Electronic Journal of Mathematical Analysis and Applications

Vol. 1(2) July 2013, pp. 156-160.

ISSN: 2090-792X (online) http://ejmaa.6te.net/

PROPERTIES OF P-VALENT MEROMORPHIC FUNCTIONS ASSOCIATED WITH LINEAR OPERATOR

A. O. MOSTAFA¹ AND M. K. AOUF²

ABSTRACT. In this paper we introduce a class of p-valent meromorphic functions associated with an integral operator and obtain some properties for functions belonging to this class.

1. Introduction

Let Σ_p denote the class of functions of the form:

$$f(z) = z^{-p} + \sum_{k=1}^{\infty} a_{k-p} z^{k-p} \quad (p \in \mathbb{N} = \{1, 2, ...\}),$$
 (1.1)

which are analytic and p-valent in the punctured unit disc $U^* = \{z : z \in \mathbb{C} \text{ and } 0 < |z| < 1\}.$

For functions $f(z) \in \sum_{p}$, given by (1.1) and $g(z) \in \sum_{p}$ defined by $g(z) = z^{-p} + \sum_{k=1}^{\infty} b_{k-p} z^{k-p} \quad (p \in \mathbb{N}), \tag{1.2}$

the Hadamard product (or convolution) of f(z) and g(z) is given by

$$(f * g)(z) = z^{-p} +_{k=1}^{\infty} a_{k-p} b_{k-p} z^{k-p} = (g * f)(z).$$
(1.3)

Using the operator $Q^{\alpha}_{\beta,p}: \sum_{p} \to \sum_{p}$ defined by Aqlan et al. [1], where:

$$Q^{\alpha}_{\beta,p}f(z) = \begin{cases} z^{-p} + \frac{\Gamma(\alpha+\beta)}{\Gamma(\beta)} \sum_{k=1}^{\infty} \frac{\Gamma(k+\beta)}{\Gamma(k+\beta+\alpha)} a_{k-p} z^{k-p} & (\alpha > 0; \beta > -1; p \in \mathbb{N}; f \in \Sigma_p) \\ f(z) & (\alpha = 0; \beta > -1; p \in \mathbb{N}; f \in \Sigma_p) \end{cases} .$$

$$(1.4)$$

Mostafa [5] defined the operator $H_{p,\beta,\mu}^{\alpha}: \Sigma_p \to \Sigma_p$ as follows: For $Q_{\beta,p}^{\alpha}$, given by (1.4), let $G_{\beta,p,\mu}^{\alpha*}$ be defined by

$$Q^{\alpha}_{\beta,p}(z) * G^{\alpha*}_{\beta,p,\mu}(z) = \frac{1}{z^p (1-z)^{\mu}} \quad (\mu > 0; p \in \mathbb{N}).$$
 (1.5)

 $^{2000\} Mathematics\ Subject\ Classification.\quad 30C45.$

Key words and phrases. p-Valent meromorphic functions, linear operator. Submitted Jan. 30, 2013.

Then

$$H_{p,\beta,\mu}^{\alpha}f(z) = G_{\beta,p}^{\alpha*}(z) * f(z) \quad (f \in \Sigma_p). \tag{1.6}$$

Using (1.4) - (1.6), we have

$$H_{p,\beta,\mu}^{\alpha}f(z) = z^{-p} + \frac{\Gamma(\beta)}{\Gamma(\alpha+\beta)} \sum_{k=1}^{\infty} \frac{\Gamma(k+\beta+\alpha)(\mu)_k}{\Gamma(k+\beta)(1)_k} a_{k-p} z^{k-p}, \qquad (1.7)$$

where $f \in \Sigma_p$ is in the form (1.1) and $(\nu)_n$ denotes the Pochhammer symbol given by

$$(\nu)_n = \frac{\Gamma(\nu+n)}{\Gamma(\nu)} = \left\{ \begin{array}{ll} 1 & (n=0) \\ \nu(\nu+1)...(\nu+n-1) & (n\in\mathbb{N}) \, . \end{array} \right.$$

It is readily verified from (1.7) that (see [5])

$$z(H_{p,\beta,\mu}^{\alpha}f(z))' = (\alpha + \beta)H_{p,\beta,\mu}^{\alpha+1}f(z) - (\alpha + \beta + p)H_{p,\beta,\mu}^{\alpha}f(z)$$
 (1.8)

and

$$z(H_{p,\beta,\mu}^{\alpha}f(z))' = \mu H_{p,\beta,\mu+1}^{\alpha}f(z) - (\mu+p)H_{p,\beta,\mu}^{\alpha}f(z). \tag{1.9}$$

It is noticed that, putting $\mu = 1$ in (1.7), we obtain the operator

$$H_{p,\beta,1}^{\alpha}f(z) = H_{p,\beta}^{\alpha}f(z) = z^{-p} + \frac{\Gamma(\beta)}{\Gamma(\alpha+\beta)} \sum_{k=1}^{\infty} \frac{\Gamma(k+\alpha+\beta)}{\Gamma(k+\beta)} a_{k-p} z^{k-p}, \quad (1.10)$$

and

$$H_{p,\beta,1}^0 f(z) = f(z).$$

Recently, Frasin [3] (see also [2]) has obtained new properties of meromorphic p-valent functions.

In the present paper using the operator $H_{p,\beta,\mu}^{\alpha}$ defined by (1.7), we investigate some new properties of meromorphic p-valent functions.

Definition 1. Let H be the set of complex valued functions $h(r, s, t) : \mathbb{C}^3 \to \mathbb{C}$ such is continuous in a domain $D \subset \mathbb{C}^3$, $(1, 1, 1) \in D$, |h(1, 1, 1)| < 1 and

$$\left| h\left(e^{i\theta}, \frac{(\alpha+\beta-1)e^{i\theta}+\delta+1}{\alpha+\beta}, \frac{(\alpha+\beta-1)^2e^{2i\theta}+3(\alpha+\beta-1)(\delta+1)e^{i\theta}+4\delta+\zeta+2}{(\alpha+\beta+1)[(\alpha+\beta-1)e^{i\theta}+\delta+1]} \right) \right| \ge 1, \tag{1.11}$$

whenever

$$\left(e^{i\theta}, \frac{(\alpha+\beta-1)e^{i\theta}+\delta+1}{\alpha+\beta}, \frac{(\alpha+\beta-1)^2e^{2i\theta}+3(\alpha+\beta-1)(\delta+1)e^{i\theta}+4\delta+\zeta+2}{(\alpha+\beta+1)[(\alpha+\beta-1)e^{i\theta}+\delta+1]}\right) \in D$$

with $Re\zeta \geq \delta(\delta - 1)$, $\delta \geq 1$, $\alpha \geq 1$, $\beta > -1$ and θ real.

Definition 2. Let K be the set of complex valued functions $\phi(r, s, t) : \mathbb{C}^3 \to \mathbb{C}$ such is continuous in a domain $D \subset \mathbb{C}^3$, $(1, 1, 1) \in D$, $|\phi(1, 1, 1)| < 1$ and

$$\left| \phi\left(e^{i\theta}, \frac{1}{\mu}[(\mu - 1)e^{i\theta} + \delta + 1], \frac{(\mu - 1)^2e^{2i\theta} + 3(\mu - 1)(\delta + 1)e^{i\theta} + 4\delta + \zeta + 2}{(\mu + 1)[(\mu - 1)e^{i\theta} + \delta + 1]} \right) \right| \ge 1,$$
(1.12)

whenever

$$\left(e^{i\theta}, \frac{1}{\mu}[(\mu-1)e^{i\theta}+\delta+1], \frac{(\mu-1)^2e^{2i\theta}+3(\mu-1)(\delta+1)e^{i\theta}+4\delta+\zeta+2}{(\mu+1)[(\mu-1)e^{i\theta}+\delta+1]}\right) \in D$$

with $Re\zeta \geq \delta(\delta - 1)$, $\delta \geq 1$, $\mu > 1$ and θ real.

2. Main Results

Unless otherwise maintained we assume that $\zeta \geq \delta(\delta - 1)$, $\delta \geq 1$, $\alpha \geq 1$, $\beta > -1$, $\mu > 1$ and θ real.

To prove our main results, we need the following lemma.

Lemma 1[4]. Let $w(z) = c + c_k z^k + c_{k+1} z^{k+1}$... be analytic in U with with $w(z) \neq a$ and $k \geq 1$. If $z_0 = r_0 e^{i\theta} (0 < r_0 < 1)$ and $|w(z_0)| = \max_{|z| \leq r_0} |w(z)|$. Then

$$z_0 w'(z_0) = \zeta w(z_0) \tag{it2.1}$$

and

$$Re\left(1 + \frac{z_0w''(z_0)}{w'(z_0)}\right) \ge \delta,$$
 (it2.2)

where ζ is a real number and

$$\zeta \ge k \frac{|w(z_0) - a|^2}{|w(z_0)|^2 - |a|^2} \ge k \frac{|w(z_0)| - |a|}{|w(z_0)| + |a|}.$$

Theorem 1. Let the functions $h(r, s, t) \in H$ and let $f(z) \in \Sigma_p$ satisfy:

$$\left(\frac{H_{p,\beta,\mu}^{\alpha}f(z)}{H_{p,\beta,\mu}^{\alpha-1}f(z)}, \frac{H_{p,\beta,\mu}^{\alpha+1}f(z)}{H_{p,\beta,\mu}^{\alpha}f(z)}, \frac{H_{p,\beta,\mu}^{\alpha+2}f(z)}{H_{p,\beta,\mu}^{\alpha+1}f(z)}\right) \in D \subset \mathbb{C}^{3}$$
(it2.3)

and

$$\left|h\left(\frac{H^{\alpha}_{p,\beta,\mu}f(z)}{H^{\alpha-1}_{p,\beta,\mu}f(z)},\frac{H^{\alpha+1}_{p,\beta,\mu}f(z)}{H^{\alpha}_{p,\beta,\mu}f(z)},\frac{H^{\alpha+2}_{p,\beta,\mu}f(z)}{H^{\alpha+1}_{p,\beta,\mu}f(z)}\right)\right|<1\ (z\in U). \tag{it2.4}$$

Then, for $\alpha \geq 1$, we have

$$\left|\frac{H_{p,\beta,\mu}^{\alpha}f(z)}{H_{p,\beta,\mu}^{\alpha-1}f(z)}\right|<1\ (z\in U).$$

Proof. Let

$$w(z) = \frac{H_{p,\beta,\mu}^{\alpha}f(z)}{H_{p,\beta,\mu}^{\alpha-1}f(z)} \ (z \in U). \tag{2.5}$$

Then it follows that w(z) is either analytic or meromorphic in U, w(0)=1 and $w(z)\neq 1$. Differentiating (2.5) logarithmically with respect to z, and using (1.8) in the resulting equation, we have

$$\frac{H_{p,\beta,\mu}^{\alpha+1}f(z)}{H_{p,\beta,\mu}^{\alpha}f(z)} = \frac{1}{\alpha+\beta} \{ (\alpha+\beta-1)w(z) + \frac{zw'(z)}{w(z)} + 1 \}. \tag{2.6}$$

Differentiating (2.6) logarithmically with respect to z, we have

$$\frac{z\left(H_{p,\beta,\mu}^{\alpha+1}f(z)\right)'}{H_{p,\beta,\mu}^{\alpha+1}f(z)} - \frac{z\left(H_{p,\beta,\mu}^{\alpha}f(z)\right)'}{H_{p,\beta,\mu}^{\alpha}f(z)} = \frac{z\left\{(\alpha+\beta-1)w(z) + \frac{zw'(z)}{w(z)} + 1\right\}'}{(\alpha+\beta-1)w(z) + \frac{zw'(z)}{w(z)} + 1}$$

$$= \frac{(\alpha+\beta-1)zw'(z) + \frac{zw'(z)}{w(z)} + z^2\frac{w''(z)}{w(z)} - (\frac{zw'(z)}{w(z)})^2}{(\alpha+\beta-1)w(z) + \frac{zw'(z)}{w(z)} + 1}.$$
2.7 (1)

Applying (1.8) again in (2.7), we have:

$$(\alpha + \beta + 1) \frac{H_{p,\beta,\mu}^{\alpha+2} f(z)}{H_{p,\beta,\mu}^{\alpha+1} f(z)} = (\alpha + \beta) \frac{H_{p,\beta,\mu}^{\alpha+1} f(z)}{H_{p,\beta,\mu}^{\alpha} f(z)} + 1 + \frac{(\alpha + \beta - 1)zw'(z) + \frac{zw'(z)}{w(z)} + 2^2 \frac{w''(z)}{w(z)} + 2^2 \frac{w''(z)}{w(z)} + 1}{(\alpha + \beta - 1)w(z) + \frac{zw'(z)}{w(z)} + 2}$$

$$= (\alpha + \beta - 1)w(z) + \frac{zw'(z)}{w(z)} + 2 + \frac{(\alpha + \beta - 1)zw'(z) + \frac{zw'(z)}{w(z)} + 2^2 \frac{w''(z)}{w(z)} + 2^2 \frac{w''(z)}{w(z)}$$

We claim that |w(z)| < 1, $z \in U$. If it is not true, then there exists a point $z_0 \in U$ such that $\max_{|z| \le r_0} |w(z)| = |w(z)| = 1$. Taking $w(z_0) = e^{i\theta}$ and applying Lemma 1 with c = k = 1, we have

$$\begin{array}{lcl} \frac{H^{\alpha}_{p,\beta,\mu}f(z)}{H^{\alpha-1}_{p,\beta,\mu}f(z)} & = & e^{i\theta}, \\ \frac{H^{\alpha+1}_{p,\beta,\mu}f(z)}{H^{\alpha}_{p,\beta,\mu}f(z)} & = & \frac{1}{\alpha+\beta}[(\alpha+\beta-1)e^{i\theta}+\delta+1] \end{array}$$

and

$$\frac{H_{p,\beta,\mu}^{\alpha+2}f(z)}{H_{p,\beta,\mu}^{\alpha+1}f(z)} = \frac{(\alpha+\beta-1)^2e^{2i\theta} + 3(\alpha+\beta-1)(\delta+1)e^{i\theta} + 4\delta + \zeta + 2}{(\alpha+\beta+1)[(\alpha+\beta-1)e^{i\theta} + \delta + 1]},$$

where

$$\zeta = \frac{z^2 w''(z_0)}{w(z_0)} \text{ and } \zeta \ge 1.$$

Applying (2.2), we have $Re\zeta \ge \delta(\delta - 1)$.

Since $h(r, s, t) \in H$, we have

$$\begin{split} & \left| h\left(\frac{H_{p,\beta,\mu}^{\alpha}f(z_0)}{H_{p,\beta,\mu}^{\alpha-1}f(z_0)}, \frac{H_{p,\beta,\mu}^{\alpha+1}f(z_0)}{H_{p,\beta,\mu}^{\alpha}f(z_0)}, \frac{H_{p,\beta,\mu}^{\alpha+2}f(z_0)}{H_{p,\beta,\mu}^{\alpha+1}f(z_0)} \right) \right| \\ & = \left| h\left(e^{i\theta}, \frac{(\alpha+\beta-1)e^{i\theta}+\delta+1}{\alpha+\beta}, \frac{(\alpha+\beta-1)^2e^{2i\theta}+3(\alpha+\beta-1)(\delta+1)e^{i\theta}+4\delta+\zeta+2}{(\alpha+\beta+1)[(\alpha+\beta-1)e^{i\theta}+\delta+1]} \right) \right| \geq 1. \end{split}$$

This contradicts the condition (2.4) of The theorem. Therefore, we conclude that

$$\left| \frac{H_{p,\beta,\mu}^{\alpha} f(z)}{H_{p,\beta,\mu}^{\alpha-1} f(z)} \right| < 1 \quad (z \in U).$$

This completes the proof of Theorem 1.

Theorem 2. Let the functions $\phi(r, s, t) \in K$ and let $f(z) \in \Sigma_p$ satisfy:

$$\left(\frac{H^{\alpha}_{p,\beta,\mu}f(z)}{H^{\alpha}_{p,\beta,\mu-1}f(z)},\frac{H^{\alpha}_{p,\beta,\mu+1}f(z)}{H^{\alpha}_{p,\beta,\mu}f(z)},\frac{H^{\alpha}_{p,\beta,\mu+2}f(z)}{H^{\alpha}_{p,\beta,\mu+1}f(z)}\right)\in D\subset\mathbb{C}^{3} \qquad (\mathrm{it}2.3)$$

and

$$\left|\phi\left(\frac{H^{\alpha}_{p,\beta,\mu}f(z)}{H^{\alpha}_{p,\beta,\mu-1}f(z)},\frac{H^{\alpha}_{p,\beta,\mu+1}f(z)}{H^{\alpha}_{p,\beta,\mu}f(z)},\frac{H^{\alpha}_{p,\beta,\mu+2}f(z)}{H^{\alpha}_{p,\beta,\mu+1}f(z)}\right)\right|<1\ (z\in U). \tag{it2.4}$$

Then, for $\mu > 1$, we have

$$\left| \frac{H^{\alpha}_{p,\beta,\mu}f(z)}{H^{\alpha}_{p,\beta,\mu-1}f(z)} \right| < 1 \ (z \in U).$$

Proof. The proof follows by applying the same steps used in the proof of Theorem 1 and using the identity (1.9) instead of (1.8).

Remark. Putting $\mu = 1$, in Theorem 1, we obtain results corresponding to the operator $H_{p,\beta}^{\alpha}$.

Acknowledgements

The authors would like to thank the referees of the paper for their helpful suggestions.

References

- E. Aqlan, J. M. Jahangiri and S. R. Kulkarni, Certain integral operators applied to p-valent functions, J. Nat. Geom., 24(2005), 111–120
- [2] R.M. El-Ashwah, A note on certain meromorphic p-valent functions, Appl. Math. Letters, 22 (2009), 1756-1759.
- [3] B. A. Frasin, Differential operator of meromorphic p-valent functions, Tamkang J. Math., 43 (2012), no. 3, 417-421.
- [4] S. S.Miller and P. T.Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 289–305.
- [5] A. O. Mostafa, Inclusion results for certain subclasses of p-valent meromorphic functions associated with a new operator, J. Inequal. Appl., (2012), 1-11.

Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.

 $E ext{-}mail\ address:\ ^1$ adelaeg254@yahoo.com, 2 mkaouf127@yahoo.com