ ∞.

Step 2: N maps bounded sets into bounded sets in C(J,R).

Indeed, it is enough to show that for any η∗ > 0, there exists a positive constant
ℓ such that for each y ∈ Bη∗ = {y ∈ C(J,R), ∥y∥∞ ≤ η∗}, we have ∥N(y)∥∞ ≤ ℓ.
By (H1) we have for each t ∈ [0, T ],

|N(y)(t)| ≤ T + 1

T + 2

∫ T

0

|g(s, y(s))|ds+ T + 1

T + 2

∫ T

0

|h(s, y(s))|ds

+

∫ T

0

|G(t, s)||f(s, y(s))|ds

≤ (T + 1)

T + 2
µ1(∥y∥∞)

∫ T

0

p1(s)ds

+
(T + 1)

T + 2
µ2(∥y∥∞)

∫ T

0

p2(s)ds+ ν(∥y∥∞)

∫ T

0

G(t, s)q(s)ds.

Thus for every t ∈ J, we have

∥y∥∞ ≤ Pη∗ + ν(η∗)G̃∥q∥∞ := ℓ.

Step 3: N maps bounded sets into equicontinuous sets of C(J,R).

Let t1, t2 ∈ [0, T ], t1 < t2, Bη∗ be a bounded set of C(J,R) as in Step 2, and let
y ∈ Bη∗ . Then by (H1) we have :

|N(y)(t2)−N(y)(t1)| ≤

∣∣∣∣∣P (t2) +
∫ T

0

G(t2, s)f(s, y(s))ds

−P (t1)−
∫ T

0

G(t1, s)f(s, y(s))ds

∣∣∣∣∣
≤

∣∣∣∣∣ (T + 1− t2)

T + 2

∫ T

0

g(s, y(s))ds− (T + 1− t1)

T + 2

∫ T

0

g(s, y(s))ds

∣∣∣∣∣
+

∣∣∣∣∣ (t2 + 1)

T + 2

∫ T

0

h(s, y(s))ds− (t1 + 1)

T + 2

∫ T

0

h(s, y(s))ds

∣∣∣∣∣
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+

∣∣∣∣∣
∫ T

0

G(t2, s)f(s, y(s))ds−
∫ T

0

G(t1, s)f(s, y(s))ds

∣∣∣∣∣
≤ T (t1 − t2)

T + 2
µ1(η

∗)∥p1∥∞ +
T (t2 − t1)

T + 2
µ2(η

∗)∥p2∥∞

+ν(η∗)∥q∥∞
∫ T

0

|G(t2, s)−G(t1, s)|ds.

The right-hand side of the above inequality tends to zero, as t2 → t1 and this proves
that: N(B(0, η∗)) is equicontinuous in C(J,R) . As a consequence of the steps 1
to 3 together with the Ascoli-Arzela theorem, we can conclude that the operator
N : C(J,R) → C(J,R) is continuous and completely continuous.

Let

C = {y ∈ C(J,R) : y(t) ≥ 0 for t ∈ J}
be a cone in C(J,R). Using the hypotheses (H2) and (H6), we prove that N(C) ⊂ C
and N : CR → CR is completely continuous. Let ψ : C → [0,∞) be defined by :

ψ(y) = min
t∈[a,b]

y(t).

It is clear that ψ is a nonnegative concave continuous functional and

ψ(y) ≤ ∥y∥∞ for y ∈ CR.

Now it remains to show that the hypotheses of Theorem 2.1 are satisfied. First
notice from (H3) that condition (A2) of Theorem 2.1 holds since for y ∈ Cr, one
need only to see others conditions. Next, let

y(t) =
L+K

2
for t ∈ [0, T ].

By the definition of C(ψ,L,K), y belongs to C(ψ,L,K). Also for arbitrary
y ∈ C(ψ,L,K). From (H2) and (H4), one has

ψ(N(y)) = min
t∈[a,b]

(
P (t) +

∫ T

0

G(t, s)f(s, y(s))ds

)

≥ min
t∈[a,b]

(∫ T

0

G(t, s)f(s, y(s))ds

)

≥ min
t∈[a,b]

(∫ T

0

G(t, s)p(s)µ(∥y∥)ds

)

≥ µ(L) min
t∈[a,b]

(∫ T

0

G(t, s)p(s)ds

)
≥ L,

which establishes condition (A1) of Theorem 2.1.
Finally, we will show that (A3) of Theorem 2.1 holds. To that end, let y ∈
C(ψ,L,R) with ∥N(y)∥∞ > K. Then by (H5) and (H6), we have

ψ(N(y)) ≥ min
t∈[a,b]

(
P (t) +

∫ T

0

G(t, s)f(s, y(s))ds

)
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≥ min
t∈[a,b]

(
c0PR + c1

∫ T

0

G(s, s)f(s, y(s))ds

)
≥M∥Ny∥∞ ≥MK ≥ L.

Thus, condition (A3) of Theorem 2.1 holds.
Then, the Leggett-Williams fixed point theorem implies that N has at least three

fixed points y1, y2 and y3 which are fixed points N solutions to the problem (1)-(3).
Furthermore, we have :

y1 ∈ Cr, y2 ∈ {y ∈ C(ψ,L,R) : ψ(y) > L},

y3 ∈ CR − {C(ψ,L,R) ∪ Cr}.

4. Example

We consider the following fractional boundary value problem,

cD
3
2 y(t) =

12|y(t)|
(1 + t)e−t

, t ∈ J := [0, 1], (10)

y(0)− y′(0) =

∫ 1

0

es|y(s)|
4(1 + es)(1 + |y(s)|)

ds, (11)

y(1) + y′(1) =

∫ 1

0

es|y(s)|
8(1 + |y(s)|)

ds. (12)

Set

f(t, u) =
12u

(t+ 1)e−t
, (t, u) ∈ J × [0,∞),

g(s, u) =
es|u|

4(1 + es)(1 + |u|)
,

h(s, u) =
es|u|

8(1 + |u|)
,

µ(u) = 12u, u ≥ 0, p(t) =
1

t+ 1
, t ∈ [0, 1],

ν(u) = 12u, u ≥ 0, q(t) =
1

e−t
, t ∈ [0, 1].

We have

|f(t, u)| ≤ q(t)ν(u), f(t, u) ≥ p(t)µ(u), (t, u) ∈ [0, 1]× [0,∞),

µ1(u) =
3u

8(e− 1)
, u ≥ 0, p1(t) = et, t ∈ [0, 1],

µ2(u) =
3u

8(e− 1)
, u ≥ 0, p2(t) = et, t ∈ [0, 1],

Pr =
2

3
µ1(r)

∫ 1

0

p1(s)ds+
2

3
µ2(r)

∫ 1

0

p2(s)ds =
1

2
r.

G is given by :



146 MOUFFAK BENCHOHRA, BENAOUDA HEDIA EJMAA-2013/1(2)

G(t, s) =


(1 + t)(1− s)α−1

3Γ(α)
+

(1 + t)(1− s)α−2

3Γ(α− 1)
− (t− s)α−1

Γ(α)
, 0 ≤ s ≤ t

(1 + t)(1− s)α−1

3Γ(α)
+

(1 + t)(1− s)α−2

3Γ(α− 1)
, t ≤ s < 1.

(13)

Because α = 3
2 , Γ( 32 ) =

√
π
2 , Γ(

1
2 ) =

√
π then (13) becomes :

G(t, s) =
1

3
√
π


2(1 + t)

√
1− s+

1 + t√
1− s

− 3
√
t− s, 0 ≤ s ≤ t ≤ 1

2(1 + t)
√
1− s+

1 + t√
1− s

, 0 ≤ t ≤ s < 1.
(14)

An easy computation shows that :

sup
t∈[0,1]

{∫ 1

0

G(t, s)p(s)ds

}
=

1 + α

3αΓ(α)
,

min
t∈[0,1]

(∫ 1

0

G(t, s)p(s)ds

)
=

α− 1
2

3αΓ(α)
.

Because α = 3
2 , then we have :

sup
t∈[0,1]

{∫ 1

0

G(t, s)p(s)ds

}
=

10

9
√
π
,

and

min
t∈[0,1]

(∫ 1

0

G(t, s)p(s)ds

)
=

2

9
√
π
.

From this we have :

Pr + µ(r) sup
t∈J

{∫ 1

0

G(t, s)p(s)ds

}
< r,

that is
1

2
r +

10

9
√
π
r − r < 0,

thus
−1

2
r +

10

9
√
π
r < 0,

and then (H3) holds since r a positive constant. Also, we have :

µ(L) min
t∈[a,b]

(∫ 1

0

G(t, s)p(s)ds

)
≥ L,

and so
12L(α− 1

2 )

3αΓ(α)
≥ L,

Putting α = 3
2 we have then :

24

9
√
π
− 1 ≥ 1,

which implies that (H4) holds since L is a positive constant.
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Now

PR + µ(R) sup

{∫ 1

0

G(t, s)p(s)ds, t ∈ J

}
≤ R,

and so
1

2
R+

10

9
√
π
R−R < 0,

which yields
−1

2
R+

10

9
√
π
R < 0,

and then(H6) holds since R is a positive constant.
Assume there exist a constant c0, c1,K > 0, such that

P (t) ≥ c0PR, G(t, s) ≥ c1G(s, s),

set M = min{c0, c1}, and chose r, L,K,R, such that 0 < r < L < K < R,
with M−1L ≤ K, then problem (10) − (12) has at least three positive solutions
y1, y2, y3 in CR. Furthermore, we have

y1 ∈ Cr, y2 ∈ {y ∈ C(ψ,L,R) : ψ(y) > L},
and

y3 ∈ CR − {C(ψ,L,R) ∪ Cr}.
ψ, Cr, C(ψ,L,R) are defined as above.
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