
INTUITIONISTIC FUZZY Ψ - Φ -CONTRACTIVE MAPPINGS AND FIXED POINT THEOREMS IN NON-ARCHIMEDEAN INTUITIONISTIC FUZZY METRIC SPACES

B. DINDA, T.K. SAMANTA, IQBAL H. JEBRIL*

ABSTRACT. In this paper intuitionistic fuzzy Banach contraction theorem for M-complete non-Archimedean intuitionistic fuzzy metric spaces and intuitionistic fuzzy Elestein contraction theorem for non-Archimedean intuitionistic fuzzy metric spaces by intuitionistic fuzzy ψ - ϕ contractive mappings are proved.

1. Introduction

Theory of intuitionistic fuzzy set as a generalization of fuzzy set [8] was introduce by Atansov [7]. Grabiec [9] initiated the study of fixed point theory in fuzzy metric spaces. George and Veeramani [1] have pointed out that the definition of Cauchy sequence for fuzzy metric spaces given by Grabiec [9] is weaker and they gave one stronger definition of Cauchy sequence and termed as M-Cauchy sequence. The definition of Cauchy sequence given by Grabiec [9] has been termed as G-Cauchy sequence. With the help of fuzzy ψ -contractive mappings defined by Dorel Mihet[5], we define intuitionistic fuzzy ψ - ϕ contractive mappings. Our definition of intuitionistic fuzzy ψ - ϕ contractive mapping is more general than the definitions of intuitionistic fuzzy contractive mapping given by Abdul Mohamad [2] and by this contraction we prove an intuitionistic fuzzy Banach contraction theorem for M-complete non-Archimedean intuitionistic fuzzy metric spaces. We also prove intuitionistic fuzzy Elelstein contraction theorem for non-Archimedean intuitionistic fuzzy metric spaces without the continuity condition.

2. Preliminaries

We quote some definitions and statements of a few theorems which will be needed in the sequel.

Definition 2.1. [4] A binary operation $*:[0,1] \times [0,1] \rightarrow [0,1]$ is continuous t - norm if * satisfies the following conditions:

²⁰¹⁰ Mathematics Subject Classification. 46G05.

Key words and phrases. Intuitionistic fuzzy metric space, non-Archimedean intuitionistic fuzzy metric space, fuzzy contractive mapping.

^{*} Corresponding author .

Submitted Jan. 30, 2013.

- (i) * is commutative and associative,
- (ii) * is continuous,
- $(iii) \ a * 1 = a, \quad \forall \ a \in [0, 1],$
- (iv) $a * b \le c * d$ whenever $a \le c$, $b \le d$ and $a, b, c, d \in [0, 1]$.

A few examples of continuous t-norm are $a*b=ab,\ a*b=\min\{a,b\},\ a*b=\max\{a+b-1,0\}.$

Definition 2.2. [4]. A binary operation \diamond : $[0, 1] \times [0, 1] \rightarrow [0, 1]$ is continuous t-conorm if \diamond satisfies the following conditions:

- $(i) \Leftrightarrow \text{ is commutative and associative,}$
- $(ii) \Leftrightarrow is continuous,$
- $(iii) \ a \diamond 0 = a, \quad \forall \ a \in [0, 1],$
- (iv) $a \diamond b \leq c \diamond d$ whenever $a \leq c$, $b \leq d$ and $a, b, c, d \in [0, 1]$.

A few examples of continuous t-conorm are $a \diamond b = a + b - ab$, $a \diamond b = \max\{a,b\}$, $a \diamond b = \min\{a+b,1\}$.

Definition 2.3. [6] A 5-tuple $(X, \mu, \nu, *, *)$ is said to be an intuitionistic fuzzy metric space if X is an arbitrary set, * is a continuous t-norm, * is a continuous t-conorm, μ and ν are fuzzy sets on $X^2 \times (0, \infty)$ and μ denotes the degree of nearness, ν denotes the degree of non-nearness between x and y relative to t satisfying the following conditions: for all $x, y, z \in X$, s, t > 0,

- (i) $\mu(x, y, t) + \nu(x, y, t) \leq 1$;
- $(ii) \mu(x, y, 0) = 0;$
- (iii) $\mu(x, y, t) = 1$ if and only if x = y;
- $(iv) \ \mu(x, y, t) = \mu(y, x, t);$
- $(v) \quad \mu(x, z, t + s) \ge \mu(x, y, t) * \mu(y, z, s);$
- (vi) $\mu(x,y,\cdot):[0,\infty)\to[0,1]$ is left-continuous;
- $(vii) \ \nu(x,y,0) = 1;$
- $(viii) \nu(x, y, t) = 0$ if and only if x = y;
- $(ix) \ \nu(x, y, t) = \nu(y, x, t);$
- (x) $\nu(x,z,t+s) \leq \nu(x,y,t) \diamond \nu(y,z,s);$
- $(xi) \nu(x,y,\cdot) : [0,\infty) \to [0,1]$ is right-continuous.

Remark 2.4. If in the above definition the triangular inequalities (v) and (x) are replaced by

```
\mu(~x,~z~,\max\{t,s\}~) \geq \mu(x,y,t) * \nu(y,z,s)~ and \nu(~x,~z~,\max\{t,s\}~) \leq \nu(x,y,t) \diamond \nu(y,z,s). Or, equivalently,
```

 $\mu(x, z, t) \ge \mu(x, y, t) * \mu(y, z, t)$ and

 $\nu(x,z,t) \le \nu(x,y,t) \diamond \nu(y,z,t).$

Then $(X, \mu, \nu, *, \diamond)$ is called non-Archimedean intuitionistic fuzzy metric space.

Definition 2.5. [2] Let $(X, \mu, \nu, *, \diamond)$ be an intuitionistic fuzzy metric space. A mapping $f: X \to X$ is intuitionistic fuzzy contractive if there exists $k \in (0,1)$ such that $\frac{1}{\mu(f(x),f(y),t)} - 1 \le k \left(\frac{1}{\mu(x,y,t)} - 1\right)$ and $\frac{1}{\nu(f(x),f(y),t)} - 1 \le \frac{1}{k} \left(\frac{1}{\nu(x,y,t)} - 1\right)$ for all $x, y \in X$ and t > 0. (k is called contractive constant of f.)

Definition 2.6. [2] Let $(X, \mu, \nu, *, \diamond)$ be an intuitionistic fuzzy metric space. We will say that the sequence $\{x_n\}_n$ in X is intuitionistic fuzzy contractive if there exists $k \in (0,1)$ such that $\frac{1}{\mu(x_{n+1},x_{n+2},t)} - 1 \le k \left(\frac{1}{\mu(x_n,x_{n+1},t)} - 1\right)$ and $\frac{1}{\nu(x_{n+1},x_{n+2},t)} - 1$ $1 \le \frac{1}{k} \left(\frac{1}{\nu(x_n, x_{n+1}, t)} - 1 \right)$ for all t > 0 and $n \in \mathbb{N}$.

3. Intuitionistic fuzzy Ψ - Φ -contractive mappings

Definition 3.1. Let $(X, \mu, \nu, *, \diamond)$ be an intuitionistic fuzzy metric space.

(i) A sequence $\{x_n\}_n$ in X is called M-Cauchy sequence, if for each $\epsilon \in (0,1)$ and t>0 there exists $n_0\in\mathbb{N}$ such that $\mu(x_n,x_m,t)>1-\epsilon$ and $\nu(x_n,x_m,t)<\epsilon$ for all $m, n \geq n_0$.

(ii) A sequence $\{x_n\}_n$ in X is called G-Cauchy sequence if $\lim_{n\to\infty}\mu$ (x_n,x_{n+m},t) = 1 and $\lim_{n\to\infty}\nu$ (x_n,x_{n+m},t) = 0 for each $m\in\mathbb{N}$ and t>0.

Definition 3.2. A sequence $\{x_n\}_n$ in an intuitionistic fuzzy metric space $(X, \mu, \nu, *, \diamond)$ is said to converge to $x \in X$ if $\lim_{n \to \infty} \mu(x_n, x, t) = 1$ and $\lim_{n \to \infty} \nu(x_n, x, t) = 0$ for all t > 0.

Definition 3.3. Let Ψ be the class of all mappings $\psi:[0,1]\to[0,1]$ such that ψ is continuous, non-decreasing and $\psi(t) < t, \forall t \in (0,1)$. Let Φ be the class of all mappings $\phi:[0,1]\to[0,1]$ such that ϕ is continuous, non-decreasing and $\phi(t) > t, \forall t \in (0,1)$. Let $(X,\mu,\nu,*,\diamond)$ be an intuitionistic fuzzy metric space and $\psi \in \Psi$ and $\phi \in \Phi$. A mapping $f: X \to X$ is called an intuitionistic fuzzy ψ - ϕ -contractive mapping if the following implications hold:

$$\mu(x, y, t) > 0 \Rightarrow \psi(\mu(f(x), f(y), t)) \ge \mu(x, y, t)$$

$$\nu(x, y, t) < 1 \Rightarrow \phi(\nu(f(x), f(y), t)) \le \nu(x, y, t).$$

Example 3.4. Let $(X, \mu, \nu, *, \diamond)$ be an intuitionistic fuzzy metric space and f: $X \to X \ \ \textit{satisfies} \ \ \frac{1}{\mu(f(x),f(y),t)} - 1 \ \le \ k \ \left(\frac{1}{\mu(x,y,t)} - 1\right) \quad \textit{and} \quad \frac{1}{\nu(f(x),f(y),t)} - 1 \ \le \ k \left(\frac{1}{\mu(x,y,t)} - 1\right)$ $\frac{1}{k}\left(\frac{1}{\nu(x,y,t)}-1\right)$ for all $x,y\in X$ and t>0. Then for some $k\in(0,1)$ with k>1-t, f is an intuitionistic fuzzy ψ - ϕ -contractive mapping, with

$$\psi(t) = 1 - k, \quad \phi(t) = \frac{t}{(1-k)t + k}$$

Example 3.5. Let X be a non-empty set with at least two elements. If we define the intuitionistic fuzzy set (X, μ, ν) by $\mu(x, x, t) = 1$ and $\nu(x, x, t) = 0$ for all $x \in X \text{ and } t > 0; \text{ and }$

$$\mu(x, y, t) = \begin{cases} 0, & \text{if } t \le 1 \\ 1, & \text{if } t > 1 \end{cases} \qquad \nu(x, y, t) = \begin{cases} 1, & \text{if } t \le 1 \\ 0, & \text{if } t > 1 \end{cases}$$

for all $x, y \in X$, $x \neq y$, then $(X, \mu, \nu, *, \diamond)$ is an M-complete non-Archimedean intuitionistic fuzzy metric space under any continuous t-norm * and continuous t $conorm \diamond . Now,$

$$\mu(x, y, t) < 1$$

$$\Rightarrow \mu(x, y, t) = 0$$

$$\Rightarrow \psi(\mu(f(x), f(y), t)) > \mu(x, y, t) = 0$$
 and

$$\begin{array}{l} \nu(x,y,t)>0\\ \Rightarrow \nu(x,y,t)=1\\ \Rightarrow \phi\left(\nu(f(x),f(y),t)\right)\leq \nu(x,y,t)=1\\ Therefore\ every\ mapping\ f:(X,\mu,\nu,*,\diamond)\to (X,\mu,\nu,*,\diamond)\ is\ an\ intuitionistic\ fuzzy\\ \psi\text{-}\phi\text{-}contractive\ mapping.} \end{array}$$

Definition 3.6. An intuitionistic fuzzy ψ - ϕ -contractive sequence in an intuitionistic fuzzy metric space $(X, \mu, \nu, *, \diamond)$ is any sequence $\{x_n\}_n$ in X such that

$$\psi(\mu(x_{n+1}, x_{n+2}, t)) \ge \mu(x_{n+1}, x_n, t)$$

$$\phi(\nu(x_{n+1}, x_{n+2}, t)) \le \nu(x_{n+1}, x_n, t).$$

An intuitionistic fuzzy metric space $(X, \mu, \nu, *, \diamond)$ is called M-complete (or, Gcomplete) if every M-Cauchy (or, G-Cauchy) sequence is convergent in X.

4. Fixed point theorems

Theorem 4.1. Let $(X, \mu, \nu, *, \diamond)$ be an M-complete non-Archimedean intuitionistic fuzzy metric space and $f: X \to X$ be an intuitionistic fuzzy ψ - ϕ -contractive mapping. If there exists $x \in X$ such that $\mu(x, f(x), t) > 0$ and $\nu(x, f(x), t) < 1$ for all t > 0, then f has a unique fixed point.

Proof. Let $x \in X$ be such that $\mu(x, f(x), t) > 0$ and $\nu(x, f(x), t)$ <1, t>0 and $x_n=f^n(x), n\in\mathbb{N}$, we have for all t>0

$$\mu(x_0, x_1, t) \le \psi(\mu(x_1, x_2, t)) < \mu(x_1, x_2, t)$$

$$\nu(x_0, x_1, t) \ge \phi(\nu(x_1, x_2, t)) > \nu(x_1, x_2, t)$$

and

$$\mu(x_1, x_2, t) \le \psi(\mu(x_2, x_3, t)) < \mu(x_2, x_3, t)$$

$$\nu(x_1, x_2, t) \ge \phi(\nu(x_2, x_3, t)) > \nu(x_2, x_3, t)$$

Hence by induction $\forall t > 0$, $\mu(x_n, x_{n+1}, t) < \mu(x_{n+1}, x_{n+2}, t)$ and $\nu(x_n, x_{n+1}, t) > 0$ $\nu(x_{n+1},x_{n+2},t)$. Therefore, for every

 $t>0, \{\mu(x_n,x_{n+1},t)\}$ is a non-decreasing sequence of numbers in (0,1] and $\{\nu(x_n, x_{n+1}, t)\}\$ is a non-increasing sequence of numbers in [0, 1).

Fix t>0. Denote $\lim_{n\to\infty}\mu(x_n,x_{n+1},t)$ by l and $\lim_{n\to\infty}\nu(x_n,x_{n+1},t)$ by m. Then we have $l \in [0, 1]$ and $m \in [0, 1]$.

Since $\psi(\mu(x_{n+1},x_{n+2},t)) \geq \mu(x_n,x_{n+1},t)$ and ψ is continuous, $\psi(l) \geq l$. This implies l=1. Also, since $\phi(\nu(x_{n+1},x_{n+2},t)) \leq \nu(x_{n+1},x_n,t)$ and ϕ is continuous, $\phi(m) \leq m$. This implies m = 0. Therefore,

 $\lim_{n\to\infty} \mu(x_n,x_{n+1},t) = 1 \text{ and } \lim_{n\to\infty} \nu(x_n,x_{n+1},t) = 0.$ If $\{x_n\}_n$ is not a M-cauchy sequence then there are $\epsilon\in(0,1)$ and t>0 such that for each $k \in \mathbb{N}$ there exist $m(k), n(k) \in \mathbb{N}$ with $m(k) > n(k) \ge k$ and

 $\mu(x_{m(k)}, x_{n(k)}, t) \leq 1 - \epsilon$ and $\nu(x_{m(k)}, x_{n(k)}, t) \geq \epsilon$

Let for each k, m(k) be the least positive integer exceeding n(k) satisfying the above property, that is,

$$\mu(x_{m(k)-1}, x_{n(k)}, t) \geq 1 - \epsilon$$
 and $\mu(x_{m(k)}, x_{n(k)}, t) \leq 1 - \epsilon$. Also, $\nu(x_{m(k)-1}, x_{n(k)}, t) \leq \epsilon$ and $\nu(x_{m(k)}, x_{n(k)}, t) \geq \epsilon$. Then for each positive integer k ,

$$1 - \epsilon \ge \mu(x_{m(k)}, x_{n(k)}, t)$$

$$\geq \mu(x_{m(k)-1}, x_{n(k)}, t) * \mu(x_{m(k)-1}, x_{m(k)}, t)$$

$$\geq (1 - \epsilon) * \mu(x_{m(k)-1}, x_{m(k)}, t).$$

and

$$\epsilon \le \nu(x_{m(k)}, x_{n(k)}, t)
\le \nu(x_{m(k)-1}, x_{n(k)}, t) \diamond \nu(x_{m(k)-1}, x_{m(k)}, t)
\le \epsilon \diamond \nu(x_{m(k)-1}, x_{m(k)}, t).$$

Taking limit as $k \to \infty$ we have,

$$\lim_{k \to \infty} \left\{ (1 - \epsilon) * \mu(x_{m(k)-1}, x_{m(k)}, t) \right\}$$

$$= (1 - \epsilon) * \lim_{k \to \infty} \mu(x_{m(k)-1}, x_{m(k)}, t)$$

$$= (1 - \epsilon) * 1$$

$$= (1 - \epsilon)$$
and
$$\lim_{k \to \infty} \left\{ \epsilon \diamond \nu(x_{m(k)-1}, x_{m(k)}, t) \right\}$$

$$= \epsilon \diamond \lim_{k \to \infty} \nu(x_{m(k)-1}, x_{m(k)}, t)$$

and $\lim_{k \to \infty} \{ \epsilon \diamond \nu(x_{m(k)-1}, x_{m(k)}, t) \}$ = $\epsilon \diamond \lim_{k \to \infty} \nu(x_{m(k)-1}, x_{m(k)}, t)$ = $\epsilon \diamond 0 = \epsilon$.

It follows that $\lim_{k \to \infty} \mu(x_{m(k)}, x_{n(k)}, t) = 1 - \epsilon$

and $\lim_{k \to \infty} \nu(x_{m(k)}, x_{n(k)}, t) = \epsilon$.

Now, $\mu(x_{m(k)}, x_{n(k)}, t) \le \psi(\mu(x_{m(k)+1}, x_{n(k)+1}, t))$

and $\nu(x_{m(k)}, x_{n(k)}, t) \ge \phi(\nu(x_{m(k)+1}, x_{n(k)+1}, t))$.

Since ψ and ϕ are continuous taking limit as $k \to \infty$ we have,

 $1-\epsilon \le \psi(1-\epsilon) < 1-\epsilon$ and $\epsilon \ge \phi(\epsilon) > \epsilon$, which are contradictions. Thus $\{x_n\}_n$ is a M-cauchy sequence.

If $\lim_{n\to\infty} x_n = y$ then from $\psi(\mu(f(y), f(x_n), t)) \ge \mu(y, x_n, t)$ and

 $\phi(\nu(f(y), f(x_n), t)) \leq \nu(y, x_n, t)$ it follows that $x_{n+1} \to f(y)$.

Therefore we have

 $\mu(y, f(y), t) \ge \mu(y, x_n, t) * \mu(x_n, x_{n+1}, t) * \mu(x_{n+1}, f(y), t) \to 1 \text{ as } n \to \infty.$ This implies $\mu(y, f(y), t) = 1$.

 $\nu(y, f(y), t) \leq \nu(y, x_n, t) \diamond \nu(x_n, x_{n+1}, t) \diamond \nu(x_{n+1}, f(y), t) \to 0$ as $n \to \infty$. This implies $\nu(y, f(y), t) = 0$. Hence, f(y) = y.

If x, y are fixed points of f then

$$\mu(f(x), f(y), t) = \mu(x, y, t) \le \psi(\mu(f(x), f(y), t))$$

and
$$\nu(f(x), f(y), t) = \nu(x, y, t) \ge \phi(\nu(f(x), f(y), t)), \ \forall t > 0.$$

If $x \neq y$ then $\mu(x, y, s) < 1$ and $\nu(x, y, s) > 0$ for some s > 0 i.e., $0 < \mu(x, y, s) < 1$ and $0 < \nu(x, y, s) < 1$ hold, implying

 $\mu(f(x), f(y), s) \le \psi(\mu(f(x), f(y), s)) < \mu(f(x), f(y), s)$

and $\nu(f(x), f(y), s) \ge \phi(\nu(f(x), f(y), s)) > \nu(f(x), f(y), s)$, which are contradictions.

Thus x = y.

This completes the proof.

Lemma 4.2. Let $(X, \mu, \nu, *, \diamond)$ be a non-Archimedean intuitionistic fuzzy metric space. If $\{x_n\}_n$ and $\{y_n\}_n$ be two sequences in X converges to x and y respectively then $\lim_{n\to\infty} \mu(x_n, y_n, t) = \mu(x, y, t)$ and $\lim_{n\to\infty} \nu(x_n, y_n, t) = \nu(x, y, t)$.

Proof. Since $(X, \mu, \nu, *, \diamond)$ be a non-Archimedean intuitionistic fuzzy metric space, therefore

$$\begin{array}{l} \mu \; (x_n,y_n,t) \, \geq \, \mu(x_n,x,t) \, * \, \mu(x,y,t) \, * \, \mu(y,y_n,t) \\ \Rightarrow \, \lim_{n \, \to \, \infty} \mu \; (x_n,y_n,t) \, \geq \, 1 \, * \, \mu(x,y,t) \, * \, 1 \, = \, \mu(x,y,t) \, . \\ \text{and} \; \nu \; (x_n,y_n,t) \, \leq \, \nu(x_n,x,t) \, \diamond \, \nu(x,y,t) \, \diamond \, \nu(y,y_n,t) \\ \Rightarrow \, \lim_{n \, \to \, \infty} \nu \; (x_n,y_n,t) \, \leq \, 0 \, \diamond \, \nu(x,y,t) \, \diamond \, 0 \, = \, \nu(x,y,t) \, . \\ \text{Also,} \; \mu(x,y,t) \, \geq \, \mu(x,x_n,t) \, * \, \mu(x_n,y_n,t) \, * \, \mu(y,y_n,t) \\ \Rightarrow \; \mu(x,y,t) \, \geq \, 1 \, * \, \lim_{n \, \to \, \infty} \mu(x_n,y_n,t) \, * \, 1 \, = \, \lim_{n \, \to \, \infty} \mu(x_n,y_n,t) \\ \text{and} \; \nu(x,y,t) \, \geq \, \nu(x,x_n,t) \, * \, \nu(x_n,y_n,t) \, * \, \nu(y,y_n,t) \\ \Rightarrow \, \nu(x,y,t) \, \geq \, 0 \, \diamond \, \lim_{n \, \to \, \infty} \nu(x_n,y_n,t) \, \diamond \, 0 \, = \, \lim_{n \, \to \, \infty} \nu(x_n,y_n,t) \, . \end{array}$$

We prove the following theorem without the continuity condition.

Theorem 4.3. Let $(X, \mu, \nu, *, \diamond)$ be a compact non-Archimedean intuitionistic fuzzy metric space. Let $f: X \to X$ be an intuitionistic fuzzy ψ - ϕ -contractive mapping. Then f has a unique fixed point.

Proof. Let $x \in X$ and $x_n = f^n(x)$, $n \in \mathbb{N}$. Assume $x_n \neq x_{n+1}$ for each n (if not $f(x_n) = x_n$.

Now assume $x_n \neq x_m \ (n \neq m)$, otherwise for m < n we get $\mu(x_n, x_{n+1}, t) = \mu(x_m, x_{m+1}, t) \le \psi(\mu(x_{m+1}, x_{m+2}, t))$ $<\mu(x_{m+1},x_{m+2},t)<\cdots<\mu(x_n,x_{n+1},t)$ and $\nu(x_n, x_{n+1}, t) = \nu(x_m, x_{m+1}, t) \ge \phi\left(\nu(x_{m+1}, x_{m+2}, t)\right)$ $> \nu(x_{m+1}, x_{m+2}, t) > \cdots > \nu(x_n, x_{n+1}, t),$ a contradiction.

Since X is compact, $\{x_n\}_n$ in X has a convergent subsequence $\{x_{n_i}\}_{i\in\mathbb{N}}$ (say). Let $\{x_{n_i}\}_{i\in\mathbb{N}}$ converges to y. We also assume that $y,f(y)\notin\{x_n:n\in\mathbb{N}\}$ (if not, choose a subsequence with such a property). According to the above assumptions we may now write for all $i \in \mathbb{N}$ and t > 0

$$\mu(x_{n_i}, y, t) \le \psi(\mu(f(x_{n_i}), f(y), t)) < \mu(f(x_{n_i}), f(y), t)$$

$$\nu(x_{n_i}, y, t) \ge \phi(\nu(f(x_{n_i}), f(y), t)) > \nu(f(x_{n_i}), f(y), t)$$

Since ψ and ϕ are continuous for all $x, y \in X$. From lemma 4.2 we obtain

$$\lim_{i \to \infty} \mu(x_{n_i}, y, t) \leq \lim_{i \to \infty} \mu(f(x_{n_i}), f(y), t)$$

$$\Rightarrow 1 \leq \lim_{i \to \infty} \mu(f(x_{n_i}), f(y), t)$$

$$\Rightarrow \lim_{i \to \infty} \mu(f(x_{n_i}), f(y), t) = 1.$$

and
$$\lim_{i \to \infty} \nu(x_{n_i}, y, t) \ge \lim_{i \to \infty} \nu(f(x_{n_i}), f(y), t)$$

 $\Rightarrow 0 \ge \lim_{i \to \infty} \nu(f(x_{n_i}), f(y), t)$

$$\Rightarrow 0 \ge \lim_{t \to \infty} \nu(f(x_{n_i}), f(y), t)$$

$$\Rightarrow \lim_{i \to \infty} \nu(f(x_{n_i}), f(y), t) = 0.$$
 i.e.,

$$f(x_{n_i}) \to f(y) \tag{4.1}$$

Similarly, we obtain

$$f^2(x_{n_i}) \rightarrow f^2(y) \tag{4.2}$$

Now, we see that

$$\mu(x_{n_1}, f(x_{n_1}), t) \leq \psi(\mu\left(f(x_{n_1}), f^2(x_{n_1}), t\right)) < \mu\left(f(x_{n_1}), f^2(x_{n_1}), t\right) < \dots < \mu(x_{n_i}, f(x_{n_i}), t) < \mu\left(f(x_{n_i}), f^2(x_{n_i}), t\right) < \dots < 1. \text{ and }$$

$$\nu(x_{n_1}, f(x_{n_1}), t) \geq \phi(\nu\left(f(x_{n_1}), f^2(x_{n_1}), t\right)) > \nu\left(f(x_{n_1}), f^2(x_{n_1}), t\right) > \dots > \nu(x_{n_i}, f(x_{n_i}), t) > \nu\left(f(x_{n_i}), f^2(x_{n_i}), t\right) > \dots > 0.$$

Thus $\{\mu(x_{n_i}, f(x_{n_i}), t)\}_{i \in \mathbb{N}}$ and $\{\mu(f(x_{n_i}), f^2(x_{n_i}), t)\}_{i \in \mathbb{N}}$ converges to a common limit. Also, $\{\nu(x_{n_i}, f(x_{n_i}), t)\}_{i \in \mathbb{N}}$ and

 $\{\nu\left(f(x_{n_i}),f^2(x_{n_i}),t\right)\}_{i\in\mathbb{N}}$ converges to a common limit.

$$\mu(y, f(y), t) = \mu\left(\lim_{i \to \infty} x_{n_i}, f(\lim_{i \to \infty} x_{n_i}), t\right) = \lim_{i \to \infty} \mu\left(x_{n_i}, f(x_{n_i}), t\right)$$

So, by (4.1), (4.2) and lemma 4.2 we get
$$\mu(y, f(y), t) = \mu\left(\lim_{i \to \infty} x_{n_i}, f(\lim_{i \to \infty} x_{n_i}), t\right) = \lim_{i \to \infty} \mu\left(x_{n_i}, f(x_{n_i}), t\right)$$

$$= \lim_{i \to \infty} \mu\left(f(x_{n_i}), f^2(x_{n_i}), t\right) = \mu\left(f(\lim_{i \to \infty} x_{n_i}), f^2(\lim_{i \to \infty} x_{n_i}), t\right) = \mu(f(y), f^2(y), t)$$
and

$$\nu(y, f(y), t) = \nu\left(\lim_{i \to \infty} x_{n_i}, f(\lim_{i \to \infty} x_{n_i}), t\right) = \lim_{i \to \infty} \nu\left(x_{n_i}, f(x_{n_i}), t\right)$$

and
$$\nu(y, f(y), t) = \nu\left(\lim_{i \to \infty} x_{n_i}, f(\lim_{i \to \infty} x_{n_i}), t\right) = \lim_{i \to \infty} \nu\left(x_{n_i}, f(x_{n_i}), t\right)$$

$$= \lim_{i \to \infty} \nu\left(f(x_{n_i}), f^2(x_{n_i}), t\right) = \nu\left(f(\lim_{i \to \infty} x_{n_i}), f^2(\lim_{i \to \infty} x_{n_i}), t\right) = \nu(f(y), f^2(y), t)$$
for all $t > 0$.

Suppose $f(y) \neq y$, then we have

$$\mu(y, f(y), t) \le \psi(\mu(f(y), f^2(y), t)) < \mu(f(y), f^2(y), t)$$
 and

$$\nu(y, f(y), t) \ge \phi(\nu(f(y), f^2(y), t)) > \nu(f(y), f^2(y), t), t > 0$$
, a contradiction.

Hence y = f(y) is a fixed point.

If x, y are fixed points of f then

$$\mu(f(x), f(y), t) = \mu(x, y, t) \le \psi(\mu(f(x), f(y), t))$$
 and

$$\nu(f(x), f(y), t) = \nu(x, y, t) \ge \phi(\nu(f(x), f(y), t)), \ \forall \, t > 0.$$

Suppose that $x \neq y$, then $\mu(x,y,s) < 1$ and $\nu(x,y,s) > 0$ for some s > 0 i.e.,

$$0 < \mu(x, y, s) < 1$$
 and $0 < \nu(x, y, s) < 1$ hold, impllying

$$\mu(f(x), f(y), s) \le \psi(\mu(f(x), f(y), s)) < \mu(f(x), f(y), s)$$
 and

$$\nu\left(f(x),f(y),s\right) \geq \phi(\nu\left(f(x),f(y),s\right)) > \nu(f(x),f(y),s)$$
, which are contradictions.

Therefore it must be the case that x = y.

Hence the proof.

References

- [1] A.George, P.Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64, 395-399, 1994.
- [2] A. Mohamad, Fixed-point theorems in intuitionistic fuzzy metric spaces, Fuzzy Sets and Systems, 34, 1689-1695, 2007.
- [3] B.Dinda, T.K. Samanta, Intuitionistic Fuzzy Continuity and Uniform Convergence, Int. J. Open Problems Compt.Math., 3(1), 8-26, 2010.
- [4] B.Schweizer, A.Sklar, Statistical metric space, Pacific journal of mathhematics, 10, 314-334,
- [5] D. Mihet, Fuzzy ψ -contractive mappings in non-Archimedian fuzzy metric spaces, Fuzzy Sets and Systems, 159, 739-744, 2008.
- [6] J.H.Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, 22, 1039-1046, 2004.
- [7] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 87 96, 1986.
- [8] L.A.Zadeh, Fuzzy sets, Information and control, 8, 338-353, 1965.
- [9] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27, 385-389, 1988.

Bivas Dinda

DEPARTMENT OF MATHEMATICS, MAHISHAMURI RAMKRISHNA VIDYAPITH, AMTA, HOWRAH-711401,

E-mail address: bvsdinda@gmail.com

T.K. Samanta

DEPARTMENT OF MATHEMATICS, ULUBERIA COLLEGE, ULUBERIA, HOWRAH, INDIA E-mail address: mumpu_tapas5@yahoo.co.in

Iqbal H. Jebril

DEPARTMENT OF MATHEMATICS, TALIBAH UNIVERSITY, ALMADINAH ALMUNAWWARAH, KINGDOM OF SAUDI ARABIA.

 $E ext{-}mail\ address: iqbal501@hotmail.com}$