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ALMOST PERIODIC SOLUTIONS FOR FOX PRODUCTION

HARVESTING MODEL WITH DELAY AND IMPULSES

JEHAD O. ALZABUT

Abstract. By employing the contraction mapping principle and applying the

Gronwall–Bellman’s inequality, sufficient conditions are established to prove
the existence and exponential stability of positive almost periodic solution for
Fox production harvesting model with delay and impulses.

1. Introduction

Consider the following equation of population dynamics [1, 2]

x′(t) = −xF (t, x) + xG(t, x), x′(t) =
dx

dt
, (1)

where x = x(t) is the size of population, F (t, x) is the per–capita harvesting rate
and G(t, x) is the per–capita fecundity rate. Let G(t, x) and F (t, x) be defined in
the form

F (t, x) = α(t) and G(t, x) = β(t) lnγ
(K(t)

x(t)

)
, γ > 0

then equation (1) becomes

x′(t) = −α(t)x(t) + β(t)x(t) lnγ
(K(t)

x(t)

)
, (2)

where α(t) is a variable harvesting rate, β(t) is an intrinsic factor and K(t) is a
varying environmental carrying capacity. The positive parameter γ is referred to as
an interaction parameter [1, 3, 4]. Indeed, if γ > 1 then intra–specific competition
is high whereas if 0 < γ < 1 then the competition is low. For γ = 1, equation
(2) reduces to a classical Gompertzian model with harvesting [2, 5]. Equation (2)
is called a Fox surplus production model that has been used to build up certain
prediction models such as microbial growth model, demographic model and fish-
eries model. This equation is considered to be an efficient alternative to the well
known γ–logistic model. Specifically, Fox model is more appropriate upon describ-
ing lower population density. We refer the reader to the papers [6, 7] where the
existence of periodic solutions, stability, oscillation and the global attractivity of

2000 Mathematics Subject Classification. 34K14, 34K45.
Key words and phrases. Fox production harvesting model; almost periodic solution; exponen-

tial stability.
Submitted Dec. 6, 2012.

169



170 J. O. ALZABUT EJMAA-2013/1(2)

the solutions have been studied. In the recent paper [8], the authors have employed
the continuation theorem to investigate the existence of positive almost periodic
solution of equation (2). For more related topics, the papers [9, 10, 11, 12, 13] are
recommended.

In the real world phenomena, the parameters can be nonlinear functions. The
variation of the environment, however, plays an important role in many biological
and ecological dynamical systems. In particular, the effects of a periodically varying
environment are important for evolutionary theory as the selective forces on systems
in a fluctuating environment differ from those in a stable environment. Thus,
the assumption of periodicity of the parameters are a way of incorporating the
periodicity of the environment. It has been suggested by Nicholson [14] that any
periodical change of climate tends to impose its period upon oscillations of internal
origin or to cause such oscillations to have a harmonic relation to periodic climatic
changes.

On the other hand, some dynamical systems which describe real phenomena are
characterized by the fact that at certain moments in their evolution they undergo
rapid changes. Most notably this takes place due to certain seasonal effects such as
weather, resource availability, food supplies, mating habits, etc. These phenomena
are best described by the so called impulsive differential equations. Thus, it is more
realistic to consider the case of combined effects: periodicity of the environment,
time delays and impulse actions. Namely, an equation of the form{

x′(t) = −α(t)x(t) + β(t)x(t− τ) lnγ
(

K(t)
x(t−τ)

)
, t ̸= θk,

∆x(θk) := x(θ+k )− x(θ−k ) = ηkx(θ
−
k ) + δk, k ∈ N,

(3)

where θk represent the instants at which the population suffers a sudden increment
of δk units. For more information regarding the theory of impulsive delay differential
equations; we refer the readers to the references [15, 16, 17, 18, 19, 20].

One can easily figure out that most of the equations in the above mentioned
papers are considered under periodic assumptions. Nevertheless, the generaliza-
tion to almost periodic functions which are functions that are periodic to some
error has comparably less attention among researchers; we mention here the papers
[21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34] in which the authors study the
notion of almost periodicity of delay differential/difference equations with or with-
out impulses. Motivated by the above said justifications, we shall study the almost
periodicity of Fox model with delay and impulses (3). Indeed, sufficient conditions
are established to prove the existence and exponential stability of positive almost
periodic solution of this model. Our approach in this paper is different and is based
on using the contraction mapping principle as well as applying Gronwall–Bellman’s
inequality.

2. Essential definitions and lemmas

Let {θk}k∈N be a fixed sequence such that σ ≤ θ1 < θ2 < . . . < θk < θk+1 < . . .
where limk→∞ θk = ∞ and σ is a positive number.

Denote by PLC([σ−τ, σ],R+) the space of all piecewise left continuous functions
φ : [σ − τ, σ] → R+ with points of discontinuity of the first kind at t = θk, k ∈ N.
By a solution of (3), we mean a function x(t) defined on [σ − τ,∞) and satisfying
equation (3) for t ≥ σ. For a given initial function ξ ∈ PLC([σ − τ, σ],R+), it
is well known that equation (3) has a unique solution x(t) = x(t;σ, ξ) defined on



EJMAA-2013/1(2) FOX PRODUCTION HARVESTING MODEL 171

[σ − τ,∞) and satisfying the initial condition

x(t;σ, ξ) = ξ(t), σ − τ ≤ t ≤ σ. (4)

Due to purpose of real applications, we will restrict our attention to positive solu-
tions.

To say that impulsive delay differential equations have positive almost periodic
solutions, one need to adopt the following definitions of almost periodicity for such
type of equations.

The definitions are borrowed from the monograph [15].

Definition 1. The set of sequences {θpk}, θ
p
k = θk+p − θk, k, p ∈ N, is said to be

uniformly almost periodic if for arbitrary ε > 0 there exists a relatively dense set of
ε−almost periods common for any sequences.

Definition 2. A function φ ∈ PLC(R+,R+) is said to be almost periodic if the
following conditions hold:

(a1) The set of sequences {θpk} is uniformly almost periodic;
(a2) For any ε > 0 there exists a real number δ = δ(ε) > 0 such that if the points

t
′
and t

′′
belong to the same interval of continuity of φ(t) and satisfy the

inequality |t′ − t
′′ | < δ, then |φ(t′)− φ(t

′′
)| < ε.

(a3) For any ε > 0 there exists a relatively dense set T of ε−almost periods
such that if ω ∈ T then |φ(t + ω) − φ(t)| < ε for all t ∈ R+ satisfying
the condition |t − θk| > ε, k ∈ N. The elements of T are called ε−almost
periods.

Related to equation (3), we consider the linear equation{
x′(t) = −α(t)x(t), t ̸= θk,

∆x(θk) = ηkx(θk), k ∈ N. (5)

It is well known [15] that equation (5) with an initial condition x(t0) = x0 has a
unique solution represented by the form

x(t; t0, x0) = X(t, t0)x0, t0, x0 ∈ R+,

where X is the Cauchy matrix of (5) defined as follows:

X(t, s) =

{
e−

∫ t
s
α(r)dr, θk−1 < s ≤ t ≤ θk,∏k

i=m(1 + ηi)e
−

∫ t
s
α(r)dr, θm−1 < s ≤ θm ≤ θk < t ≤ θk+1.

(6)

Throughout this paper, we introduce the following conditions (C) for equation (3):

(C1) The function α ∈ C[R+,R+] is almost periodic in the sense of Bohr and
there exists a constant µ such that α(t) ≥ µ > 0;

(C2) The sequence {ηk} is almost periodic and −1 ≤ ηk ≤ 0, k ∈ N;
(C3) The set of sequences {θpk} is uniformly almost periodic and there exists

η > 0 such that infk∈N θ
1
k = η > 0;

(C4) The function β(t) ∈ C[R+,R+] is almost periodic in the sense of Bohr and
supt∈R+ |β(t)| < ν where ν > 0 and β(0) = 0;

(C5) The sequence {δk} is almost periodic and supk∈N |δk| < κ, k ∈ N;
(C6) The function K(t) ∈ C[R+,R+] is almost periodic in the sense of Bohr and

supt∈R+ |K(t)| < ρ where ρ > 0.

The following results prove helpful.
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Lemma 1. [15] Let conditions (C) hold. Then for each ε > 0 there exists ε1,
0 < ε1 < ε, relatively dense sets T of positive real numbers and Q of natural
numbers such that the following relations are fulfilled:

(b1) |α(t+ ω)− α(t)| < ε, t ∈ R+, ω ∈ T ;
(b2) |β(t+ ω)− β(t)| < ε, t ∈ R+, ω ∈ T ;
(b3) |K(t+ ω)−K(t)| < ε, t ∈ R+, ω ∈ T ;
(b4) |ηk+p − ηk| < ε, p ∈ Q, k ∈ N;
(b5) |δk+p − δk| < ε, p ∈ Q, k ∈ N;
(b6) |θpk − ω| < ε1, ω ∈ T , p ∈ Q, k ∈ N.

Lemma 2. [15] Let condition (C3) be fulfilled. Then for each j > 0 there exists a
positive integer N such that on each interval of length j there is no more than N
elements of the sequence {θk}, i.e.,

i(s, t) ≤ N(t− s) +N,

where i(s, t) is the number of the points θk in the interval (s, t).

The following lemmas provide a bound for the Cauchy matrix X(t, s) of equation
(5).

Lemma 3. Let conditions (C1)–(C3) be satisfied. Then for the Cauchy matrix
X(t, s) of equation (5) there exists a positive constant µ such that

X(t, s) ≤ e−µ(t−s), t ≥ s, t, s ∈ R+. (7)

Proof. In virtue of condition (C2), we deduce that the sequence {ηk} is bounded.
Further, it follows that 1 + ηk ≤ 1. Thus, from formula (6) and condition (C1), we
get

X(t, s) ≤ e−µ(t−s), t ≥ s, t, s ∈ R+.

Lemma 4. Let conditions (C1)–(C3) be satisfied. Then each ε > 0, t ∈ R+, s ∈
R+, t ≥ s, |t − θk| > ε, |s − θk| > ε, k ∈ N there exists a relatively dense set T
of ε−almost periods of the function α(t) and a positive constant M such that for
ω ∈ T it follows ∣∣∣X(t+ ω, s+ ω)−X(t, s)

∣∣∣ ≤ εMe−
µ
2 (t−s). (8)

Proof. Consider the sets T and Q defined as in Lemma 1. Let ω ∈ T . Since the
matrix H(t+ ω, s+ ω) is a solution of equation (5), we have the following

∂
∂tX = α(t)X(t+ ω, s+ ω) +

[
α(t)− α(t+ ω)

]
X(t+ ω, s+ ω), t ̸= θ

′

k,

∆X(θ
′

k, s) = ηkX(θk + ω, s+ ω) + (ηk − ηk+p)X(θ
′

k + ω, s+ ω),

where θ
′

k = θk − p, p ∈ Q, k ∈ N. Then

X(t+ ω, s+ ω) = X(t, s) +

∫ t

s

X(t, r)[α(r)− α(r + ω)]X(r + ω, s+ ω) dr

+
∑

s<θ
′
k<t

X(t, θ
′

k + 0)
[
ηk+p − ηk

]
X(θ

′

k + ω, s+ ω). (9)

In view of Lemma 1 it follows that if |t − θ
′

k| > ε, then θ
′

k+p < t + ω < θ
′

k+p+1.
Further, we obtain∣∣∣X(t+ ω, s+ ω)−X(t, s)

∣∣∣ ≤ ε(t− s)e−µ(t−s) + εi(s, t)e−µ(t−s) (10)
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for |t − θ
′

k| > ε, |s − θ
′

k| > ε where i(s, t) is the number of the points θ
′

k in the
interval (s, t). From Lemma 2, (10) becomes∣∣∣X(t+ ω, s+ ω)−X(t, s)

∣∣∣
≤ ε

[ 2
µ

{µ
2
(t− s)e

−µ
2 (t−s)

}
+N

2

µ

{µ
2
(t− s)e

−µ
2 (t−s)

}
+Ne

−µ
2 (t−s)

]
e

−µ
2 (t−s).

By using the inequalities e−
µ
2 (t−s) < 1 and µ

2 (t− s)e−
µ
2 (t−s) ≤ 1, we get∣∣∣X(t+ ω, s+ ω)−X(t, s)

∣∣∣ ≤ εM,

where

M =
2

µ

(
1 +N +

µ

2
N
)
.

3. The Main results

Throughout this section, it is assumed that

νργ < µ. (11)

Theorem 1. Let conditions (C) hold. Then there exists a unique positive almost
periodic solution x(t) of (3).

Proof. Let D ⊂ PLC(R+,R+) denote the set of all positive almost periodic
functions φ(t) with

∥φ∥ ≤ K,

where

∥φ∥ = sup
t∈R

|φ(t)| and K :=
νργ

µ
+

2

1− e−µ
κN.

Define an operator F in D by the formula

[Fφ](t) =

∫ t

−∞
X(t, s)β(s)φ(s− τ) lnγ

( K(s)

φ(s− τ)

)
ds+

∑
θk<t

X(t, θk)δk. (12)

One can easily check that Fφ is a solution of equation (3). In the following, we
first show that F maps the set D into itself. In view of relation (7) and conditions
(C1),(C4)–(C6) we obtain

∥Fφ∥ ≤ sup
t∈R+

{∫ t

−∞
X(t, s)

∣∣β(s)∣∣∣∣∣φ(s− τ) lnγ
( K(s)

φ(s− τ)

)∣∣∣ds+ ∑
θk<t

X(t, θk)|δk|
}

≤ sup
t∈R+

{
γ

∫ t

−∞
X(t, s)

∣∣β(s)∣∣|K(s)| ds+
∑
θk<t

X(t, θk)|δk|
}

<
νργ

µ
+

2

1− e−µ
κN = K (13)

for arbitrary φ ∈ D.
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Now, we shall prove that Fφ is almost periodic. Indeed, let ω ∈ T, p ∈ Q where
the sets T and Q are defined as in Lemma 1, it follows that

∥∥∥Fφ(t+ ω) − Fφ(t)
∥∥∥

≤ sup
t∈R+

{∫ t

−∞

∣∣∣X(t+ ω, s+ ω)−X(t, s)
∣∣∣

×
∣∣β(s+ ω)

∣∣φ(s+ ω − τ) lnγ
( K(s+ ω)

φ(s+ ω − τ)

)
ds

+

∫ t

−∞
X(t, s)

∣∣∣∣∣β(s+ ω)
∣∣φ(s+ ω − τ) lnγ

( K(s+ ω)

φ(s+ ω − τ)

)
−

∣∣β(s)∣∣φ(s− τ) lnγ
( K(s)

φ(s− τ)

)∣∣∣ds
+

∑
θk<t

∣∣∣X(t+ ω, θk+p)−X(t, θk)
∣∣∣|δk+p|

+
∑
θk<t

X(t, θk)
∣∣∣δk+p − δk

∣∣∣}

or ∥∥∥Fφ(t+ ω)− Fφ(t)
∥∥∥

≤ sup
t∈R+

{∫ t

−∞

∣∣∣X(t+ ω, s+ ω)−X(t, s)
∣∣∣

×
∣∣β(s+ ω)

∣∣φ(s+ ω − τ) lnγ
( K(s+ ω)

φ(s+ ω − τ)

)
ds (14)

+

∫ t

−∞
X(t, s)

{∣∣β(s+ ω)− β(s)
∣∣φ(s+ ω − τ) lnγ

( K(s+ ω)

φ(s+ ω − τ)

)
+

∣∣β(s)∣∣∣∣∣φ(s+ ω − τ) lnγ
( K(s+ ω)

φ(s+ ω − τ)

)
− φ(s− τ) lnγ

( K(s)

φ(s− τ)

)∣∣∣}ds

+
∑
θk<t

∣∣∣X(t+ ω, θk+p)−X(t, θk)
∣∣∣|δk+p|

+
∑
θk<t

X(t, θk)|δk+p − δk|
}
≤ εC1, (15)

where

C1 =
2

µ
νργM +

1

µ
(ργ + 2νργ) + κM

2N

1− e−
µ
2

+
2N

1− e−µ
.

In virtue of (13) and (14), we deduce that Fφ ∈ D. Therefore, F is a self–mapping
from D to D.

Finally, we prove that F is a contraction mapping on D. Let φ,ψ ∈ D. From
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(12), we have∥∥∥Fφ− Fψ
∥∥∥ ≤

∫ t

−∞
X(t, s)|β(s)|

×
∣∣∣φ(s− τ) lnγ

( K(s)

φ(s− τ)

)
− ψ(s− τ) lnγ

( K(s)

ψ(s− τ)

)∣∣∣ ds
≤ νργ

µ
∥φ− ψ∥. (16)

The assumption that νργ < µ implies that F is a contraction mapping on D. Then
there exists a unique fixed point x ∈ D such that Fx = x. This implies that (3)
has a unique positive almost periodic solution x(t).

Theorem 2. Let conditions (C) hold. Then the unique positive almost periodic
solution x(t) of (3) is exponentially stable.

Proof. Let y(t) be an arbitrary solution of (3) supplemented with the initial
condition

y(t) = ζ(t), ζ ∈ PLC([σ − τ, σ],R+).

Let x(t) be the unique positive almost periodic solution of (3) with the initial
condition (4). It follows that

x(t)− y(t) = X(t, σ)(ξ − ζ)

+

∫ t

σ

X(t, s)β(s)

×
(
x(s− τ) lnγ

( K(s)

x(s− τ)

)
− y(s− τ) lnγ

( K(s)

y(s− τ)

))
ds.

Taking the norm of both sides, we get∥∥∥x(t)− y(t)
∥∥∥ ≤ e−µ(t−σ)∥ξ − ζ∥+

∫ t

σ

e−µ(t−s)νργ∥x(s)− y(s)∥ds.

Setting z(t) = ∥x(t)−y(t)∥eµt and applying Gronwall–Bellman’s inequality we end
up with the expression∥∥∥x(t)− y(t)

∥∥∥ ≤ ∥ξ − ζ∥e−(µ−νργ)(t−σ).

The assumption that νργ < µ implies that the unique positive almost periodic
solution of equation (3) is exponentially stable.

Example 1. Let conditions (C) hold. If supt∈R+{γβ(t)K(t)} < supt∈R+ α(t) then
there exists a unique positive almost periodic exponential stable solution x(t) of{

x′(t) = −α(t)x(t) + β(t)x(t− τ) lnγ
(

K(t)
x(t−τ)

)
, t ̸= θk,

∆x(θk) = ηkx(θk), k ∈ N.
(17)
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